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Abstract—In multi-user information theory it is often assumed
that every node in the network possesses all codebooks used in the
network. This assumption is however impractical in distributed
ad-hoc and cognitive networks. This work considers the two-
user Gaussian Interference Channel with one Oblivious Receiver
(G-IC-OR), i.e., one receiver lacks knowledge of the interfering
cookbook while the other receiver knows both codebooks. We ask
whether, and if so how much, the channel capacity of the G-IC-
OR is reduced compared to that of the classical G-IC where
both receivers know all codebooks. Intuitively, the oblivious
receiver should not be able to jointly decode its intended message
along with the unintended interfering message whose codebook
is unavailable. We demonstrate that in strong and very strong
interference, where joint decoding is capacity achieving for the
classical G-IC, lack of codebook knowledge does not reduce
performance in terms of generalized degrees of freedom (gDoF).
Moreover, we show that the sum-capacity of the symmetric G-IC-
OR is to within O(log(log(SNR))) of that of the classical G-IC.
The key novelty of the proposed achievable scheme is the use of a
discrete input alphabet for the non-oblivious transmitter, whose
cardinality is appropriately chosen as a function of SNR.

I. INTRODUCTION

A classical assumption in multi-user information theory
is that each node in the network possesses knowledge of
the codebooks used by every other node. However, such as-
sumptions might not be practical in heterogeneous, cognitive,
distributed or dynamic networks For example, in very large
ad-hoc networks, where nodes enter and leave at will, it
might not be a practical assumption that new nodes learn the
codebooks of old nodes and vice-versa. On the other hand,
in cognitive radio scenarios, where new cognitive systems
coexist with legacy systems, requiring the legacy system to
know the codebook of the new cognitive system might not
be viable. This motivates the study of networks where each
node possesses only a subset of the codebooks used in the
network. We will refer to such systems as networks with
partial codebook knowledge and to nodes with only knowledge
of a subset of the codebooks as oblivious receivers.

A. Past Work

To the best of our knowledge systems with partial codebook
knowledge were first introduced in [1]. In [1] lack codebook
knowledge was modeled by using codebook indices, which
index the random encoding functions that map the messages to
the codewords. If a node has codebook knowledge it knows the

index (or instance) of the random encoding function used; else
it does not and the codewords essentially look like the symbols
were produced in an independent, identically distributed (i.i.d.)
fashion from a given distribution. In [2] and [3] this concept
of partial codebook knowledge was extended to model oblivi-
ous relays, where only multi-letter capacity expressions were
obtained. As pointed out in [2, Section III.A] and [3, Remark
5], these capacity bounds are “non-computable” in the sense
that it is not known how to find the optimal input distribution
in general. In particular, the capacity achieving distribution
for the practically relevant Gaussian noise channel remains an
open problem.

In [4] we introduced the two-user Interference Channel (IC)
with one Oblivious Receiver, referred to as the IC-OR. In the
IC-OR, one receiver has full codebook knowledge (as in the
classical IC), but the other receiver only has partial codebook
knowledge (it knows the codebook of its desired message, but
not that of the interfering message). The capacity region of
the IC-OR was characterized to within a constant gap for the
class of injective semi-deterministic IC in the spirit of [5].
In particular, the capacity of the real-valued Gaussian IC-OR
(G-IC-OR) was characterized to within 1/2 bit per channel
use per user; however, the input distribution achieving such a
gap was not found. In [4, Section V.B] it was remarked that a
carefully chosen i.i.d. Pulse Amplitude Modulation (PAM) can
outperform i.i.d. Gaussian inputs for the given achievable rate
region expression, and it was thus conjectured that discrete
inputs may outperform Gaussian signaling in the strong and
very strong interference regimes.

B. Contributions and Paper Outline

After formally introducing the IC-OR in Section II, we show
our main contributions:

1) In Section III we introduce a new lower bound on the
mutual information achievable by a discrete input on a
point-to-point Gaussian noise channel, which will serve
as the main tool in the derivation of our achievable rate
region for the G-IC-OR.

2) To understand the utility of this new tool, in Section IV
we show how to choose the cardinality of the discrete
input in a point-to-point Gaussian noise channel such
that the rate achieved is to within O (log (log(SNR)))
of the (in this case known) capacity. This in turn shows
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that a discrete input can achieve the maximum Degrees
of Freedom (DoF) of the channel.

3) In Section V we evaluate the achievable rate region in
[4, Lemma 3] for the G-IC-OR by using a discrete input
for the non-oblivious transmitter and a Gaussian input
for the other transmitter. For simplicity we only consider
the symmetric G-IC-OR, where the direct links have the
same strength and the interfering links have the same
strength, but our results can be readily extended to the
general asymmetric case.

4) In past work on networks with oblivious nodes no
performance guarantees were provided for the Gaussian
noise case. In SectionVI we study the generalized de-
grees of freedom (gDoF) achievable with the scheme
introduced in Section V. We show that in strong and very
strong interference the proposed scheme can approach
the gDoF of the classical G-IC to within any degree of
accuracy. This is quite surprising considering that the
oblivious receiver can not perform joint decoding of the
two messages, which is optimal for the classical G-IC
in these regimes.

5) In Section VII we show that the sum-capacity of the G-
IC-OR in strong and very strong interference is within
O (log (log(SNR))) of the sum-capacity of the classical
IC (which forms a natural outer bound to the oblivi-
ous channel, and where we are able to compute outer
bounds). This in turn refines the gDoF result of Section
V and shows that the scheme introduced in Section V
is indeed gDoF optimal.

We conclude the paper with some final remarks and future
directions in Section VIII.

C. Notation

Lower case variables are instances of upper case random
variables which take values in calligraphic alphabets. We
let δ(·) denote the Dirac delta function, and |A| denote the
cardinality of a set A. The probability density function of a
real-valued Gaussian random variable (r.v.) X with mean µ
and variance σ2 is denoted as

X ∼ N (x;µ, σ2) :=
1√
2πσ2

e−
(x−µ)2

2σ2 .

Throughout the paper log(·) denotes logarithms in base 2 and
ln(·) in base e. We let [x]+ := max(x, 0) and log+(x) :=
[log(x)]+. The functions Id(N, x) and Ig(x), for N ∈ N and
x ∈ R+, are defined as

Id(N, x) :=

[
log(N)− 1

2
log
( e
2

)
− log

(
1 + (N − 1)e−x

)]+
Ig(x) :=

1

2
log(1 + x).

In the following PAM(N, dmin) denotes the uniform distri-
bution over a zero-mean Pulse Amplitude Modulation (PAM)
constellation with N points and minimum distance dmin (and
average energy E = d2min

N2−1
12 ).
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Fig. 1: The IC-OR, where F1 and F2 represent codebook
indices known to one or both receivers.

II. CHANNEL MODEL

The IC-OR consists of a two-user memoryless IC
(X1,X2, PY1Y2|X1X2

,Y1,Y2) where receiver 2 is oblivious of
transmitter 1’s codebook. We model this lack of codebook
knowledge as in [1], where transmitters use randomized en-
coding functions indexed by a message index and a codebook
index. An oblivious receiver is unaware of the codebook index
(F1 is not given to decoder 2 in Fig. 1). The basic modeling as-
sumption is that without the knowledge of the codebook index
a codeword looks unstructured. More formally, by extending
[2, Definition 2], a (2nR1 , 2nR2 , n) code for the IC-OR with
time sharing is a six-tuple (PF1|Qn , σ

n
1 , φ

n
1 , PF2|Qn , σ

n
2 , φ

n
2 ),

where the distribution PFi|Qn , i ∈ [1 : 2], is over a finite
alphabet Fi conditioned on the time-sharing sequences qn

from some finite alphabet Q, and where the encoders σni and
the decoders φni , i ∈ [1 : 2], are mappings

σn1 : [1 : 2nR1 ]× [1 : |F1|]→ Xn1 ,
σn2 : [1 : 2nR2 ]× [1 : |F2|]→ Xn2 ,
φn1 : [1 : |F1|]× [1 : |F2|]× Yn1 → [1 : 2nR1 ],

φn2 : [1 : |F2|]× Yn2 → [1 : 2nR2 ].

Moreover, when transmitter 1’s codebook index is unknown
at decoder 2, the encoder σn1 and distribution PF1|Qn satisfy

2nR1∑
w1=1

|F1|∑
f1=1

PF1|Qn(f1|qn) 2−nR1 δ
(
xn1 − σn1 (w1, f1)

)
=: P[Xn

1 = xn1 |Qn = qn] =
∏

t∈[1:n]
PX1|Q(xit|qt), (1)

according to some distribution PX1|Q. In other words, when
averaged over the probability of selecting a given codebook
and over a uniform distribution on the message set, the trans-
mitted codeword conditioned on any time sharing sequence
has a product distribution. Besides the restriction in (1) on
the allowed class of codes, the probability of error, achievable
rates and capacity region are defined in the usual way [6].

In this work we consider the practically relevant real-valued
single-antenna symmetric Gaussian noise case. The restriction
to symmetric channel gains is just for ease of exposition; all
the results in the following can be extended straightforwardly



to the general asymmetric case. For the symmetric G-IC-OR,
the input-output relationship is

Y1 =
√
SNR X1 +

√
INR X2 + Z1 (2a)

Y2 =
√
INR X1 +

√
SNR X2 + Z2 (2b)

where the channel inputs are subject to the average power
constraint E[|Xi|2] ≤ 1, i ∈ [1 : 2], and the noise are i.i.d.
Zi ∼ N (z; 0, 1), i ∈ [1 : 2]. The real-valued parameters SNR
and INR represent the received signal-to-noise ratio of the
intended and interfering signal, respectively, at each receiver.

III. MAIN TOOL

In this section we present a new lower bound on the mutual
information achievable by a discrete input on a point-to-point
Gaussian noise channel that will serve as the main tool in
evaluating our inner bound for the G-IC-OR. We are not the
first to consider discrete inputs for Gaussian noise channels;
however, to best of our knowledge, prior to this, no firm
lower bounds existed. [7, Theorems 6 and 7] asymptotically
characterize the optimal input distribution over N masses at
high and low SNR, respectively, for a point-to-point power-
constrained Gaussian noise channel; [7, Theorem 8] gives
a mutual information lower bound that holds for the Gauss
quadrature distribution for all SNRs; [8] considers arbitrary
input constellations with distribution independent of SNR and
finds exact asymptotic expressions for the rate in the high-SNR
limit. Here we can not use these results as we need firm lower
bounds that hold for all distributions of N distinct masses and
for all SNR. Our bound is as follows.

Theorem 1. Let XD be a discrete random variable with
support {si ∈ R, i ∈ [1 : N ]}, minimum distance dmin

and average energy ED :=
∑
i∈[1:N ] s

2
iP[XD = si]. Let

ZG ∼ N (z; 0, 1) and SNR be a non-negative constant. Then

Id

(
N, SNR

d2min

4

)
≤ I(XD;

√
SNR XD + ZG) (3)

≤ min
(
log(N), Ig (SNR ED)

)
. (4)

Proof: Let pi := P[XD = si], i ∈ [1 : N ]. The output
Y =

√
SNR XD + ZG has density

Y ∼ PY (y) :=
∑

i∈[1:N ]

piN (y;
√
SNR si, 1). (5)

The upper bound in (4) follows from the well known facts
that ‘Gaussian maximizes the differential entropy for a given
second moment constraint’ and that ‘a uniform input maxi-
mizes the entropy of a discrete random variable’ [6]. To prove
the lower bound in (3) we first find a lower bound on the
differential entropy h(Y ) := −

∫
PY (y) log(PY (y))dy, where

the output density is the Gaussian mixture in (5). We have

− h(Y ) =

∫
PY (y) log(PY (y))dy

(a)

≤ log

∫
PY (y)PY (y)dy

= log

∫  ∑
i∈[1:N ]

piN (y;
√
SNRsi, 1)

2

dy

= log
( ∑

(i,j)∈[1:N ]2

pipj

∫
N (y;

√
SNRsi, 1)

· N (y;
√
SNRsj , 1)dy

)
= log

( ∑
(i,j)∈[1:N ]2

pipj
1√
4π

e
−SNR(si−sj)

2

4

·
∫
N (y;

√
SNR

si + sj
2

,
1

2
)dy
)

(b)
= log

 ∑
(i,j)∈[1:N ]2

pipj
1√
4π

e−
SNR(si−sj)

2

4


(c)

≤ log
( ∑
i∈[1:N ]

p2i
1√
4π

+
∑

i∈[1:N ]

pi(1− pi)
1√
4π

e−
SNRd2min

4

)
(d)

≤ − log(N
√
4π) + log

(
1 + (N − 1)e−

SNRd2min
4

)
,

⇐⇒ I(XD;
√
SNR XD + ZG) = h(Y )− h(ZG) ≥

log(N)− 1

2
log
( e
2

)
− log

(
1 + (N − 1)e−

SNRd2min
4

)
,

where the (in)equalities follow from: (a) Jensen’s inequality,
(b)
∫
N (y;µ, σ2)dy = 1, (c) upper bounding by maximizing

the exponential with dmin := mini 6=j |si−sj |, (d) by maximiz-
ing over the {pi, i ∈ [1 : N ]}. Combining this bound with the
fact that mutual information is non-negative proves the lower
bound in (3).

IV. DISCRETE INPUTS FOR THE POWER-CONSTRAINED
POINT-TO-POINT GAUSSIAN NOISE CHANNEL

In this section we give a flavor of how we intend to use dis-
crete inputs on the G-IC-OR by considering the familiar point-
to-point Gaussian noise channel. Specifically, we will show
that, for a unit-variance additive white Gaussian noise channel,
the unit-energy discrete input XD ∼ PAM

(
N,
√

12
N2−1

)
with a properly chosen number of points N as a function of
SNR := |h|2 achieves

I(XD;hXD + ZG) ≈ log(N), (6)
I(XG;hXG +XD + ZG) ≈ I(XG;hXG + ZG), (7)

What this implies is that the discrete input XD is a “good”
input and a “good” interference. To put it more clearly, when
we use a discrete constellation with uniform distribution as
input, as in (6), the mutual information is roughly equal to
the entropy of the constellation, which is highly desirable.
On the other hand, when the same constellation is used as



interference/noise, as in (7), the mutual information is roughly
as if there was no interference, which is again highly desirable.
In contrast, a Gaussian r.v. is considered to be the “best” input
but the “worst” interference/noise when subject to a second
moment constraint [9].

Consider the point-to-point Gaussian channel

Y =
√
SNR X + Z, (8a)

E[X2] ≤ 1, Z ∼ N (z; 0, 1), (8b)

whose capacity C = Ig (SNR) is achieved by X ∼ N (x; 0, 1)
at all SNRs. For this channel the gDoF is

d := lim
SNR→∞

C
1
2 log(1 + SNR)

= 1. (9)

Consider now the performance of the input

X ∼ PAM

(
N,

√
12

N2 − 1

)
. (10)

It was shown in [10, Th. 10] that for any fixed N independent
of SNR the gDoF is zero. Similar conclusions were found
in [7] by considering high-SNR approximations of the finite
constellation capacity of the point-to-point Gaussian channel,
defined as the maximum rate achieved by a discrete input
constrained to have a finite support. A question left open in
[7] is what happens if N is allowed to be a function of SNR.
In the following we address this question.

Fig. 2 shows that, through clever picking of N as a function
of SNR, we seem to be able to follow to within an additive
gap the capacity C = Ig (SNR). This is formally shown in the
next theorem.

Theorem 2. For the channel in (8), the input in (10) with

N = b
√
1 + SNR1−εc (11)

achieves d = 1− ε, for any ε∈ (0, 1).

Proof: By Theorem 1, the proposed input achieves

R ≥ Id
(
b
√
1 + SNR1−εc, 3SNRε

)
(12)

Next, by using the definition of gDoF and the fact that

log

(
1 + (b

√
1 + SNR1−εc − 1)e

− 3SNR

b
√

1+SNR1−εc2−1

)
1
2 log(1 + SNR)

→ 0,

for any ε > 0, we see that

d = lim
SNR→∞

log(N)
1
2 log(1 + SNR)

= 1− ε

as claimed. This concludes the proof.
Theorem 2 shows that the input in (10) with the number

of points chosen as in (11) approaches 1 gDoF to within any
degree of accuracy. We next show that, with a clever choice
of ε in (11) as a function of SNR, the rate in (12) is to within
an additive gap of O(log(log(SNR))) of the capacity C =
Ig (SNR), thus showing that indeed a discrete input can exactly
achieve 1 gDoF. As a matter of fact this gap (given precisely
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in (15)) grows very slowly with SNR. For example, the gap
reaches value of 3 bits at SNR ≈ 50dB. Hence, for all practical
purposes, this gap can be considered a small constant. We have

Theorem 3. For the channel in (8), the input in (10) with the
number of points chosen as in (11) and with

ε=

[
log( 16 ln(SNR))

log(SNR)

]+
(13)

the achievable rate in (12) achieves the capacity C = Ig (SNR)
to within an additive gap of O(log(log(SNR))).

Proof: Picking ε as in (13) ensures that

log

(
1 + (b

√
1 + SNR1−εc − 1)e

− 3SNR

b
√

1+SNR1−εc2−1

)
≤ 1,

and hence the achievable rate satisfies

R ≥
[
log(N)− 1

2
log
( e
2

)
− 1

]+
. (14)

Next, the difference between the capacity and the achievable
rate in (14) for SNR ≥ 1 (if SNR < 1 a trivial gap of 1
bit/sec/Hz can be shown) can be upper bounded as

1

2
log(1 + SNR)−

[
log(b

√
1 + SNR1−εc)− 1

2
log
( e
2

)
− 1

]+
≤ 1

2
log(1 + SNR)− log(b

√
1 + SNR1−εc) + 1

2
log
( e
2

)
+ 1

≤ 1

2
log(1 + SNR)− 1

2
log(1 + SNR1−ε) +

1

2
log
( e
2

)
+ 2



where used bxc ≥ 1
2x for x ≥ 1; next, since 1+x

1+x1−ε ≤ xε for
x ≥ 1 (for SNR ≤ 1 capacity can be trivially achievable to
within 1 bit) we have

gap(SNR) ≤ ε

2
log(SNR) +

1

2
log (8e)

=

[
1

2
log(

1

6
ln(SNR))

]+
+

1

2
log (8e), (15)

as claimed. This concludes the proof.

Theorem 3 showed that a discrete input is a “good” input
in the sense alluded to by (6). We now show that that a
discrete interference is a “good” interference in the sense
alluded to by (7). We study an extension of the channel in (8)
by considering a state T available neither at the encoder nor
at the decoder. The input-output relationship is

Y =
√
SNR X + hT + Z : (16a)

E[X2] ≤ 1, Z ∼ N (z; 0, 1), (16b)

T ∼ PAM

(
N,

√
12

N2 − 1

)
. (16c)

It is well known [6] that capacity of channel with random state
is C = maxPX I(X;Y ) ≤ maxPX I(X;Y |T ) = Ig(SNR).
We can show

Theorem 4. For the channel with unknown states in (16) the
input X ∼ N (x; 0, 1) achieves

R≥Ig(SNR) + Id

(
N,

3|h|2
(1 + SNR)(N2 − 1)

)
−min

(
log(N), Ig(|h|2)

)
. (17)

Proof: By using Theorem 1 we have

I(X;Y ) = h(
√
SNRX + hT + Z)− h(hT + Z)

= h

(
h√

1 + SNR
T + Z

)
− h(Z) + 1

2
log(1 + SNR)

−
(
h (hT + Z)− h(Z)

)
≥ Id

(
N,

3|h|2
(1 + SNR)(N2 − 1)

)
+ Ig(SNR)

−min
(
log(N), Ig(|h|2)

)
,

as claimed.
Note that the result of Theorem 4 can be readily used to

lower bound the achievable rate in a G-IC where one user has
a Gaussian input and the other a discrete input and where the
discrete input is ‘treated as noise’, as we shall do in the next
Section for the G-IC-OR. Before concluding we show that

Corollary 5. For the channel with unknown states in (16), the
achievable rate from Theorem 4 attains 1 gDoF.

Proof: By taking achievable rate in Theorem 4 we
have d = 1 since both Id

(
N, 3|h|2

(1+SNR)(N2−1)

)
and

min
(
log(N), Ig(|h|2)

)
tend to zero as SNR → ∞ (here N

and |h| do not depend on SNR).

Theorem 5 shows that even with lack of state knowledge
at both the receiver and transmitter, if the state is discrete
and its support is not a function of SNR, then its effect can
be ‘removed’ at high-SNR. From the proof of Theorem 5 it
is immediate that the channel with unknown states in (16)
has 1 DoF also when N and |h| vary with SNR as long as
Id
(
N, 3|h|2

(1+SNR)(N2−1)

)
−min

(
log(N), Ig(|h|2)

)
tends to zero

as SNR→∞ in the rate expression in (17).

In the next Section we shall use a discrete input to charac-
terize the sum-capacity of the G-IC-OR.

V. AN ACHIEVABLE REGION FOR THE G-IC-OR

With the tools and insights developed form the previous
Sections, we are ready to analyze the G-IC-OR.

Theorem 6. For the G-IC-OR the following rate region is
achievable

R1 ≤ Id

(
N,

3 SNR

N2 − 1

)
(18a)

R2 ≤ Id

(
N,

3 INR

(1 + SNR)(N2 − 1)

)
+ Ig(SNR)

−min (log(N), Ig(INR)) (18b)

R1 +R2 ≤ Id

(
N,

3 SNR

(1 + INR)(N2 − 1)

)
+ Ig(INR) (18c)

Proof: From [4, Lemma 3 with U2 = X2] the following
region is achievable

R1 ≤ I(X1;Y1|X2, Q) (19a)
R2 ≤ I(X2;Y2|Q) (19b)

R1 +R2 ≤ I(X1, X2;Y1|Q), (19c)

for all PQPX1|QPX2|Q. We now evaluate the region in (19)
without time sharing, i.e., Q = ∅, and with inputs

X1 ∼ PAM

(
N,

√
12

N2 − 1

)
, (20a)

X2 ∼ N (x; 0, 1). (20b)

The bound in (18a) is a direct application of Theorem 1
with d2min = 12

N2−1 . The bound in (18b) follows from The-
orem 4 with |h|2 = INR. The bound in (18c) follows since
I(X1, X2;Y1) = I(X1;Y1)+ I(X2;Y1|X1), where I(X1;Y1)
is evaluated with Theorem 1 (here the Gaussian input X2

is treated as noise hence the SNR is SNR
1+INR ; the minimum

distance is d2min = 12
N2−1 ) and I(X2;Y1|X1) = Ig(INR).

VI. HIGH SNR PERFORMANCE

In this Section we analyze the performance of the scheme in
Theorem 6 at high-SNR by using the gDoF region as metric.
For each rate Ri we define a gDoF di as in (9), for i ∈ [1 : 2],
where we parameterize INR = SNRα for some α ≥ 0 [11].
In a spirit of Theorem 2, we take N = b

√
1 + SNRβc. With

this, we have that the following achievable gDoF region



Theorem 7. From Theorem 6, the following (d1, d2) pairs are
achievable

d1 ≤
{
β if 1− β > 0
0 if 1− β ≤ 0

}
, (21a)

d2 ≤
{
β if [α− 1]+ − β > 0
0 [if α− 1]+ − β ≤ 0

}
+ 1−min(β, α), (21b)

d1 + d2 ≤
{
β if [1− α]+ − β > 0
0 if [1− α]+ − β ≤ 0

}
+ α. (21c)

union over all β ≥ 0.

Proof: Due to the space limitations we show the proof
for d2 in (21b) only; proofs for the other constraints follow
similarly. By using INR = SNRα and N = b

√
1 + SNRβc

and by noting that

lim
SNR→∞

log(N2)

log(1 + SNR)
= β, lim

SNR→∞
log(1 + INR)

log(1 + SNR)
= α,

we compute d2 in the following way

d2 = lim
SNR→∞

left hand side of eq.(18b)
1
2 log(1 + SNR)

= β − lim
SNR→∞

log
(
1 + (N − 1) exp

(
−3INR

(1+SNR)(N2−1)

))
1
2 log(SNR)

+ 1−min(β, α)

= β −
{

0 α− 1− β > 0
β α− 1− β ≤ 0

}
−min(β, α) + 1.

This concludes the proof.
Determining analytically which β’s attain the closure of the

gDoF region in (21) is a bit involved, but it can be done
very easily numerally. Fig 3 shows (for example) the gDoF
region of Theorem 7 for α = 4

3 ; we see that while the sum-
gDoF is the same as that of the classical G-IC, that the region
is not, which makes intuitive sense as d2 corresponds to the
achieved gDoF of the oblivious receiver, which is much more
constrained in our model and our achievability scheme.

It is interesting to compare the achievable sum-gDoF for
the G-IC-OR based on Thereom 7 with the outer bound given
by sum-gDoF of the classical G-IC [11]

max(d1 + d2)

2
≤ min

(
1,max

(α
2
, 1− α

2

)
,max(α, 1− α)

)
.

We next demonstrates the sum-gDoF of the G-IC-OR.

Lemma 8. The following gDoF is achievable by G-IC-OR

max
β

(d1 + d2) =

 1− ε 0 ≤ α < 1, 0 < ε ≤ 1− α
α− ε 1 ≤ α < 2, 0 < ε ≤ α− 1
2− ε α ≥ 2, 0 < ε ≤ 1

.

(22)

Proof: By setting β = min(1, |α − 1|) − ε ≥ 0 in
Theorem 7 one can verify that

d1 ≤ β,
d2 ≤ min(1,max(α, 1− α)),

d1 + d2 ≤ max(1, α),
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Fig. 3: gDof region achievable by Theorem 7 at α = 4
3 .

Note that one of the corner points is not achieved, as might
be expected since d2 corresponds to the oblivious user.

from which the claim follows.
To compare performance of the classical G-IC and of the G-

IC-OR we plot the corresponding gDoFs in Fig. 4. We observe
that in strong and very strong interference (α ≥ 1) the gDoFs
are the same (up to an arbitrary small ε); hence, in this regime
lack of codebook knowledge does not impact performance in
the gDoF sense. We also note that in weak interference (α < 1)
our proposed scheme only has 1 gDoF, which means that the
same performance can be achieved by silencing one of the
users. For reference we also plot the achievable sum-gDoF
when both users use a Gaussian input and treat interference as
noise, i.e., d1 = d2 = [1−α]+, which are known to be optimal
for the classical G-IC in very weak interference (α ≤ 1/2)
[11]; we see that the proposed scheme does not achieve this
sum-gDoF in this regime; indeed, in weak interference it is
not optimal to set U2 = X2 in [4, Lemma 3] as we did in
Theorem 6; different choices of discrete inputs for the general
region in [4, Lemma 3] are reported in [12].

VII. FINITE SNR PERFORMANCE

In the previous section we showed that in strong interference
(α ≥ 1) the sum-gDoF of the classical G-IC can be approached
with any precision even when one receiver lacks knowledge of
the interfering codebook. Thus, it is interesting to ask whether
one can exactly achieve the sum-gDoF of the classical G-IC in
strong interference by showing an additive gap to the capacity
of the classical G-IC which is o(log(SNR)). In light of the
results for the point-to-point channel, we ask whether we the
sum-capacity of the G-IC-OR is to within O(log(log(SNR)))
of that of the classical G-IC. We next answer this in the
positive, thus showing that in strong interference there is no
penalty in term of sum-gDoF when one receiver is oblivious.
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Fig. 4: The sum-gDoF of the G-IC-OR compared to the
sum-gDoF of the G-IC.

Theorem 9. The sum-capacity of the G-IC-OR in the
strong and very strong interference regimes is to within
O(log(log(SNR))) of that of the classical G-IC.

Proof: In very strong interference, SNR(1+SNR) ≤ INR,
we choose

N = b
√

1 + SNR1−εc, ε =
[
log
(
1
6 ln(SNR)

)
log(SNR)

]+
,

for N ≥ 3 in Theorem 7 so that the following rates are
achievable for the G-IC-OR

R1 ≤ log(b
√

1 + SNR1−εc)− 1

2
log
( e
2

)
− 1,

R2 ≤
1

2
log(1 + SNR)− 1

2
log
( e
2

)
− 1.

In this regime, the classical G-IC has capacity [13]

R1 ≤
1

2
log(1 + SNR),

R2 ≤
1

2
log(1 + SNR).

Clearly, the gap for R2 is a constant (with respect to
(SNR, INR)) given by 1

2 log
(
e
2

)
+ 1 = 1.2213; the gap for

R1 is as in (15). Although the theorem statement is for the
sum-capacity, the proof holds for the whole capacity region.

In strong interference, SNR ≤ INR < SNR(1 + SNR), we
choose

N =

√1 +

(
INR

1 + SNR

)1−ε
 , ε = [ log( 16 ln( INR

1+SNR ))

log( INR
1+SNR )

]+
,

for N ≥ 3 in Theorem 7 so that the following sum-rate is
achievable for the G-IC-OR

R1 +R2 ≤ log

√1 +

(
INR

1 + SNR

)1−ε


+
1

2
log(1 + SNR)− log

( e
2

)
− 2.

In this regime, the classical G-IC has sum-capacity [14]

R1 +R2 ≤
1

2
log(1 + SNR+ INR).

The gap is hence

1

2
log(1 + SNR+ INR)− log

√1 +

(
INR

1 + SNR

)1−ε


− 1

2
log(1 + SNR) + 2 + log

( e
2

)
≤
[
1

2
log

(
1

6
ln

(
INR

1 + SNR

))]+
+ 3 + log

( e
2

)
≤
[
1

2
log

(
1

6
ln (SNR)

)]+
+ log (4e),

since the steps are the same as those leading to (15) if one
substitutes SNR in (15) with INR

1+SNR . Since INR
1+SNR ≤ SNR in

strong interference, we obtain an O(log(log(SNR)) gap in this
regimeas well. This concludes the proof.

VIII. CONCLUSION

In the paper we focused on deriving capacity results for the
Gaussian interference channel where one of the receivers is
lacking knowledge of the interfering codebook, in contrast to
a classical model where both receivers possess full codebook
knowledge. To that end we derived a novel inequality on the
achievable rate in a point-to-point Gaussian noise channel with
discrete inputs, that we believe might be of an interest on
its own. We surprisingly demonstrated that lack of codebook
knowledge is not as detrimental as one might believe in strong
and very strong interference.
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