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Abstract—We investigate the duality of the binary erasure
channel (BEC) and the binary defect channel (BDC). This
duality holds for channel capacities, capacity achieving schemes,
minimum distances, and upper bounds on the probability of
failure to retrieve the original message. In addition, the relations
between BEC, BDC, binary erasure quantization (BEQ), and
write-once memory (WOM) are described. From these relations
we claim that the capacity of the BDC can be achieved by Reed-
Muller (RM) codes under maximum a posterior (MAP) decoding.
Also, polar codes with a successive cancellation encoder achieve
the capacity of the BDC.

Inspired by the duality between the BEC and the BDC, we
introduce locally rewritable codes (LWC) for resistive memories,
which are the counterparts of locally repairable codes (LRC)
for distributed storage systems. The proposed LWC can improve
endurance limit and power efficiency of resistive memories.

I. INTRODUCTION

The binary erasure channel (BEC) is a very well known
channel model, which was introduced by Elias [1]. Due to its
simplicity, it has been a starting point to design new coding
schemes and analyze the properties of codes. Moreover, the
BEC is a very good model of for communications over the
Internet and distributed storage systems.

In the BEC, the channel input X ∈ {0, 1} is binary and the
channel output Y = {0, 1, ∗} is ternary. It is assumed that the
decoder knows the locations of erased bits denoted by ∗. The
capacity of the BEC with erasure probability α is given by
[1], [2]

CBEC = 1− α. (1)

Elias [1] showed that the maximum a posteriori (MAP) de-
coding of random codes can achieve CBEC. In the BEC, MAP
decoding of linear codes is equivalent to solving systems of
linear equations whose complexity is O(n3) [1]. Subsequently,
codes with lower encoding and decoding complexity were
proposed [3]–[5].

The binary defect channel (BDC) also has a long history.
The BDC was introduced to model computer memory such
as erasable and programmable read only memories (EPROM)
and random access memories (RAM) by Kuznetsov and Tsy-
bakov [6]. Recently, the BDC has received renewed attention
as a possible channel model for nonvolatile memories such as
flash memories and resistive memories [7]–[13].

As shown in Fig. 1, the BDC has a ternary channel state
S ∈ {0, 1, λ} whereas the channel input X and the channel
output Y are binary. The state S = 0 corresponds to a stuck-
at 0 defect where the channel always outputs a 0 independent
of its input value, the state S = 1 corresponds to a stuck-
at 1 defect that always outputs a 1, and the state S = λ
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Fig. 1. Binary defect channel (BDC).

corresponds to a normal cell that outputs the same value as its
input. The probabilities of these states are β/2, β/2 (assuming
a symmetric defect probability), and 1− β, respectively [14],
[15].

It is known that the capacity is 1 − β when both the
encoder and the decoder know the channel state information
(i.e., defect information). If the decoder is aware of the defect
locations, then the defects can be regarded as erasures so
that the capacity is 1 − β [14], [15]. On the other hand,
Kuznetsov and Tsybakov assumed that the encoder knows the
defect information (namely, the locations and stuck-at values
of defects) and the decoder does not have any information of
defects [6]. It was shown that the capacity is 1−β even when
only the encoder knows the defect information [6], [14]. Thus,
the capacity of the BDC is given by

CBDC = 1− β. (2)

The capacity of the BDC can be achieved by the binning
scheme [14], [15] or the additive encoding [16], [17]. The
objective of both coding schemes is to choose a codeword
whose elements at the locations of defects match the stuck-at
values of corresponding defects.

We have studied the duality of erasures and defects and and
our observations and results can be found in [18]. This duality
can be observed in channel properties, capacities, capacity-
achieving schemes, and their failure probability. In [19], it
was shown that we can construct capacity-achieving codes for
the BDC based on state of the art codes which achieve CBEC.

Recently, it was proved that Reed-Muller (RM) codes
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achieve CBEC under MAP [20]. Based on the duality of the
BEC and the BDC, we show that RM codes can achieve CBDC
with O(n3) complexity.

Also, we extend this duality to the other models such as
binary erasure quantization (BEQ) problems [21], and write
once memories (WOM) [22]. We review the related literature
and describe the relations between these models. From these
relations, we can claim that CBDC can be achieved with
O(n log n) complexity which is better than the best known
result in [17], i.e., O(n log2 n) complexity.

By taking advantage of this duality between the BEC and
the BDC, we introduced locally rewritable codes (LWC)1

in [23]. The LWC are the counterparts of locally repairable
codes (LRC). The LRC is an important group of codes for
distributed storage system [24], [25] whose channel model is
the BEC. On the other hand, the LWC is coding for resistive
memories, which can be modeled by the BDC.

The rest of this paper is organized as follows. Section II
discusses the duality between erasures and defects, which
summarizes the results of [18]. Also, the implications of this
duality are investigated. In Section III, we explain the LWC
in [23] and investigate the properties of LWC based on the
duality of erasure and defects. Section IV concludes the paper.

II. DUALITY BETWEEN ERASURES AND DEFECTS

A. Notation

We use parentheses to construct column vectors from
comma separated lists. For a n-tuple column vector a ∈ Fnq
(where Fq denotes the finite field with q elements and Fnq
denotes the set of all n-tuple vectors over Fq), we have

(a1, . . . , an) =

a1...
an

 = [a1 . . . an]
T (3)

where superscript T denotes transpose. Note that ai represents
the i-th element of a. For a binary vector a ∈ Fn2 , a denotes
the bit-wise complement of a. For example, the n-tuple all-
ones vector 1n is equal to 0n where 0n is the n-tuple all-zero
vector. Also, 0m,n denotes the m× n all-zero matrix.

In addition, ‖a‖ denotes the Hamming weight of a and
supp(a) denotes the support of a. Also, we use the notation
of [i : j] = {i, i + 1, . . . , j − 1, j} for i < j and [n] = [1 :
n] = {1, . . . , n}. Note that a[i:j] = (ai, . . . , aj) and a\i =
(a1, . . . , ai−1, ai+1, . . . , an).

B. Binary Erasure Channel

For the BEC, the codeword most likely to have been
transmitted is the one that agrees with all of received bits that
have not been erased. If there is more than one such codeword,
the decoding may lead to a failure. Thus, the following simple
coding scheme was proposed in [1].

Encoding: A message (information) m ∈ Fk2 is encoded
to a corresponding codeword c ∈ C where C = {c ∈ Fn2 |

1LWC instead of LRC is used as the acronym of locally rewritable codes
in order to distinguish them from locally repairable codes (LRC).

c = Gm,m ∈ Fk2} where C is a set of codewords and the
generator matrix is G ∈ Fn×k2 such that rank(G) = k. Note
that the code rate R = k

n .
Decoding: Let g denote the decoding rule. If the channel

output y is identical to one and only one codeword on the
unerased bits, the decoding succeeds. If y matches completely
with more than one codeword on the unerased bits, the decoder
chooses one of them randomly [1].

We will define a random variable D as follows.

D =

{
0, c 6= ĉ (decoding failure);
1, c = ĉ (decoding success)

(4)

where ĉ is the estimated codeword produced by the decoding
rule of g.

Elias showed that random codes of rates arbitrarily close
to CBEC can be decoded with an exponentially small error
probability using the MAP decoding [1], [4], [26]. The MAP
decoding rule of g can be achieved by solving the following
linear equations [1]:

GVm̂ = yV (5)

where m̂ is the estimate of m and V = {j1, · · · , jv} indicates
the locations of the v unerased bits. We use the notation of
yV = (yj1 , · · · , yjv ) and GV =

[
gTj1 , · · · ,g

T
jv

]T
where gj is

the j-th row of G. Note that GV ∈ F(n−e)×k
2 .

The decoding rule g can also be represented by the parity
check matrix H instead of the generator matrix G as follows.

HT ĉ =
(
HE
)T

ĉE +
(
HV
)T

ĉV = 0 (6)

where the parity check matrix H is an n×(n−k) matrix such
that HTG = 0. Also, E = {i1, · · · , ie} indicates the locations
of the e erased bits such that E ∪V = [n] and E ∩V = ∅ (i.e.,
n = e+v). Note that ĉE = (ĉi1 , · · · , ĉie), ĉV = (ĉj1 , · · · , ĉjv ),
HE =

[
hTi1 , · · · ,h

T
ie

]T
and HV =

[
hTj1 , · · · ,h

T
jv

]T
where hi

is the i-th row of H .
The decoder estimates the erased bits ĉE from the unerased

bits ĉV = cV . Thus, (6) can be represented by the following
linear equations: (

HE
)T

ĉE = q (7)

where q =
(
HV
)T

cV and
(
HE
)T ∈ F(n−k)×e

2 .
Remark 1: In (5) and (7), the number of equations is more

than or equal to the number of unknowns. Usually, these
systems of linear equations are overdetermined. The reason
is that k ≤ n − e for correcting e erasures. Note that
GV ∈ F(n−e)×k

2 and
(
HE
)T ∈ F(n−k)×e

2 . Note that (5) and
(7) are consistent linear systems (i.e., there is at least one
solution).

The minimum distance d of C is given by

d = min
x6=0

HTx=0

‖x‖ (8)

which shows that any d−1 rows of H are linearly independent.
So (7) has a unique solution when e is less than d.



The following Lemma has been known in coding theory
community.

Lemma 2: The upper bound on the probability of decoding
failure of the MAP decoding rule is given by

P (D = 0 | |E| = e) ≤
∑e
w=dAw

(
n−w
e−w

)(
n
e

) (9)

where Aw is the weight distribution of C.
Proof: The proof was well known, which can be found

in [18].
P (D = 0 | |E| = e) can be obtained exactly for d ≤ e ≤

d+
⌊
d−1
2

⌋
(where bxc represents the largest integer not greater

than x) as stated in the following Lemma.
Lemma 3: [18] For e ≤ d + t where t =

⌊
d−1
2

⌋
, we can

show that

P (D = 0 | |E| = e) =
1

2
·
∑e
w=dAw

(
n−w
e−w

)(
n
e

) . (10)

From the definition of d in (8), Lemma 2 and Lemma 3,
we can state the following.

Theorem 4: [18] P (D = 0 | |E| = e) is given by

0 for e < d, (11)
1

2
·
∑e
w=dAw

(
n−w
e−w

)(
n
e

) for d ≤ e ≤ d+ t, (12)

≤
∑e
w=dAw

(
n−w
e−w

)(
n
e

) for e > d+ t. (13)

C. Binary Defect Channel

We now summarize the defect channel model [6]. Define a
variable λ that indicates whether the memory cell is defective
or not and F̃2 = F2 ∪ {λ}. Let “◦” denote the operator ◦ :
F2 × F̃2 → F2 as in [27]

x ◦ s =

{
x, if s = λ;

s, if s 6= λ.
(14)

By using the operator ◦, an n-cell memory with defects is
modeled by

y = x ◦ s (15)

where x,y ∈ Fn2 are the channel input and output vectors.
Also, the channel state vector s ∈ F̃n2 represents the defect
information in the n-cell memory. Note that ◦ is the vector
component-wise operator.

If si = λ, this i-th cell is called normal. If the i-th cell is
defective (i.e., si 6= λ), its output yi is stuck-at si independent
of the input xi. So, the i-th cell is called stuck-at defect whose
stuck-at value is si. The probabilities of stuck-at defects and
normal cells are given by

P (S = s) =

{
1− β, if s = λ;
β
2 , if s = 0 or 1

(16)

where the probability of stuck-at defects is β. Fig. 1 shows
the binary defect channel for q = 2.

The number of defects is equal to the number of non-λ
components in s. The number of errors due to defects is given
by

‖x ◦ s− x‖. (17)

The goal of masking stuck-at defects is to make a codeword
whose values at the locations of defects match the stuck-
at values of corresponding defects [6], [16]. The additive
encoding and its decoding can be formulated as follows.

Encoding: A message m ∈ Fk2 is encoded to a correspond-
ing codeword c by

c = (m,0n−k) + c0 = (m,0n−k) +G0p (18)

where G0 ∈ Fn×(n−k)2 . By adding c0 = G0p ∈ C0, we can
mask defects among n cells. Since the channel state vector s is
available at the encoder, the encoder should choose p ∈ Fn−k2

judiciously. The optimal parity p is chosen to minimize the
number of errors due to defects, i.e., ‖c ◦ s− c‖.

Decoding: The decoding can be given by

m̂ = HT
0 y (19)

where m̂ represents the recovered message of m. Note that the
parity check matrix H0 of C0 is given by H0 = [Ik R]T and
HT

0 G0 = 0k,n−k. Note that (19) is equivalent to the equation
of coset codes.

The encoder knows the channel state vector s and tries to
minimize ‖c ◦ s − c‖ by choosing p judiciously. Heegard
proposed the minimum distance encoding (MDE) as follows
[27].

p∗ = argmin
p

∥∥cU − sU
∥∥

= argmin
p

∥∥GU0 p + bU
∥∥ (20)

where U = {i1, · · · , iu} indicates the set of locations of u
defects. Also, cU = (ci1 , · · · , ciu), sU = (si1 , · · · , siu), and
GU0 =

[
gT0,i1 , · · · ,g

T
0,iu

]T
. Since b = (m,0n−k) − s, bU is

given by
bU = (m,0n−k)U − sU . (21)

Note that
∥∥GU0 p + bU

∥∥ represents the number of errors due
to defects which is equal to the number in (17).

By solving the optimization problem of (20), the number
of errors due to defects will be minimized. Also, Heegard
showed that the MDE achieves the capacity [27]. However,
the computational complexity for solving (20) is exponential,
which is impractical. Hence, we consider a polynomial time
encoding approach. Instead of the MDE, we just try to solve
the following linear equation [16].

GU0 p = bU (22)

where GU0 ∈ Fu×(n−k)2 . Gaussian elimination or some other
linear equation solution methods can be used to solve (22)
with O

(
n3
)

(i.e., O
(
n3
)

due to u ' βn). If the encoder fails
to find a solution of (22), then an encoding failure is declared.



For convenience, we define a random variable E as follows.

E =

{
1, ‖c ◦ s− c‖ = 0 (encoding success)
0, ‖c ◦ s− c‖ 6= 0 (encoding failure)

(23)

We can see that the probability of encoding failure P (E =
0) by the MDE of (20) is the same as P (E = 0) by solving
(22). It is because GU0 d 6= bU if and only if ‖c ◦ s− c‖ 6= 0.
Thus, CBDC can be achieved by solving (22), which is easily
shown by using the results of [17], [27].

The coset coding of binning scheme can be described as
solving the following linear equations [28], [29].

HT
0 c = m (24)

where c is chosen to satisfy c ◦ s = c. (24) can be modified
into

HT
0 c =

(
HU0
)T

cU +
(
HW0

)T
cW = m (25)

where W = {j1, · · · , jw} represents the locations of normal
cells such that U ∪ W = [n] and U ∩ W = ∅. Note
that cU = (ci1 , · · · , ciu)

T , cW = (cj1 , · · · , cjw)
T , HU0 =[

hT0,i1 , · · · ,h
T
0,iu

]T
and HW0 =

[
hT0,j1 , · · · ,h

T
0,jw

]T
where

h0,i is the i-th row of H0. Since sU is known to the encoder,
the encoder can set cU = sU . Thus, the coset coding can be
described as solving the following linear equation.(

HW0
)T

cW = m′ (26)

where m′ = m−
(
HU0
)T

sU . The solution of (26) represents
the codeword elements of normal cells. Note that

(
HW0

)T ∈
Fk×(n−u)2 .

Remark 5: In (22) and (26), the number of equations is
less than or equal to the number of unknowns. Usually, these
systems of linear equations are underdetermined. The reason
is that k ≤ n− u for masking u defects [6]. Note that GU0 ∈
Fu×(n−k)2 and

(
HW0

)T ∈ Fk×(n−u)2 . If (22) and (26) have
more than one solution, we can mask u defects by choosing
one of them. We can see the duality between Remark 1 and
Remark 5.

The minimum distance of additive encoding is given by

d? = min
x 6=0

GT
0 x=0

‖x‖ (27)

which means that any d?−1 rows of G0 are linearly indepen-
dent. Thus, additive encoding guarantees masking up to d?−1
stuck-at defects [16], [27].

Similar to Lemma 2, we can derive the upper bound on the
probability of encoding failure for u defects.

Lemma 6: [11] The upper bound on P (E = 0||U| = u) is
given by

P (E = 0 | |U| = u) ≤
∑u
w=d? Bw

(
n−w
u−w

)(
n
u

) (28)

where Bw is the weight distribution of C⊥0 (i.e., the dual code
of C0).

The following Lemma states that P (E = 0 | |U| = u) can
be obtained exactly for d? ≤ u ≤ d? +

⌊
d?−1

2

⌋
.

Lemma 7: [11] For u ≤ d? + t? where t? =
⌊
d?−1

2

⌋
,

P (E = 0 | |U| = u) is given by

P (E = 0 | |U| = u) =
1

2
·
∑u
w=d? Bw

(
n−w
u−w

)(
n
u

) . (29)

Similar to the upper bound on P (D = 0 | |E| = e) in
Theorem 4 for the BEC, we can provide the upper bound
on P (E = 0 | |U| = u) for the BDC as follows.

Theorem 8: [11] P (E = 0 | |U| = u) is given by

0 for u < d?, (30)
1

2
·
∑u
w=d? Bw

(
n−w
u−w

)(
n
u

) for d? ≤ u ≤ d? + t?, (31)

≤
∑u
w=d? Bw

(
n−w
u−w

)(
n
u

) for u > d? + t?. (32)

By comparing Theorem 4 and Theorem 8, the duality of
erasures and defects can be seen. We will discuss this duality
in the following subsection.

D. Duality between Erasures and Defects

We will discuss the duality of erasures and defects as sum-
marized in Table I. In the BEC, the channel input X ∈ {0, 1}
is binary and the channel output Y = {0, 1, ∗} is ternary where
the erasure ∗ is neither 0 nor 1. In the BDC, the channel state
S ∈ {0, 1, λ} is ternary whereas the channel input and output
are binary. The ternary channel state S informs whether the
given cells are stuck-at defects or normal cells. The stuck-at
value is either 0 or 1.

The expressions for capacities of both channels are quite
similar as shown in (1) and (2). In the BEC, the decoder
corrects erasures by using the information of locations of
erasures, whereas the encoder masks the defects by using the
information of defect locations and stuck-at values in the BDC.

The capacity achieving scheme of the BEC can be repre-
sented by the linear equations based on the generator matrix G
of (5) or the linear equations based on the parity check matrix
H of (7). Both linear equations are usually overdetermined
as discussed in Remark 1. The solution of linear equations
based on G is the estimate of message m̂ and there should be
only one m̂ for decoding success. Also, the solution of linear
equations based on H is the estimate of erased bits ĉE which
should be only one ĉE for decoding success.

On the other hand, the capacity achieving scheme of the
BDC can be described by the linear equation which are usually
underdetermined as explained in 5. The additive encoding can
be represented by the linear equations based on the generator
matrix G0 of (22) whose solution is the parity p. Also, the
binning scheme can be represented by the linear equations
based on the parity check matrix H0 of (26) whose solution is
the codeword elements of normal cells cW . Unlike the coding
scheme of the BEC, there can be several solutions of p or cW

that mask all stuck-at defects.



TABLE I
DUALITY BETWEEN BEC AND BDC

BEC BDC

Channel property
Ternary output Y ∈ {0, 1, ∗} Ternary state S ∈ {0, 1, λ}

(erasure ∗ is neither “0” nor “1”) (defect is either “0” or “1”)
Capacity CBEC = 1− α (1) CBDC = 1− β (2)

Channel state information Locations Locations and stuck-at values
Correcting / Masking Decoder corrects erasures Encoder masks defects

MAP decoding / MDE
GVm̂ = yV (5) GU0 p = bU (22)(
HE
)T

ĉE = q (7)
(
HW0

)T
cW = m′ (26)

(Overdetermined) (Underdetermined)

Solutions
m̂ (estimate of message) or p (parity) or
ĉE (estimate of erased bits) cW (codeword elements of normal cells)

Minimum distance
d = min{‖x‖ : HTx = 0,x 6= 0} d? = min{‖x‖ : GT

0 x = 0,x 6= 0}
If e < d, e erasures are corrected. If u < d?, u defects are masked.

Upper bounds on
Theorem 4 Theorem 8

probability of failure
Probability of failure If H = G0 and α = β, then P (D = 0) = P (E = 0) (Theorem 9)

We can see the duality between erasures and defects by
comparing the solution m̂ of (5) and the solution p of (22),
i.e., message and parity. Note that coding schemes of (5) and
(22) are based on the generator matrix. In addition, we can
compare the duality of codeword elements of erasures and
codeword elements of normal cells from (22) and (26) which
are coding schemes based on the parity check matrix.

In the BEC, the minimum distance d is defined by the parity
check matrix H , whereas the minimum distance d? of the BDC
is defined by the generator matrix G0. The upper bound on
the probability of decoding failure is dependent on the weight
distribution of C (i.e., Aw), whereas the upper bound on the
probability of encoding failure is dependent on the weight
distribution of C⊥0 (i.e., Bw).

If Aw = Bw and e = u, it is clear that the upper
bound on P (D = 0 | |E| = e) is same as the upper bound
on P (E = 0 | |U| = u) by Theorem 4 and Theorem 8. In
particular, the following Theorem shows the equivalence of the
failure probabilities (i.e., the probability of decoding failure of
erasures and the probability of encoding failure of defects).

Theorem 9: [18] If H = G0 and α = β, then the
probability of decoding failure of MAP decoding for the BEC
is the same as the probability of encoding failure of MDE for
the BDC (i.e., P (D = 0) = P (E = 0)). The complexity for
both is O(n3).

Proof: If α = β, then it is clear that that P (E) = P (U)
for E = U . If E = U and H = G0, then HE = GU0 . If HE and
GU0 are full rank, then it is clear that P (D = 0) = P (E =
0) = 0.

Suppose that rank(HE) = rank(GU0 ) = e − j where E =
U (i.e., e = u). For the BEC, there are 2j codewords that
satisfy (7) and the decoder chooses one codeword among them
randomly. Hence, P (D = 0 | E) = 1− 1

2j .
For the BDC, each element of bU in (22) is uniform since
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n = 255, P(D=0) of BDC
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n = 511, P(D=0) of BDC
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Fig. 2. Probability of failure, i.e., P (D = 0) of the BEC with α = 0.1 and
P (E = 0) of the BDC with β = 0.1.

P (S = 0 | S 6= λ) = P (S = 1 | S 6= λ) = 1
2 . (22) has at

least one solution if and only if rank(GU0 ) = rank(GU0 | bU ).
In order to satisfy this condition, the last j elements of bU

should be zeros, which means that P (E = 0 | U) = 1 − 1
2j .

Thus, P (D = 0 | E) = P (E = 0 | U) if E = U and H = G0.
Since P (E) = P (U) and P (D = 0 | E) = P (E = 0 | U)

for E = U , it is true that P (D = 0) = P (E = 0).
Fig. 2 compares P (D = 0) of the BEC and P (E = 0) of the

BDC when H = G0 and α = β. The parity check matrices of
Bose-Chaudhuri-Hocquenghem (BCH) codes are used for H
and G0. Hence, BCH codes are used for the BEC and the duals
of BCH codes are used for the BDC. The numerical results
in Fig. 2 shows that P (D = 0) = P (E = 0) if H = G0 and
α = β, which confirms Theorem 9.

Recently, it was proved that a sequence of linear codes
achieves CBEC under MAP decoding if its blocklengths are
strictly increasing, its code rates converge to some δ ∈ (0, 1),
and the permutation group of each code is doubly transi-
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tive [20]. Hence, RM codes and BCH codes can achieve CBEC
under MAP decoding. Based on the duality between the BEC
and the BDC, we can claim the following Corollary.

Corollary 10: RM codes achieve CBDC with computational
complexity O(n3).

Proof: In [20], it was shown that RM codes achieve
CBEC under MAP decoding whose computational complexity
is O(n3). By Theorem 9, the duals of RM codes achieve
CBDC with O(n3). Since the duals of RM codes are also RM
codes [30, pp. 375–376], RM codes achieve CBDC.
We note that the duals of BCH codes also achieve CBDC by
the same reason.

In this section, we have demonstrated the duality between
the BEC and the BDC from channel properties, capacities,
capacity-achieving schemes, and their failure probabilities.
This duality implies that the existing code constructions and
algorithms of the BEC can be applied to the BDC and vice
versa.

E. Relations between BEC, BDC, BEQ, and WOM

We extend the duality of the BEC and the BDC to other
interesting models such as binary erasure quantization (BEQ)
and write-once memory (WOM) codes. We review the litera-
ture on these models and describe the relations between BEC,
BDC, BEQ, and WOM.

Martinian and Yedidia [21] considered BEQ problems
where the source vector consists of {0, 1, ∗} (∗ denotes an
erasure). Neither ones nor zeros may be changed, but erasures
may be quantized to either zero or one. The erasures do not
affect the distortion regardless of the value they are assigned
since erasures represents source samples which are missing,
irrelevant, or corrupted by noise. The BEQ problem with
erasure probability α can be formulated as follows.

P (S = s) =

{
α, if s = ∗;
1−α
2 , if s = 0 or 1

(33)

and the Hamming distortion dH(·, ·) is given by

dH(0, ∗) = dH(1, ∗) = 0, dH(0, 1) = 1. (34)

The rate-distortion bound with zero distortion is given by

RBEQ = 1− α. (35)

In [21] the duality between the BEC and the BEQ was
observed, and the authors showed that low-density generator
matrix (LDGM) codes (i.e., the duals of LDPC codes) can
achieve the RBEQ by modified message-passing algorithm. The
computational complexity is O(ndG) where dG denotes the
maximum degree of the bipartite graph G of the low-density
generator matrix. In [31], it was shown that polar codes with
an successive cancellation encoder can achieve RBEQ with
O(n log n).

From (33)–(35), we can claim that the BEQ with erasure
probability α is equivalent to the BDC with defect probability
β if β = 1 − α. We can observe that s = ∗ of the BEQ
corresponds to s = λ of the BDC, which represents normal
cells by comparing (16) and (33). Also, s = 0 and s = 1 of
the BEQ can be regarded as stuck-at 0 defects and stuck-at 1
defects, respectively. In addition, RBEQ = CBEC = 1− CBDC.

Since the BEQ is equivalent to the BDC, we can claim that
RM codes achieve RBEQ due to Corollary 10. Hence, LDGM
codes (duals of LDPC codes), polar codes, and RM codes
achieve RBEQ.

Inversely, the coding scheme for the BEQ can be applied to
the BDC. Thus, CBDC can be achieved by LDGM codes and
polar codes whose complexities are O(ndG) and O(n log n)
respectively. It is important because the best known encoding
complexity of capacity achieving scheme for the BDC was
O(n log2 n) in [17]. Also, note that the encoding complexity
of coding schemes in [19] is O(n3).

The model of WOM was proposed for data storage devices
where once a one is written on a memory cell, this cell
becomes permanently associated with a one. Hence, the ability
to rewrite information in these memory cells is constrained by
the existence of previously written ones [22], [32]. Recently,
the WOM model has received renewed attention as a possible
channel model for flash memories due to their asymmetry
between write and erase operations [33], [34].

In [32], it was noted that WOM are related to the BDC
since the cells storing ones can be considered as stuck-at 1
defects. Moreover, Kuznetsov and Han Vinck [35] showed
that additive encoding for the BDC can be used to achieve the
capacity of WOM. Burshtein and Strugatski [36] proposed a
capacity-achieving coding scheme for WOM with O(n log n)
complexity, which is based on polar codes and successive
cancellation encoding [31]. Recently, En Gad et al. [37] related
the WOM to the BEQ. Hence, LDGM codes and message-
passing algorithm in [21] can be used for WOM. Note that
the encoding complexity is O(ndG).

Fig. 3 illustrates the relations between BEC, BDC, BEQ,
and WOM. We emphasize that a coding scheme for one model
can be applied to other models based on these relations. It is
worth mentioning that RM codes, LDPC (or LDGM) codes,
and polar codes can achieve the capacities of all these models.
Their computational complexities are O(n3), O(ndG), and
O(n log n), respectively.



III. LOCALLY REWRITABLE CODES (LWC)

Inspired by the duality between erasures and defects, we
proposed locally rewritable codes (LWC). LWC were in-
troduced to improve endurance and power consumption of
resistive memories which can be modeled by the BDC. After
briefly reviewing resistive memories and LRC, we explain
LWC and their properties. The details of LWC can be found
in [23].

A. Resistive Memories

Resistive memory technologies are promising since they
are expected to offer higher density than dynamic random-
access memories (DRAM) and better speed performance than
NAND flash memories [38]. Phase change memories (PCM)
and resistive random-access memories (RRAM) are two major
types of resistive memories. Both have attracted significant
research interest due to their scalability, compactness, and
simplicity.

The main challenges that prevent their large-scale deploy-
ment are endurance limit and power consumption [39], [40].
The endurance limit refers to the maximum number of writes
before the memory becomes unreliable. Beyond the given
endurance limit, resistive memory cells are likely to become
defects [41], [42]. In addition, the power consumption depends
on the number of writes. Hence, the number of writes is
the key parameter for reliability of memory cells and power
efficiency.

B. Locally Repairable Codes (LRC)

An (n, k, d, r) LRC is a code of length n with information
(message) length k, minimum distance d, and repair locality r.
If a symbol in the LRC-coded data is lost due to a node failure,
its value can be repaired (i.e. reconstructed) by accessing at
most r other symbols [25], [43].

One way to ensure fast repair is to use low repair locality
such that r � k at the cost of minimum distance d. The
relation between d and r is given by [25]

d ≤ n− k −
⌈
k

r

⌉
+ 2. (36)

It is worth mentioning that this bound is a generalization of the
Singleton bound. The LRC achieving this bound with equality
are called optimal. Constructions of the optimal LRC were
proposed in [43]–[45].

C. Locally Rewritable Codes

As a toy example, suppose that n-cell binary memory has a
single stuck-at defect. It is easy to see that this stuck-at defect
can be handled by the following simple technique [6].

c = (m, 0) + 1n · p (37)

where G0 = 1n.
Suppose that i-th cell is a defect whose stuck-at value is

si ∈ F2. If i ∈ [n− 1] and si = mi, or if i = n and sn = 0,
then p should be 0. Otherwise, p = 1.

If there is no stuck-at defect among n cells, then we can
store m by writing c = (m, 0) (i.e., p = 0). Now, consider the
case when stored information needs to be updated causing m
to become m′. Usually, ‖m−m′‖ � n, which happens often
due to the updates of files. Instead of storing m′ into another
group of n cells, it is more efficient to store m′ by rewriting
only ‖m−m′‖ cells. For example, suppose that m′i 6= mi for
an i ∈ [k] and m′j = mj for all other j ∈ [k] \ i. Then, we
can store k-bit m′ by rewriting only one cell.

An interesting problem arises when a cell to be rewritten
is defective. Suppose that i-th cell is a stuck-at defect whose
stuck-at value is si. If si = mi 6= m′i, then we should write
c = (m, 0) for storing m. However, in order to store the
updated information m′, we should write c′ = c = (m, 1)
where p = 1. Thus, n− 1 cells should be rewritten to update
one bit data m′i without stuck-at error. The same thing happens
when si = m′i 6= mi. When considering endurance limit and
power consumption, rewriting n − 1 cells is a high price to
pay for preventing one bit stuck-at error.

In order to relieve this burden, we can change (37) by
introducing an additional parity bit as follows.

c =
(
m[1:n2 ], 0,m[n2 +1:n], 0

)
+G0p (38)

=
(
m[1:n2 ], 0,m[n2 +1:n], 0

)
+

[
1n

2
0n

2

0n
2

1n
2

]
(p1, p2) (39)

where k = n − 2. For simplicity’s sake, we assume that n
is even. Then, 1n

2
and 0n

2
are all-ones and all-zeros column

vectors with n/2 elements. By introducing an additional parity
bit, we can reduce the number of rewriting cells from n − 1
to n

2 − 1.
This idea is similar to the concept of Pyramid codes which

are the early LRC [24]. For n disk nodes, single parity check
codes can repair one node failure (i.e., single erasure) by

1Tn ĉ = 0 (40)

where ĉ represents the recovered codeword from disk node
failures. Assuming that ci is erased due to a node failure, ci
can be recovered by

ĉi = ci =
∑

j∈[n]\i

cj . (41)

For this recovery, we should access k = n − 1 nodes which
degrades the repair speed. For more efficient repair process,
we can add a new parity as follows.

HT ĉ =

[
1n

2
0n

2

0n
2

1n
2

]T
ĉ = 0 (42)

Then, a failed node ci can be repaired by accessing only n
2 −1

nodes. Note that the repair locality of (42) is n
2−1 whereas the

repair locality of (40) is n− 1 which is a simple but effecitve
idea of Pyramid codes.

An interesting observation is that G0 of (38) is the same
as H of (42). In addition, note that the number of resistive
memory cells to be rewritten is the same as the number of
nodes to be accessed in distributed storage systems. These



observations can be connected to the duality between erasures
and defects in Section II.

We define initial writing cost and rewriting cost which are
related to write endurance and power consumption.

Definition 11 (Initial Writing Cost): Suppose that m was
stored by its codeword c in the initial stage of n cells where
all the normal cells are set to zeros. The writing cost is given
by

∆(m) = ‖c‖ − u\0 (43)

where u\0 denotes the number of stuck-at defects whose stuck-
at values are nonzero.

In (43), we assume that there are u defects among n cells
and c masks these u stuck-at defects successfully. So, we do
not need to write stuck-at defects since their stuck-at values
are the same as corresponding elements of c.

Definition 12 (Rewriting Cost): Suppose that m was stored
by its codeword c in n cells. If c′ is rewritten to these n cells
to store the updated m′, the rewriting cost is given by

∆(m,m′) = ‖c− c′‖ (44)

where we assume that both c and c′ mask stuck-at defects.
High rewriting cost implies that the states of lots of cells

should be changed, which is harmful to endurance and power
efficiency.

Now, we introduce the rewriting locality which affects initial
writing cost and rewriting cost. The rewriting locality is a
counterpart of repair locality of LRC. As repair locality is
meaningful for a single disk failure, rewriting locality is valid
when there is a single stuck-at defect among n cells. In
distributed storage systems, the most common case is a single
node failure among n nodes [24]. Similarly, for a proper defect
probability β, we can claim that the most common scenario
of resistive memories is that there is a single defect among n
cells.

Definition 13 (Information Rewriting Locality): Suppose
that mi for i ∈ [k], i.e., information (message) part, should
be updated to m′i 6= mi and the corresponding i-th cell is a
stuck-at defect. If mi can be updated to m′i by rewriting r?

other cells, then the i-th coordinate has information rewriting
locality r?.

Lemma 14: [23] If the i-th coordinate for i ∈ [k] has
information rewriting locality r?, then there exists c0 ∈ C0
such that i ∈ supp(c0) and ‖c0‖ = r? + 1.

If a stuck-at defect’s coordinate is i ∈ [k+ 1 : n], i.e. parity
location, then m can be updated to m′ by rewriting ‖m−m′‖
cells because of c0 = c′0. Thus, a stuck-at defect in the parity
location is not related to rewriting. However, a stuck-at defect
in the parity location affects initial writing. We will define
parity rewriting locality as follows.

Definition 15 (Parity Rewriting Locality): Suppose that
only one nonzero symbol mi should be stored to the initial
stage of n cells. Note that there is a stuck-at defect in the
parity location j for j ∈ [k + 1 : n] (i.e., parity part) and
sj 6= 0. If mi can be stored by writing at most r? + 1 cells,
then the j-th coordinate has parity rewriting locality r?.

Lemma 16: [23] If the j-th coordinate for j ∈ [k + 1 : n]
has parity rewriting locality r?, then there exists c0 ∈ C0 such
that j ∈ supp(c0) and ‖c0‖ = r? + 1.

Definition 17 (Locally Rewritable Codes): If any i-th coor-
dinate for i ∈ [n] has (information or parity) rewriting locality
at most r?, then this code is called locally rewritable code
(LWC) with rewriting locality r?. (n, k, d?, r?) LWC code is a
code of length n with information length k, minimum distance
d?, and rewriting locality r?.

Now, we show in the following theorem that rewriting
locality r? is an important parameter for rewriting cost.

Theorem 18: Suppose that m is updated to m′ by LWC
with rewriting locality r?. If there is a single stuck-at defect
in n cells, then the rewriting cost ∆(m,m′) is given by

∆(m,m′) ≤ ‖m−m′‖+ r? − 1. (45)

Corollary 19: [23] If m is stored in the initial stage of n
cells with a single stuck-at defect, then the writing cost ∆(m)
is given by

∆(m) ≤ ‖m‖+ r?. (46)

Theorem 18 and Corollary 19 show that a small rewriting
locality r∗ can reduce writing cost and rewriting cost, which
is helpful for improving endurance and power consumption.

D. Duality of LRC and LWC

In this subsection, we investigate the duality of LRC and
LWC, which comes from the duality between erasures and
defects in Section II. We show that existing construction
methods of LRC can be used to construct LWC based on this
duality. First, the relation between minimum distance d? and
rewriting locality r? is observed.

Definition 20: If C0 is cyclic, then the LWC is called cyclic.
Lemma 21: [23] Let C0 denote a cyclic code whose

minimum distance is d0. Then, corresponding cyclic LWC’s
rewriting locality is r? = d0 − 1.

From the definition of d? in (27), d? = d⊥0 which is the
minimum distance of C⊥0 , namely, dual code of C0. Thus, the
parameters of cyclic LWC is given by

(d?, r?) = (d⊥0 , d0 − 1). (47)

In [46], [47], an equivalent relation for cyclic LRC was given
by

(d, r) = (d, d⊥ − 1). (48)

By comparing (47) and (48), we observed the duality
between LRC and LWC. This duality is important since it in-
dicates that we can construct LWC using existing construction
methods of LRC as shown in the following theorem.

Theorem 22: [23] Suppose that HLRC ∈ Fn×(n−k)q is the
parity check matrix of cyclic LRC CLRC with (d, r) = (d, d⊥−
1). By setting G0 = HLRC, we can construct cyclic LWC CLWC
with

(d?, r?) = (d, d⊥ − 1). (49)

In Theorem 9, we showed that the decoding failure probabil-
ity of the optimal decoding scheme for the BEC is the same



TABLE II
DUALITY OF LRC AND LWC

(n, k, d, r) LRC (n, k, d?, r?) LWC

Application
Distributed storage systems Resistive memories

(system level) (physical level)

Channel Erasure channel Defect channel

Encoding c = GLRCm c = (m,0) +HLRCp

Decoding HT
LRCĉ = 0 GT

LRCc = m̂

Bound d ≤ n− k −
⌈
k
r

⌉
+ 2 d? ≤ n− k −

⌈
k
r?

⌉
+ 2

Trade-off
d (reliability) vs. d? (reliability) vs.

r (repair efficiency) r∗ (rewriting cost)

as the encoding failure probability of the optimal encoding
scheme for the BDC. By setting H = G0, capacity-achieving
codes for the BDC can be constructed from state of art
codes for the BEC. Similarly, Theorem 22 shows that we can
construct (n, k, d? = d, r? = d⊥ − 1) LWC by using existing
construction methods of (n, k, d, r = d⊥ − 1) LRC.

Remark 23 (Optimal Cyclic LWC): [23] Theorem 22
shows that the optimal cyclic (n, k, r, d) LRC can be used to
construct the optimal cylic (n, k, r?, d?) LWC such that

d? = n− k −
⌈
k

r?

⌉
+ 2. (50)

Hence, the optimal LWC can be constructed from the optimal
LRC.

Remark 24 (Bound of LWC): [23] From Theorem 22 and
Remark 23, we can claim the following bound for LWC.

d? ≤ n− k −
⌈
k

r?

⌉
+ 2 (51)

which is equivalent to the bound for LRC given by (36).
In Table II, the duality properties of LRC and LWC are

summarized, which comes from the duality of the BEC and
the BDC.

IV. CONCLUSION

The duality between the BEC and the BDC was investigated.
We showed that RM codes and duals of BCH codes achieve
the capacity of the BDC based on this duality. This duality
can be extended to the relations between BEC, BDC, BEQ,
and WOM.

Based on these relations, we showed that RM codes achieve
the capacity of the BDC with O(n3) and LDGM codes (duals
of LDPC codes) achieve the capacity withO(ndG). Also, polar
codes can achieve the capacity with O(n log n) complexity,
which beats the best known result of O(n log2 n).

Also, we proposed the LWC for resistive memories based on
this duality, which are the counterparts of LRC for distributed
storage systems. The proposed LWC can improve endurance
limit and power consumption which are major challenges for
resistive memories.
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