Abstract:
The potential of millimeter wave (mmWave) frequencies for device-to-device communication among wearable electronics is enormous for applications requiring Gbps through-pu...Show MoreMetadata
Abstract:
The potential of millimeter wave (mmWave) frequencies for device-to-device communication among wearable electronics is enormous for applications requiring Gbps through-put. In a dense usage scenario such as inside a train car or airplane cabin, many devices may be present within close proximity where interference is significant. Previous work that models interference in wireless networks has leveraged stochastic geometry and often assumes an infinite number of interferers. In the indoor wearables setting, a finite network may be a more realistic assumption. This paper analyzes mmWave networks with a finite number of interferers that are located in fixed positions. The paper considers the effect of blockages, which are primarily caused by the human bodies present in the operating environment. Expressions for coverage and rate are developed, which capture the effects of key antenna characteristics such as directivity and gain.
Published in: 2015 Information Theory and Applications Workshop (ITA)
Date of Conference: 01-06 February 2015
Date Added to IEEE Xplore: 29 October 2015
Electronic ISBN:978-1-4799-7195-4