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Abstract—In this paper we formulate of the Economic Dispatch
(ED) problem in Power Systems in continuous time and include
in it ramping constraints to derive an expression of the price
that reflects some important inter-temporal constraints of the
power units. The motivation for looking at this problem is the
scarcity of ramping resources and their increasing importance
motivated by the variability of power resources, particularly due
to the addition of solar power, which exacerbates the need of
fast ramping units in the early morning and early evening hours.
We show that the solution for the marginal price can be found
through Euler-Lagrange equations and we argue that this price
signal better reflects the market value of power in the presence
of significant ramps in net-load.

Index Terms—Optimal Power Flow.

I. INTRODUCTION

In today’s electricity markets, energy and ancillary services
serve two different purposes. A particularly important stage is
the day-ahead market in which generating units only define an
hourly cost for their average energy generation schedule during
that unit of time, i.e. a function Ck(x̄, h), where the hourly
energy signal in an horizon T = [t1, t2], with t2 =, t1 +HT
is:

x̄k[h] =

∫ (h+1)T

t1+hT

xk(t)dt, h = 0, . . . ,H − 1

First, the best portfolio of units is decided by solving the
mixed integer linear program that corresponds to the Unit
Commitment (UC). The price is then chosen based on the
portfolio of units selected, setting the optimum schedule and
is interpreted as an energy price for that particular period and
market settlement.

Demand of electricity does not come in chucks of energy
and what is demanded from the market is a continuous time
power trajectory. Today’s operations catch up in real time
in shorter term market settlements and engaging ancillary
services reserves. While it is reasonable for the generation
schedules to be merely in the right ballpark and adjust to
the actual demand in real time it is important to consider
that, using this approximation, one may be throwing away
information that is at hand about the inter-hour behavior and,
particularly, load ramps that may be difficult to meet with the
units committed with the standard UC formulation. Recently
this issue has come to the forefront due to increased variability
of the net-demand, particularly at early and late day hours, that
are a direct consequence of the increased penetration of solar
power. This phenomenon is often illustrated by the popular
duck chart in Fig. 1.

Metrics for measuring the largest variation range of un-
certainty that the system can accommodate were proposed

Figure 1: The forecast of average California daily load.

in [5], while the authors in [9], [10] proposed methods to
quantify the additional cost of generating units incur due to
ramping. At the same time, there have been several proposal
to address the issue of ramping shortage which promote better
coordination between energy markets, security constrained
Unit Commitment and ancillary service markets and higher
incentives for ramping services. Oftentimes the framework
proposed is tied to the uncertainty of renewables and the
Security Constrained UC (see e.g. [11], [12], [21], [22]). Cases
in which the authors more explicitly tied the ramping cost
to modeling the ramping needs in the UC are, for instance,
[14], [15], [20]. On the market side Midcontinent ISO (MISO)
[6], [7] and the California ISO (CAISO) [8], [17] introduced
flexible ramping products in their portfolio of resources.

Accounting for the predictable trends and incentivizing the
market properly could lead to decisions that reduce the volume
of power that is scheduled in real time. This is, in a nutshell
the motivation behind our previous work in [1], [2] [3] that
essentially examined how to convert the intractable variational
problem of committing generators trajectories, i.e. solving the
Unit Commitment (UC) problem, in continuous time, into a
tractable problem, resorting to an expansion of the demand and
generation trajectories in a signal space spanned by polynomial
splines. We brought the notion of continuous time UC a step
further in [2] where, assuming we are going to deal with
continuous and differentiable trajectories, we defined a unit
cost that is a function of both xk(t) and ẋk(t) k = 1, . . . ,K,
to allow generators to bid also on their ramping capacity,
and stimulate market competition in offering ramping services.
More recently we proposed to fully generalize export bids to
possibly account for storage capacity available [3].

The subject of this paper is describing simple instances of
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the variational problem that defines the price of electricity
without involving the integer variables of the UC, as is
customary in computing the price of energy. We focus on
the economic dispatch problem with the goal of calculating
the trajectory of the marginal price per unit of power and
time, considering a market that maximizes social surplus in
the presence of inflexible demand.

The paper is organized as follows. We start in the following
section with the classic economic dispatch problem, but look
the the optimization over the entire time horizon and include
in the calculation ramping constraints.

II. THE CONTINUOUS TIME ECONOMIC DISPATCH
PROBLEM AND PRICING OF POWER

We consider energy market setting in which a set of K
generating units compete to sell continuous-time generation
trajectory xk(t) for k = 1, . . . ,K. The input to the problem
is the forecasted load profile y(t) over the day-ahead oper-
ating horizon T = [t1, t2] at minimum cost, subject to the
constraints of the generating units that include their capacity
and ramping limits. Our interest in this paper is the derivation
of the marginal price of electricity by first focusing on the
economic dispatch formulation that relaxes the power flow
equations and the line flow constraints. We assume that the
UC problem has been solved, for instance, following the setup
we proposed in [1]. Hence, the K units considered here were
the one that were committed by solving the UC problem.

We can assume that generating unit k expresses a cost
function Ck(x; t) such that the incremental cost for generating
the energy x(t)dt is Ck(x; t)dt. This is perfectly compatible
with the current practice of giving an hourly or sub-hourly
energy cost, since in that case Ck(x; t) is linear (or piece-wise)
linear with respect to x, over the horizon T , with exactly the
same rate. The formulation to calculate the market clearing
price in continuous time is:

min
x1(t),..,xK(t)

K∑
k=1

∫ t2

t1

Ck(xk, t)dt (1)

s.t.
K∑
k=1

xk(t) = y(t) (λ(t)) ∀t ∈ T (2)

∀t ∈ T , k = 1, . . . ,K

xk(t)− x ≤ 0 (µk(t)) (3)
xk − xk(t) ≤ 0 (µ

k
(t)) (4)

ẋk(t)− x′k ≤ 0 (γk(t)) (5)
x′k − ẋk(t) ≤ 0 (γ

k
(t)) (6)

where xk, xk, x′k, x′k are respectively the upper and lower
bounds of the kth generation and ramping trajectory, and
λ(t), µ

k
(t), µk(t), γ

k
(t), (γk(t) are respectively the Lagrange

multipliers associated with the constraints (2)-(6)). The ob-
jective in (1) is to minimize the total continuous-time cost
of generating units over the scheduling horizon T , subject
to the continuous-time load-generation balance constraint (2),
and the continuous-time generation capacity and ramping

constraints in (3)-(6). Here, we assume there is no flexibility
in y(t) and its trajectory is certain.

The optimization problem in (1)-(6) is a constrained vari-
ational problem, and its solution would determine the values
of the Lagrange multipliers over the scheduling horizon T ,
that correspond to the optimal generation trajectories x∗(t)
for the units that are committed. The Lagrangian function of
the variational problem (1)-(6) is:

L =

K∑
k=1

∫ t2

t1

fk(xk, ẋk, t)dt (7)

fk(xk, ẋk, t) = Ck(xk(t), t) +

(
y(t)

K
− xk(t)

)
λ(t)

+µk(t)(xk(t)− xk) + µ
k
(t)(xk − xk(t)) (8)

+γk(t)(ẋk(t)− x′k) + γ
k
(t)(x′k − ẋk(t)) (9)

In the following, what we refer to as the continuous-time
Lagrange multiplier λ(t) function. In fact, each instantaneous
balance constraint needs to be weighted by an infinitesimal
quantity λ(t)dt, just like the cost of supplying xk(t) over
the interval [t, t + dt) grows infinitesimally by Ck(xk(t))dt.
Assuming y(t) and Ck(x, t) are continuous and continuously
differentiable function of time, the trajectories xk(t) and
Lagrange multipliers are going to be also continuous and
continuously differentiable. The formulation above is a special
case of the classical isoperimetric problem from Physics
(see e.g. [4]). The key result is that the trajectories xk(t),
k = 1, . . . ,K that lead to the minimum L∗ ≤ L solutions
can be found solving the so called Euler-Lagrange differential
equations:

∂fk(x∗k, ẋ
∗
k, t)

∂xk
− d

dt

∂f(x∗k, ẋ
∗
k, t)

∂ẋk
= 0, k = 1, ..,K (10)

Because there are no specific constraints on the values of the
trajectories at least at one of the boundaries of T , there is one
additional condition to consider:

∂f(x∗k(t2), ẋ∗k(t2), t2)

∂ẋk
=
dγ∗k(t2)

dt
−
dγ∗

k
(t2)

dt
= 0 (11)

k = 1, . . . ,K

In addition to (10) the complete Karush-Kuhn-Tucker
(KKT) conditions on the optimum trajectories include the
following equations:

y(t)−
K∑
k=1

x∗k(t) = 0 (12)

x∗k(t)− xk ≤ 0, xk − x∗k(t) ≤ 0, (13)
ẋ∗k(t)− x′k ≤ 0, x′k − ẋ∗k(t) ≤ 0, (14)
µk(t)(x∗k(t)− xk) = 0, µ

k
(t)(xk − x∗k(t)) = 0, (15)

γk(t)(ẋ∗k(t)− x′k) = 0, γ
k
(t)(x′k − ẋ∗k(t)) = 0, (16)

µk(t), µ
k
(t), γk(t), γ

k
(t) ≥ 0. (17)

∀t ∈ T , k = 1, . . . ,K



All of these equations are decoupled with the exception of the
balance constraint. Based on the definition of f(xk, ẋk, t) in
(8) we have:

∂f(xk, ẋk, t)

∂xk
=
∂Ck(xk, t)

∂xk
− λ(t) + µk(t)− µ

k
(t) (18)

d

dt

∂f(xk, ẋk, t)

∂ẋk
=
dγk(t)

dt
−
dγ

k
(t)

dt
, (19)

∀t ∈ T , k = 1, . . . ,K

Therefore, from the (12) we can conclude a number of things.
1) First, we can derive the following relationship between

the Lagrange multiplier function, the marginal cost and
the other Lagrange multipliers functions:

λ∗(t) =
∂Ck(x∗k, t)

∂xk
+ µ∗k(t)− µ∗

k
(t)− dγ∗k(t)

dt
+
dγ∗

k
(t)

dt

∀t ∈ T , k = 1, . . . ,K (20)

2) For each unit k that is operating strictly within its gen-
eration and ramping capacity limits, the complementarity
slackness condition (15)-(16) imply that the multipliers
µk∗(t) = µ

k∗
(t) = 0 and/or γk∗(t) = γ

k∗
(t) = 0.

3) It is important to note that because, due to the same
conditions, the eigenvalues γk∗(t), γ

k∗
(t) are non neg-

ative (17), then zero is also the infimum of the func-
tion. Because the function is continuous with continuous
derivative in time at the infimum will also have to be a
minimum and have zero derivative. This means that when
the ramping constraint is not tight, the following is also
true:

dγ∗k(t)

dt
= 0,

dγ∗
k
(t)

dt
= 0 (21)

and, thus
d

dt

∂f(xk, ẋk, t)

∂ẋk
= 0 (22)

4) In our problem, since we assume that the demand is
inflexible, to always have a feasible solution we have
to assume that there always exist an extra unit that can
be deployed to meet excess demand that arises. The so
called marginal unit is the unit k∗(t) for which none
of the inequality constraints is tight at time t and so
µk∗(t) = µ

k∗
(t) = 0 and/or γk∗(t) = γ

k∗
(t) = 0 and

also (22) is valid. In this case, assuming that there is
always a unit whose constraints are not tight and denoting
by k∗(t) the index of the marginal unit at time t the
solution of (10) is:

λ∗(t) =
∂Ck(x∗k, t)

∂xk
, k = k∗(t), ∀t ∈ T . (23)

Note that, if the increment in demand has an arbitrary
temporal shape, it may be true that only the ramping
constraint is tight though the problem is still feasible, in
which case the price will include either

dγ∗
k
(t)

dt or dγ∗
k(t)
dt ,

i.e. there would be a shadow price associated to ramping
that increases the price compared to the marginal cost.

It is well known that, absent a load export bid, the marginal
price of electricity and the marginal cost of the so called
marginal unit are the same, since the social surplus is maxi-
mized by having the marginal generator increase its production
by one unit if the demand grows by one unit. The same
remains true in the continuous time formulation. We can prove
this formally, to state the following theorem:

Theorem II.1. With a continuous time import bid and inflex-
ible demand the surplus maximizing price for an additional
unit of load per unit of time is the Lagrange multiplier λ∗(t)
at the optimum schedule, i.e. (23).

Proof: Let gk(xk, ẋk, t) be:

gk(xk, ẋk, t) = fk(xk, ẋk, t)−
y(t)

K
, (24)

so that we can rewrite the Lagrangian as follows:

L =

∫ t2

t1

(
λ(t)y(t) +

K∑
k=1

gk(xk, ẋk, t)

)
dt (25)

Suppose we increase the load demand by a unit of power ε at
all times in T . That is, the load is:

Y (t) = y(t) + ε, t ∈ (t1, t2) (26)
Y (t1) = y(t1), Y (t2) = y(t2). (27)

The last equations are necessary for the Euler-Lagrange equa-
tions to continue to hold. To evaluate the price this costs,
we want to establish at what rate the Lagrangian changes
compared to the value L∗, as our demand of power increases.
Let us refer to the new value of the Lagrangian as L∗(ε).
Note that at the extremum only the marginal unit can adjust
its production and ramp up to meet the increased load, all
the remaining unit schedules for k 6= k∗ remain unchanged.
Furthermore, since the change in load is a constant lift, the
time derivative of the optimum schedule for the marginal unit
does not change:

Xk∗(t) = x∗k∗(t) + ε → Ẋk∗(t) = ẋ∗k∗(t). (28)

These considerations lead to the following:

L∗(ε)− L∗ =

∫ t2

t1

(
λ(t)ε+

∂gk(x∗k∗ , ẋ
∗
k∗ , t)

∂x∗k∗
ε+O(ε2)

)
dt

(29)

where the partial derivative with respect to ẋ∗k∗ is absent since
we have no variation in the ramp. Considering that for the
marginal unit:

∂gk(x∗k∗ , ẋ
∗
k∗ , t)

∂x∗k∗
=
∂fk(x∗k∗ , ẋ

∗
k∗ , t)

∂x∗k∗
(30)

=
∂Ck(x∗k∗ , t)

∂x∗k∗
− λ∗(t) = 0, (31)

we can conclude that:

lim
ε→0

L∗(ε)− L∗

ε
=

∫ t2

t1

λ(t)dt (32)



Hence, λ(t) represents the market price per unit of power and
per unit of time.

Note that, had we perturbed the load in a time varying
fashion, i.e.:

Y (t) = y(t) + εη(t),

with η(t1) = η(t2) = 0, but we never exceed the ramping
constraint of the marginal unit, the result would have been:

lim
ε→0

L∗(ε)− L∗

ε
=

∫ t2

t1

λ(t)η(t)dt (33)

which leads to the same conclusion. There could be a feasible
η(t) that make the ramping constraint tight and, therefore, in
that case the price would rise above the marginal cost and
include, as we mentioned, either

dγ∗
k
(t)

dt or dγ∗
k(t)
dt .

III. PRICING WITH GENERALIZED BID STRUCTURES

In an effort to better reflect constraints and costs of the
generating units in our previous work we proposed to gen-
eralize the bid structure. Specifically, to incentivize suppliers
to compete in offering ramping services, in [2] we proposed
to redefine export price bids so that the cost of generation
at a certain time was function growing monotonically with
respect to both power and the absolute value of the ramp.
Later, to incentivize generators to rely on storage capacity in
their generation portfolio, in [3] we generalized the notion
further to make the export bid a function of energy, power
and ramp.

In this case, the bid may no longer be a simple export bid,
but also include a price for purchasing power, as discussed in
in [3], that would allow the generator to buy at low prices and
sell in later period when shortages raise the whole-sale price.
Our previous work focused on the UC problem, where the
presence of resources that are more flexible, but constrained
in generation or storage capacity, can better compete in the
market and decrease the social cost of meeting highly variable
demand.

Naturally, the generalized bid impacts the schedule and the
price computed through the economic dispatch. Let us start
from the first case, where the cost is function of both power
and ramp. In this case:

Theorem III.1. When the generator costs depend on both
power and ramp, i.e. Ck(xk, ẋk, t), the marginal price, i. e.
the price for lifting uniformly during the horizon the power
demand by one unit, is:

λ∗(t) =
∂Ck(x∗k, ẋ

∗
k, t)

∂xk
− d

dt

∂Ck(x∗k, ẋ
∗
k, t)

∂ẋk
, k = k∗. (34)

Proof: The only thing that has changed compared to the
previous case is that the objective is a function of both power
and ramp, but Euler-Lagrange equations can still be directly
applied. The KKT conditions and (18) remain the same, since
the constraints have not changed, but a new term appears in
(19) due to the ramping constraint, which is not part of the

traditional economic dispatch problem:

d

dt

∂f(xk, ẋk, t)

∂ẋk
=

d

dt

∂Ck(xk, ẋk, t)

∂ẋk
− dγk(t)

dt
+
dγ

k
(t)

dt
,

(35)
∀t ∈ T , k = 1, . . . ,K.

Therefore, simply applying the Euler-Lagrange equations, and
focusing on the marginal unit for which µk∗(t) = µ

k∗
(t) = 0

and/or γk∗(t) = γ
k∗

(t) = 0 and also (22) is valid the claim
follows.

To express the most general bid form, let:

zk(t) =

∫ t

t1

xk(t)dt, żk(t) = xk(t), z̈k(t) = ẋk(t). (36)

The generators cost in this case is a function of the energy
power and ramp, i.e. Ck(zk, żk, z̈k, t). In this case the isoperi-
metric problem needs to be generalized, due to the presence
of the second derivative. The generalized formulation is now:

min
z(t)

K∑
k=1

∫ t2

t1

Ck(zk, żk, z̈k, t)dt (37)

s.t.
K∑
k=1

zk(t) = y(t) (λ(t)) ∀t ∈ T (38)

∀t ∈ T , k = 1, . . . ,K

żk(t)− xk ≤ 0 (µk(t)) (39)
xk − żk(t) ≤ 0 (µ

k
(t)) (40)

z̈k(t)− x′k ≤ 0 (γk(t)) (41)
x′k − z̈k(t) ≤ 0 (γ

k
(t)) (42)

zk(t)− zk ≤ 0 (βk(t)) (43)

where (43) represent the additional energy constraint1. Also
in this case we can express the Lagrangian as follows:

L =

K∑
k=1

∫ t2

t1

fk(zk, żk, z̈k, t)dt (44)

fk(zk, żk, z̈k, t) = Ck(zk, żk, z̈k, t) +

(
y(t)

K
− żk(t)

)
λ(t)

+µk(t)(żk(t)− x) + µ
k
(t)(xk − żk(t))

+γk(t)(z̈k(t)− x′k) + γ
k
(t)(x′k − z̈k(t))

+βk(t)(zk(t)− zk) (45)

Following the same principles that lead to the derivation of
the Euler-Lagrange equation, we can prove the following:

Lemma III.2. The trajectories that lead to the minimum L∗
satisfy the following differential equations:

∂fk(z∗k, ż
∗
k, z̈
∗
k, t)

∂żk
− d

dt

∂f(z∗k, ż
∗
k, z̈
∗
k, t)

∂z̈k

−
∫ t

t2

∂f(z∗k, ż
∗
k, z̈
∗
k, τ)

∂zk
dτ = 0, k = 1, ...,K, t ∈ T (46)

1Note that the energy is always positive as long as the lower bound on
power xk ≥ 0.



in addition to the following KKT conditions:

y(t)−
K∑
k=1

ż∗k(t) = 0 (47)

ż∗k(t)− xk ≤ 0, xk − ż∗k(t) ≤ 0, (48)
z̈∗k(t)− x′k ≤ 0, x′k − z̈∗k(t) ≤ 0, (49)
z∗k(t)− zk ≤ 0, zk − z∗k(t) ≤ 0, (50)
µk(t)(ż∗k(t)− xk) = 0, µ

k
(t)(xk − ż∗k(t)) = 0, (51)

γk(t)(z̈∗k(t)− x′k) = 0, γ
k
(t)(x′k − z̈∗k(t)) = 0, (52)

βk(t)(z∗k(t)− zk) = 0, β
k
(t)z∗k(t) = 0, (53)

µk(t), µ
k
(t), γk(t), γ

k
(t), βk(t) ≥ 0. (54)

∀t ∈ T , k = 1, . . . ,K

Proof: To prove (46), we shall follow the same steps
as the proof of Euler-Lagrange equations. Their derivation is
based on the fact that if we perturb the optimum point with
an energy neutral trajectory as follows:

Żk(t) = ż∗k(t) + εkη̇k(t), k = 1, . . . ,K (55)

the functional gradient of the Lagrangian needs to be zero
when εk = 0, since L is minimized by z∗k(t), i.e. L∗ ≤ L. If
we assume that ηk(t2) = η̇k(t1) = η̇k(t2) = 0 (ηk(t2) implies
that the perturbation is energy neutral), this means that the
following integrals, no matter the choice of η̇k(t), have to be
zero:

∂L
∂εk

∣∣∣∣
εk=0

=

∫ t2

t1

(
∂fk(z∗k, ż

∗
k, z̈
∗
k, t)

∂zk
ηk(t)

+
∂f(z∗k, ż

∗
k, z̈
∗
k, t)

∂żk
η̇k(t) +

∂f(z∗k, ż
∗
k, z̈
∗
k, t)

∂z̈k
η̈k(t)

)
dt

=

(∫ t

t1

∂f(z∗k, ż
∗
k, z̈
∗
k, τ)

∂żk
dτ

)
ηk(t)

]t2
t1

(56)

+
∂f(z∗k, ż

∗
k, z̈
∗
k, t)

∂z̈k
η̇k(t)

]t2
t1

+

∫ t2

t1

(
−
∫ t

t1

∂f(z∗k, ż
∗
k, z̈
∗
k, τ)

∂żk
dτ +

∂f(z∗k, ż
∗
k, z̈
∗
k, t)

∂żk

− d

dt

∂f(z∗k, ż
∗
k, z̈
∗
k, t)

∂z̈k

)
η̇k(t)dt = 0 k = 1, ..,K.

In (56) only the last integral remains, given that ηk(t2) =

η̇k(t1) = η̇k(t2) = 0 and the integral
∫ t
t1

∂f(z∗k,ż
∗
k,z̈

∗
k,τ)

∂żk
dτ

is zero at t = t1 because the interval of integration has
measure zero. Because η̇k(t) is entirely arbitrary, the optimum
trajectory must satisfy (46).

Considering the definition of f(zk, żk, z̈k, t) (45), the gener-
alized Euler-Lagrange equation (46) obtained in Lemma III.2

implies that:

−
∫ t

t1

∂Ck(z∗k, ż
∗
k, z̈
∗
k, τ)

∂żk
dτ −

∫ t

t1

(βk(τ)dτ (57)

+
∂Ck(z∗k, ż

∗
k, z̈
∗
k, t)

∂żk
− λ(t) + µk(t)− µ

k
(t) (58)

− d

dt

∂Ck(z∗k, ż
∗
k, z̈
∗
k, t)

∂z̈k
− dγk(t)

dt
+
dγ

k
(t)

dt
= 0. (59)

To derive the price we need, once again, to focus on the
marginal unit, for which the balance constraint is not tight.
We also want to restrict ourselves to the assumption that the
generators offering the bids which change their cost based on
the energy Ck(z∗k, ż

∗
k, z̈
∗
k, t) are only suppliers, which make

sense since the power is constrained to be positive and if
there was an import, it should be negative. This is a subtle
point that leads to some simplifications that are not obvious
in the general case in which suppliers can switch role and buy
power to replenish their capacity.

Once again, because of the KKT conditions and the fact that
the multipliers are continuous for the marginal unit µk(t) =
µ
k
(t) = 0 and dγk(t)/dt = dγ

k
(t)/dt = 0. But what also is

important to notice is that for the marginal unit also∫ t

t1

βk(τ)dτ = 0 (60)

as soon as a unit saturates the capacity it can offer, i.e. zk =
zk, and βk(τ) > 0 the unit can no longer be the marginal
unit as it has no more power to offer. Therefore, denoting by
k∗(t) the index of the marginal unit at time t in this case we
conclude:

Theorem III.3. When the generator costs depend on energy,
power and ramp, i.e. Ck(zk, żk, z̈k, t), the marginal price of
power is:

λ∗(t) =
∂Ck(z∗k, ż

∗
k, z̈
∗
k, t)

∂żk
− d

dt

∂Ck(z∗k, ż
∗
k, z̈
∗
k, t)

∂z̈k

−
∫ t

t1

∂Ck(z∗k, ż
∗
k, z̈
∗
k, τ)

∂zk
dτ k = k∗(t) (61)

A few remarks can be drawn out of this analysis which are
summarized in the next section.

IV. DISCUSSION

One of the first questions is how generating units would
construct their bids. This question is hard to answer from a
purely technical point of view, as the costs of ramps are mostly
associated to the wear and tear of the generating units and,
therefore, are not very easy to quantify, while the marginal
cost of a certain schedule to offer energy for storage units can
be close to zero. Hence, both costs are likely to be opportunity
driven costs rather than clearly quantifiable fuel costs, as it
is for the case of generation of power through fossil fuels.
However, the aim of our proposed bid is to allow the market
participant to evaluate how to best position themselves to
profit from the market environment directly in the commitment
phase. While day-ahead costs may rise, especially in the case



of ramping services [2], the decisions result in lower real-time
costs. The results we have derived in this paper, namely (23)
and (20) for a regular bid and (34) and (61) for a generalized
bid lead to the following observations

1) The cost of ramping is naturally apparent in the ED prob-
lem when the ramping constraints become tight through
the derivative of the instantaneous Lagrange multiplier
associated with the ramping constraints, even if one
considers the current practice of bidding exclusively as
a function of power.

2) Because the marginal price is tied to the marginal in-
stantaneous cost, the price is continuous as long as the
cost is continuous. Because net-demand is continuous it
is natural to think that if demand lies in a finite function
space (this was the hypothesis in [1]) this function space
might be adequate to also express the variations in costs.
However, the connection between the features of the
generators trajectories and the temporal variations in cost
is still elusive and requires more investigation.

3) The negative sign of the contributions that come from the
dependence on ramping in (34) has a nice interpretation:
by increasing demand of power now, we can offset
increasing costs of ramp that follow. If, on the other hand,
the cost in ramp is declining (has negative slope in time)
the rise in power is penalized.

4) For the energy cost the situation is different: inevitably
as time goes on the energy demand grows which rises
the marginal cost of power. Thus, the negative term (61)
can potentially be interpreted as a correction term, which
rebalances such growth.

V. CONCLUSIONS

In this paper we derived the continuous time price of
electricity in continuous time by solving an Economic dis-
patch problem with two differences compared to the standard
formulation: 1) we included ramping constraints and solved
the problem over a certain horizon accounting for possible
ramping shortages; 2) we included more complex bids that
allow for a change in price due to ramping or relative to the
amount of energy that the unit has offered up to a certain
point in time. We have shown that the notion of marginal price
can be generalized to the continuous time regime and taken
inspiration in solving the variational problem of computing the
price from the solution of the so called isoperimentric problem
[4].
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