
ar
X

iv
:1

60
1.

06
36

2v
1

 [c
s.

IT
]

24
 J

an
 2

01
6

Progress on High-rate MSR Codes: Enabling
Arbitrary Number of Helper Nodes

Ankit Singh Rawat
CS Department

Carnegie Mellon University
Pittsburgh, PA 15213

Email: asrawat@andrew.cmu.edu.

O. Ozan Koyluoglu
Department of ECE

The University of Arizona
Tucson, AZ 85721

Email: ozan@email.arizona.edu.

Sriram Vishwanath
Department of ECE

The University of Texas at Austin
Austin, TX 78712

Email: sriram@austin.utexas.edu.

Abstract—This paper presents a construction for high-rate
MDS codes that enable bandwidth-efficient repair of a single
node. Such MDS codes are also referred to as the minimum
storage regenerating (MSR) codes in the distributed storage
literature. The construction presented in this paper generates
MSR codes for all possible number of helper nodesd as d is a
design parameter in the construction. Furthermore, the obtained
MSR codes have polynomial sub-packetization (a.k.a. node size)
α. The construction is built on the recent code proposed by
Sasidharan et al. [1], which works only for d = n − 1, i.e.,
where all the remaining nodes serve as the helper nodes for the
bandwidth-efficient repair of a single node. The results of this
paper broaden the set of parameters where the constructionsof
MSR codes were known earlier.

Index Terms—Codes for distributed storage, regenerating
codes, minimum storage regenerating (MSR) codes, sub-
packetization.

I. I NTRODUCTION

Consider a distributed storage system withn storage nodes
which stores a file of sizeM symbols over a finite field. The
distributed storage system (DSS) is referred to be an(n, k)-
DSS if it has‘any k out ofn’ property, i.e., the content of any
k out of n storage nodes is sufficient to reconstruct the entire
file. In [2], Dimakis et al. explore the issue of node repair
in an (n, k)-DSS. In particular, they study(n, k)-DSS which
allow for the repair of a single failed node by contactingd out
of n−1 remaining storage nodes and downloadingβ symbols
from each of thesed helper nodes. Assuming that each node
in the system storesα symbols (over the finite field), Dimakis
et al. obtain a trade-off between the node sizeα and repair
bandwidthγ = dβ, the amount of data downloaded during
the repair process. The codes that attain this trade-off are
referred to asregenerating codes. The two extreme points of
this trade-off correspond to the minimum possible storage and
the minimum possible repair-bandwidth for an(n, k)-DSS.
These two points are termed asminimum storage regenerating
(MSR) point and minimum bandwidth regenerating (MBR)
point, respectively. The MSR point corresponds to

(αMSR, βMSR) =

(

M

k
,

d

d− k + 1

M

k

)

.

The MBR point is defined by

(αMBR, βMBR) =

(

2d

2d− k + 1

M

k
,

2

(2d− k + 1)

M

k

)

.

The codes achieving the MSR and the MBR points are
referred to asminimum storage regenerating (MSR) codesand
minimum bandwidth regenerating (MBR) codes, respectively.
Note that the MSR codes are also maximum-distance separable
(MDS) codes [3].

In [2], Dimakis et al. also show the existence of the codes
that achieve every point on theα vs. dβ trade-off for all
possible system parametersn, k, d to ensurefunctional repair.
Under the functional repair, the content of the repaired node
may differ from that of the failed node. However, the repaired
node does ensure the ‘anyk out of n’ property of the system.
Sometimes, due to various system level requirements, it is
desirable to construct regenerating codes that ensureexact
repair of the failed node, i.e., the content of the repaired node
is the same as the content of the failed node. In [4], Rashmi et
al. settle the problem of designing exact repairable MBR codes
(exact-MBR codes) as they propose an explicit construction of
such codes for all possible system parametersn, k andd.

On the other hand, the problem of constructing the exact-
MSR codes has not been fully understood yet. The exact-MSR
codes withk < 3 andk ≤ n

2 are presented in [5] and [6], [7],
respectively. In [4], Rashmi et al. present explicit constructions
for exact-MSR codes with2k − 2 ≤ d ≤ n − 1. In general,
all of these constructions correspond to exact-MSR codes of
low rate with k

n
≤ 1

2 + 1
2n . In [8], Cadambe et al. show the

existence of high-rate exact MSR codes when node sizeα (also
referred to assub-packetization level) approaches to infinity.
Towards constructing high-rate exact-MSR codes with finite
sub-packetization level, Papailiopoulos et al. utilize Hadamard
matrices to construct exact-MSR codes withn − k = 2
and d = n − 1 in [9]. Using permutation-matrices exact-
MSR codes for all(n, k) pairs with d = n − 1 which
only ensure repair bandwidth-efficient repair of systematic
nodes are presented in [10] and [11]. In [12], Wang et al.
generalize these constructions to enable repair of all nodes
with d = n− 1 helper nodes. However, we note that the sub-
packetization levelα of the constructions presented in [9]–[12]
is exponential ink.

Recently, Sasidharan et al. have presented a construction
of a constant (high) rate MSR codes with polynomial sub-
packetization in [1]. This construction enables repair of all the
nodes in the system and works ford = n− 1, i.e., all the re-

http://arxiv.org/abs/1601.06362v1

mainingn−1 nodes has to be contacted to repair a single failed
node. The construction with polynomial sub-packetizationand
enabling repair of only systematic nodes are also presentedin
[13], [14]. As for the converse results, Goparaju et al. establish
a lower bound on the sub-packetization level of an MSR code
with givenn andk in [15].

In this paper, we present a construction for exact-MSR
codes that allow for any given number of helper nodes, i.e.,
k ≤ d ≤ n − 1. In addition to working for an arbitrary (but
fixed) d, our construction possesses the desirable properties
of having polynomial sub-packetization level for a constant
rate and enabling repair-bandwidth efficient repair of all the
nodes in the system. We obtain this construction by suitably
modifying the construction of Sasidharan et al. [1]. The rest of
the paper is organized as follows. We introduce the notation
and necessary background in Section II. In Section III, we
present our code construction. In Section IV, we describe the
node repair process for the proposed code construction. We
establish the MDS property (a.k.a. ‘any k out of n’ property)
for the construction in Section V. We conclude the paper in
Section VI.

II. PRELIMINARIES

Let 1{·} denote the standard indicator function which takes
the value1 if the condition stated in{·} is true and takes the
value 0 otherwise. For twonα-length vectorsx and y, we
defined the Hamming distance between them as follows.

dH(x,y) =
n
∑

i=1

1{xi 6=yi},

where for i ∈ [n], we havexi = (x(i−1)α+1, . . . , xiα)
and yi = (y(i−1)α+1, . . . , yiα). We say that a set of vec-
tors C ⊆ F

nα
Q is an (n,M, dmin, α)Q vector code if we

have |C| = M and dmin = minx,y∈C dH(x,y). Given
a codewordc = (c1, c2, . . . , cnα) ∈ C, we use ci =
(c(i−1)α+1, c(i−1)α+2, . . . , ciα) to denote thei-th vector (code)
symbol in the codeword. When the codeC spans a linear
subspace of dimensionlogQ M , we callC to be a linear vector
code and refer to it as an[n, logQ M,dmin, α]Q vector code.
Note that an[n, kα, dmin, α]Q vector code can be defined by
a parity-check matrix

H =















H1,1 H1,2 · · · H1,n

H2,1 H2,2 · · · H2,n

...
...

. . .
...

Hn−k,1 Hn−k,2 · · · Hn−k,n















∈ F
(n−k)α×nα

Q ,

where eachHi,j is anα×α matrix with its entries belonging
to FQ. For a setS = {i1, i2, . . . , i|S|} ⊆ [n], we define the
(n− k)α× |S|α matrix H(:, S) as follows.

H(:, S) =















H1,i1 H1,i2 · · · H1,i|S|

H2,i1 H2,i2 · · · H2,i|S|

...
...

. . .
...

Hn−k,i1 Hn−k,i2 · · · Hn−k,i|S|















.

Note that the matrixH(:, S) comprises those coefficients in
the linear constraints defined by the parity-check matrixH

that are associated with the vector code symbols indexed by
the setS.

III. C ODE CONSTRUCTION

In what follows, we useΣ to represent a linear combination
whose coefficients are not specified explicitly. For example, for
a1, a2, . . . , ar ∈ FQ,

∑r

i=1 ai denotes a linear combination of
theser elements where unspecified coefficients of the linear
combination belong toFQ. For an integerq > 0, we use[q]
and[0 : q−1] to denote the sets{1, 2, . . . , q} and{0, 1, . . . , q−
1}, respectively.

Assume thatn = (t − 1)(d − k + 1) + s, for t > 1 and
0 ≤ s ≤ d− k. We take

α =

{

(d− k + 1)t−1 = qt−1 if s = 0

(d− k + 1)t = qt otherwise.
(1)

Note that we useq to denoted−k+1. Moreover, as compared
to [1], we describe the construction for the wider range of
parameters which corresponds tos > 0. Therefore, fors > 0,
we haveα = (d−k+1)t = qt. For these values of parameters,
at the MSR point, a node repair step involves downloading

β =
α

d− k + 1
= (d− k + 1)t−1 = qt−1

symbols from each of thed contacted nodes. Letn = (t −
1)q + s nodes be indexed by tuples

N = {(i, θ) : (i, θ) ∈ [t− 1]× [0 : q − 1]} ∪

{(t, θ) : θ ∈ [0 : s− 1]} . (2)

Note that each node in the system storesα = qt code symbols.
Let {c((x1, x2, . . . , xt); (i, θ))}(x1,...,xt)∈[0:q−1]t represent the
qt code symbols stored on the(i, θ)-th node. In order to
specify the MSR codeC, we specify(n − k)α = (n − k)qt

linear constraints overFQ that each codeword inC has to
satisfy. We partition these(n− k)α constraints into two types
of constraints which we refer to asType I and Type II
constraints, respectively.

Type I constraints: For each(x1, . . . , xt) ∈ [0 : q−1]t, we
haven− d constraints of the following form.

∑

θ∈[0:q−1]

c((x1, . . . , xt); (1, θ))+

∑

θ∈[0:q−1]

c((x1, . . . , xt); (2, θ)) + · · ·+

∑

θ∈[0:q−1]

c((x1, . . . , xt); (t− 1, θ))+

∑

θ∈[0:s−1]

c((x1, . . . , xt); (t, θ)) = 0. (3)

The coefficients of these constraints are chosen in such a way
that the following holds for each(x1, x2, . . . , xt) ∈ [0 : q−1]t.
Given any subset ofd code symbols out ofn code symbols
{c((x1, x2, . . . , xt); (i, θ)}(i,θ))∈N, the remainingn − d code
symbols can be recovered using theseType I constraints.

Type II constraints: We now described the remaining(n−
k)α− (n− d)α = (d− k)α = (d− k)qt constraints satisfied
by the codewords. For every(x1, x2, . . . , xt) ∈ [0 : q − 1]t

and∆ ∈ [1 : q − 1], we have

c((x1 −∆, x2, . . . , xt); (1, x1))+

c((x1, x2 −∆, . . . , xt); (2, x2)) + · · ·+

c((x1, . . . , xt−1 −∆, xt); (t− 1, xt−1))+

c((x1, x2, . . . , xt −∆); (t, xt))+
∑

θ∈[0:q−1]

c((x1, . . . , xt); (1, θ))+

∑

θ∈[0:q−1]

c((x1, . . . , xt); (2, θ)) + · · ·+

∑

θ∈[0:q−1]

c((x1, . . . , xt); (t− 1, θ))+

∑

θ∈[0:s−1]

c((x1, . . . , xt); (t, θ)) = 0. (4)

Here, the computationxi − ∆, for i ∈ [t], is per-
formed moduloq. Furthermore, the underlined code symbols
c((x1, x2, . . . , xt −∆); (t, xt)) correspond to0 for xt ≥ s as
there is no node which is indexed by the tuple(t, xt) with
xt ≥ s.

Remark1. One key difference from the construction in [1] is
that for each tuple(x1, . . . , xt) ∈ [0 : q − 1]t, we generate
n − d Type I constraints. In [1], only1 such constraint was
generated as the case ofd = n − 1 was considered. The
coefficients of these constraints need to be carefully chosen
to ensure the requirements specified after (3). We address this
issue in Remark 2.

IV. RECOVERING A FAILED NODE

Assume that the node indexed by the tuple(i, θ0) fails.
We now describe the repair process of the failed node.
The repair process can be viewed to have two stages. In
the first stage, we use the Type I constraints to recover
β = α

d−k+1 = qt−1 out of α = qt code symbols that
are lost due to the node failure. Towards this, from each of
the d contacted nodes, we download the code symbols in-
dexed by the tuples{(x1, . . . , xi−1, θ0, xi+1, . . . , xt)}, where
(x1, . . . , xi−1, xi+1, . . . , xt) span over all values in[0 : q −
1]t−1 from each of thed contacted nodes. These symbols along
with the Type I constraints (cf. (3)) allow us to recover the
symbols

c((x1, . . . , xi−1, θ0, xi+1, . . . , xt); (i, θ)), (5)

for every (x1, . . . , xi−1, xi+1, . . . , xt) ∈ [0 : q − 1]t−1 and
(i, θ) ∈ N.

It is clear from (5) that after the first stage we have access to
β = qt−1 code symbols stored on the failed node as well as the
β symbols stored on the remainingn−1 nodes. In the second
stage, we employ the Type II constraints (cf. (4)) to recover
the remaining(d− k)β = (q − 1)qt−1 symbols stored on the
failed node, i.e., the node indexed by the tuple(i, θ0). Recall

that for a tuple(x1, . . . , xi−1, θ0, xi+1, . . . , xt) ∈ [0 : q − 1]t

and a non-zero integer∆ ∈ [q− 1], the corresponding Type II
constraint is as follows:

c((x1 −∆, . . . , xi−1, θ0, xi+1, . . . , xt); (1, x1)) + · · ·+

c((x1, . . . , xi−1 −∆, θ0, xi+1, . . . xt); (i − 1, xi−1))+

c((x1, . . . , xi−1, θ0 −∆, xi+1, . . . , xt); (i, θ0))+

c((x1, . . . , xi−1, θ0, xi+1 −∆, . . . , xt); (i + 1, xi+1)) + · · ·+

c((x1, . . . , xi−1, θ0, xi+1, . . . , xt −∆); (t, xt))+
(

∑

θ∈[0:q−1]

c((x1, . . . , xi−1, θ0, xi+1, . . . , xt); (1, θ))+

∑

θ∈[0:q−1]

c((x1, . . . , xi−1, θ0, xi+1, . . . , xt); (2, θ)) + · · ·+

∑

θ∈[0:q−1]

c((x1, . . . , xi−1, θ0, xi+1, . . . , xt); (t, θ))
)

= 0. (6)

Note that except the underlined code symbol we know every
other code symbol involved in (6) (cf. (5)). Therefore, using
the constraints in (6), we can complete the second stage of the
repair process which recovers the remaining(q− 1)qt−1 code
symbols from the failed node.

V. MDS PROPERTY OF THE CODE

In this section, we prove that it is possible to obtain the
codes from the construction described in Section III that are
maximum-distance separable (MDS). In particular, we argue
that if the coding coefficients in the construction are selected
from a finite field of large enough size, then there exists a
choice for coding coefficients which lead to the obtained code
being an MDS code. (We note that the argument presented in
this section follows very closely to the argument used in [1].)

Recall that for a codeC defined in Section III, we can
represent a codeword in the codeC by an nα-length vector
in F

nα
Q . In particular, letc = (c1, c2, . . . , cn) be a generic

codeword from the codeC. Here, for eachj ∈ [n], cj ∈ F
α
Q

represent the code symbols stored on thei-th node in the
system. Assuming that the node indexed by the tuple(i, θ) rep-
resents the((i− 1)q + θ + 1)-th node in the system, we have
c(i−1)q+θ+1 = {c((x1, x2, . . . , xt); (i, θ))}(x1,...,xt)∈[0:q−1]t .

Let H ∈ F
(n−k)α×nα

Q be the parity check matrix of the
codeC defined by the Type I and Type II linear constraints
presented in (3) and (4), respectively. Note that it followsfrom
the code construction that the parity check matrixH has the
following structure.

H =

(

HI

HII

)

. (7)

Here,HI is an(n−d)α×nα matrix overFQ which is defined
by the(n− d)α = (n− d)qt Type I constraints (cf. (3)). On
the other hand, the(d− k)α = (d− k)qt Type II constraints
(cf. (4)) constitute the(d−k)α×nα matrixHII overFQ. We
now focus on the structure of the two matricesHI andHII.

Note that

HI =















HI
1

HI
2

...

HI
n−d















(8)

where, fori ∈ [n− d], the matrixHI
i ∈ F

α×nα
Q is obtained by

taking one of then−d Type I constraints associated with each
of the qt values for the tuple(x1, x2, . . . , xt) ∈ [0 : q − 1]t

(cf. (3)). Similarly, we have

HII =















HII
1

HII
2

...

HII
d−k















, (9)

where, fori ∈ [d− k], the matrixHII
i ∈ F

α×nα
Q is defined by

one of thed − k Type II constraints corresponding to each
of the qt values for the tuple(x1, x2, . . . , xt) ∈ [0 : q − 1]t

(cf. (4)). Recall that for a tuple(x1, x2, . . . , xt) ∈ [0 : q− 1]t,
the d− k Type II constraints corresponding to the tuple are
associated with thed−k values of the parameter∆ ∈ [1 : q−1]
(cf. (4)). Exploring the structure of the parity check matrix
further, we note that for everyi ∈ [n− d], theα× nα matrix
HI

i is a block matrix consisting ofn blocks where each blocks
is anα×α diagonal matrix overFQ. In particular, let’s denote
it as

HI
i =

(

J I
i (1) J I

i (2) . . . J I
i (n)

)

, (10)

where J I
i (j) ∈ F

α×α
Q is a diagonal matrix with all of

its diagonal entries being non-zero. On the other hand, for
i ∈ [d − k], the α × nα matrix HII

i is also a block matrix
which can be written in the following form.

HII
i =

(

HII
i (1) HII

i (2) . . . HII
i (n)

)

, (11)

whereHII
i (j) = J II

i (j) + EII
i (j) ∈ F

α×α
Q . In this sum, the

matrix J II
i (j) ∈ F

α×α
Q is a diagonal matrix with all of its

diagonal entries being non-zero. On the other hand, the second
matrix in the sumEII

i (j) ∈ F
α×α
Q has at most1 non-zero

element in each of its row. In particular, for everyi ∈ [d− k],
the block matrix

(

EII
i (1) EII

i (2) . . . EII
i (n)

)

(12)

has exactlyt non-zero elements in each of its row. Here, we
note that the matrixEII

i contains coefficients of the following
part of thoseα = qt Type II constraints which correspond to
a fixed value of the parameter∆ ∈ [d− k] (cf. (4)).

c((x1 −∆, x2, . . . , xt); (1, x1)) + · · ·+

c((x1, . . . , xt−1 −∆, xt); (t− 1, xt−1))+

c((x1, x2, . . . , xt −∆); (t, xt)). (13)

With all the components of the parity check matrix defined,
we can represent the parity check matrixH as sum of two
(n− k)α× nα matrix as follows.

H =

(

HI

HII

)

= J+E. (14)

Here J ∈ F
(n−k)α×nα

Q and E ∈ F
(n−k)α×nα

Q denote the
following matrices.

J =





































J I
1(1) J I

1(2) · · · J I
1(n)

J I
2(1) J I

2(2) · · · J I
2(n)

...
...

. . .
...

J I
n−d(1) J I

n−d(2) · · · J I
n−d(n)

J II
1 (1) J II

1 (2) · · · J II
1 (n)

J II
2 (1) J II

2 (2) · · · J II
2 (n)

...
...

. . .
...

J II
d−k(1) J II

d−k(2) · · · J II
d−k(n)





































, (15)

E =





































0α 0α · · · 0α

0α 0α · · · 0α

...
...

. . .
...

0α 0α · · · 0α

EII
1 (1) EII

1 (2) · · · EII
1 (n)

EII
2 (1) EII

2 (2) · · · EII
2 (n)

...
...

. . .
...

EII
d−k(1) EII

d−k(2) · · · EII
d−k(n)





































. (16)

Note that, we use0α to represent theα × α all zero matrix.
We now specify the non-zero entries in both the matricesJ

andE. Let HMDS be an(n− k)× n Cauchy matrix,

HMDS =















1
a1−b1

1
a1−b2

· · · 1
a1−bn

1
a2−b1

1
a2−b2

· · · 1
a2−bn

...
...

. . .
...

1
an−k−b1

1
an−k−b2

· · · 1
an−k−bn















, (17)

where {a1, a2, . . . , an−k, b1, b2, . . . , bn} are 2n − k distinct
elements from the fieldFQ. Assuming thatIα denotes the
α × α identity matrix, we define the matrixJ (cf. (15)) as
follows.

J = HMDS ⊗ Iα, (18)

where⊗ denotes the Kronecker product between two matrices.
As for non-zero elements in the matrixE, we set all of its
non-zero elements to be an indeterminateρ ∈ F

∗
Q. In order to

make it more clear, we denote the obtained matrix asEρ and
accordingly the parity-check matrix defined in (14) becomes

H = J+Eρ = HMDS ⊗ Iα +Eρ. (19)

Next, we show that for large enoughQ, there exists a choice
for ρ which makes the code defined by the parity check matrix
H an MDS code. However, before showing this, we argue
that our choice of the matrixJ meets the requirement for
theType I constraints. This requirement states that for every
(x1, . . . , xt) ∈ [0 : q−1]t, given any subset ofd code symbols
out of n code symbols{c((x1, x2, . . . , xt); (i, θ))}(i,θ)∈N, the
remainingn − d code symbols can be recovered using the
correspondingType I constraints (cf. (3)). This requirement
indeed holds as for a tuple(x1, . . . , xt) ∈ [0 : q − 1]t,
the coefficients associated with itsType I constraints are the
elements of the following(n− d)× n sub-matrix ofHMDS .

HI
MDS =















1
a1−b1

1
a1−b2

· · · 1
a1−bn

1
a2−b1

1
a2−b2

· · · 1
a2−bn

...
...

. . .
...

1
an−d−b1

1
an−d−b2

· · · 1
an−d−bn















.

Since any(n−d)× (n−d) sub-matrix ofHI
MDS is full-rank,

given any subset ofd code symbols out ofn code symbols
{c((x1, x2, . . . , xt); (i, θ))}(i,θ)∈N, the remainingn− d code
symbols can indeed be recovered.

Remark2. Note that each tuple(x1, . . . , xt) ∈ [0 : q − 1]t

has only1 associated Type I constraint in [1]. Therefore the
requirement onHI

MDS reduces to having all of its elements
non-zero. On the other hand ford 6= n− 1 case, we have an
additional requirement that any(n− d)× (n− d) sub-matrix
of HI

MDS is full-rank.

In order to show that for a suitable choice for the value of
the indeterminateρ the codeC defined by the matrixH gives
an MDS code, we utilize the following standard result.

Proposition 1. Let C ∈ FQnα be a linear vector code
(over FQ) defined by the block parity check matrixH ∈

F
(n−k)α×nα

Q . The codeC is an MDS code iff for everyS ⊂ [n]
such that|S| = n − k, the (n − k)α × (n − k)α sub-matrix
H(:, S) associated with the vector symbols indexed by the set
S is full rank.

Theorem 1. Let FQ be a finite field of large enough size.
Then, there exists a choice for the indeterminateρ such that
the [n, kα, dmin, α]Q vector code defined by the matrixH =
HMDS⊗Iα+Eρ (cf. (19)) is an MDS vector code, i.e.,dmin =
n− k + 1.

Proof: Let S ⊆ [n] be a set such that|S| = n − k.
We consider the determinant of the matrixH(:, S). Note that
det(H(:, S)) is a polynomial of the indeterminateρ. Let’s
denote the polynomial byfS(ρ). We have,

fS(ρ = 0) = det(J(:, S) +Eρ=0(:, S)) = det(J(:, S)) 6= 0,

where the last inequality follows asJ = HMDS ⊗ Iα is a
parity check matrix of an MDS vector code. This establishes
thatfS(ρ) is a non-trivial (not identically zero) polynomial of

ρ. Now consider the polynomial

h(ρ) =
∏

S⊆[n]: |S|=n−k

det(H(:, S)) =
∏

S⊆[n]: |S|=n−k

fS(ρ).

Here,h(ρ) is a non-trivial polynomial inρ as it is a product
of non-trivial polynomials

{

fS(ρ)
}

S
. Furthermore, the degree

of h(ρ) is bounded by
(

n
n−k

)

(n− k)α. Therefore, forQ large
enough, there exists a value ofρ, sayρ∗ such thath(ρ∗) 6= 0.
Combining this with Proposition 1, we obtain that the vector
code defined by the parity check matrixH = J + Eρ∗

is an
MDS vector code.

VI. CONCLUSION

For a given rate, we present a construction for MSR codes
that allows for bandwidth-efficient repair of a single node
failure with arbitrary (but fixed) number of helper nodesd.
In addition, for the constant rate, the code has a polynomial
sub-packetization (a.k.a. node size)α. However, in the present
form the construction suffers from a large field sizeQ. Note
that the requirement on the field size emerges from the require-
ment that the code should be an MDS code (cf. Section V).
It is an important question to resolve if the code construction
with similar system parametersn, k, d and polynomial sub-
packetization can be achieved for a smaller field size. In
particular, the lower bound on the field size for an MSR code
is investigated in [16], and the results presented here forman
upper bound.

REFERENCES

[1] B. Sasidharan, G. K. Agarwal, and P. V. Kumar. A high-rateMSR code
with polynomial sub-packetization level.CoRR, abs/1501.06662, 2015.

[2] A. G. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems.IEEE Trans. Inf. Theory,
56(9):4539–4551, 2010.

[3] F. J. MacWilliams and N. J. A. Sloane.The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1983.

[4] K. Rashmi, N. Shah, and P. Kumar. Optimal exact-regenerating codes
for distributed storage at the MSR and MBR points via a product-matrix
construction.IEEE Trans. Inf. Theory, 57:5227–5239, 2011.

[5] Y. Wu and A. G. Dimakis. Reducing repair traffic for erasure coding-
based storage via interference alignment. InProc. of 2009 IEEE
International Symposium on Information Theory (ISIT), pages 2276–
2280, 2009.

[6] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran. Explicit
codes minimizing repair bandwidth for distributed storage. In Proc. of
2010 IEEE Information Theory Workshop (ITW), pages 1–5, 2010.

[7] C. Suh and K. Ramchandran. Exact-repair MDS codes for distributed
storage using interference alignment. InProc. of 2010 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 161–165, 2010.

[8] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, andC. Suh.
Asymptotic interference alignment for optimal repair of MDS codes in
distributed storage.IEEE Trans. Inf. Theory, 59(5):2974–2987, 2013.

[9] D. Papailiopoulos, A. G. Dimakis, and V. Cadambe. Repairoptimal
erasure codes through hadamard designs.IEEE Trans. Inf. Theory,
59(5):3021–3037, 2013.

[10] V. R. Cadambe, C. Huang, and J. Li. Permutation code: Optimal exact-
repair of a single failed node in MDS code based distributed storage
systems. InProc. of 2011 IEEE International Symposium on Information
Theory (ISIT), pages 1225–1229, 2011.

[11] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array codes with
optimal rebuilding.IEEE Trans. Inf. Theory, 59(3):1597–1616, 2013.

[12] Z. Wang, I. Tamo, and J. Bruck. On codes for optimal rebuilding access.
In Proc. of the 49th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1374–1381, 2011.

[13] Z. Wang, I. Tamo, and J. Bruck. Long MDS codes for optimal
repair bandwidth. InProc. of 2012 IEEE International Symposium on
Information Theory (ISIT), pages 1182–1186, 2012.

[14] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra. Polynomial length
MDS codes with optimal repair in distributed storage. InProc. of
Forty Fifth Asilomar Conference onSignals, Systems and Computers
(ASILOMAR), pages 1850–1854, 2011.

[15] S. Goparaju, I. Tamo, and R. Calderbank. An improved sub-
packetization bound for minimum storage regenerating codes. IEEE
Trans. on Inf. Theory, 60(5):2770–2779, May 2014.

[16] V. Cadambe and A. Mazumdar. Alphabet-size dependent bounds for
exact repair in distributed storage. InProc. of 2015 IEEE Information
Theory Workshop (ITW), 2015.

	I Introduction
	II Preliminaries
	III Code Construction
	IV Recovering a failed node
	V MDS property of the code
	VI Conclusion
	References

