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Abstract—This paper presents a construction for high-rate The codes achieving the MSR and the MBR points are
MDS codes that enable bandwidth-efficient repair of a _si_ngle referred to asninimum storage regenerating (MSR) codesl
node. Such MDS codes are also referred to as the minimum minimum bandwidth regenerating (MBR) codesspectively.

storage regenerating (MSR) codes in the distributed storag . .
literature. The construction presented in this paper geneates Note that the MSR codes are also maximum-distance separable

MSR codes for all possible number of helper nodes asd is a (MDS) codes|[[3].
design parameter in the construction. Furthermore, the obained In [2], Dimakis et al. also show the existence of the codes

MSR codes have.polynomi.al sub-packetization (a.k.a. nodézge) that achieve every point on the vs. dg trade-off for all
a. The construction is built on the recent code proposed by pogsiple system parametersk, d to ensurunctional repait
Sasidharan et al. [1], which works only ford = n — 1, i.e., . . )
where all the remaining nodes serve as the helper nodes for ¢h Under_the functional repair, .the content of the repalredeljod
bandwidth-efficient repair of a single node. The results of his May differ from that of the failed node. However, the repdire
paper broaden the set of parameters where the constructionsf node does ensure the ‘akyout of n’ property of the system.
MSR codes were known earlier. ~ Sometimes, due to various system level requirements, it is
Index Terms—Codes for distributed storage, regenerating yegjraple to construct regenerating codes that enexaet
codes, minimum storage regenerating (MSR) codes, sub- . . . .
packetization. repair of the failed node, i.e., the colntent of the repaired ner
is the same as the content of the failed nodelIn [4], Rashmi et
[. INTRODUCTION al. settle the problem of designing exact repairable MBResod
Consider a distributed storage system witlstorage nodes (€xact-MBR codgsas they propose an explicit construction of
which stores a file of siz&( symbols over a finite field. The such codes for all possible system parameters andd.
distributed storage system (DSS) is referred to bdrark)- On the other hand, the problem of constructing the exact-
DSS if it has‘any & out of n’ property, i.e., the content of any MSR codes has not been fully understood yet. The exact-MSR
k out of n storage nodes is sufficient to reconstruct the entig@des withk < 3 andk < % are presented in [5] and[6].][7],
file. In [2], Dimakis et al. explore the issue of node repaiespectively. In[[4], Rashmi et al. present explicit constions
in an (n, k)-DSS. In particular, they studgn, k)-DSS which for exact-MSR codes witk —2 < d < n — 1. In general,
allow for the repair of a single failed node by contactihgut all of these constructions correspond to exact-MSR codes of
of n— 1 remaining storage nodes and downloadingymbols low rate with £ < 1 4+ L In [8], Cadambe et al. show the
from each of these helper nodes. Assuming that each nodexistence of high-rate exact MSR codes when nodecsizdso
in the system stores symbols (over the finite field), Dimakis referred to assub-packetization levebpproaches to infinity.
et al. obtain a trade-off between the node siz@nd repair Towards constructing high-rate exact-MSR codes with finite
bandwidthy = d3, the amount of data downloaded duringub-packetization level, Papailiopoulos et al. utilizedbimard
the repair process. The codes that attain this trade-off dp@trices to construct exact-MSR codes with— k = 2
referred to asegenerating codesThe two extreme points of and d = n — 1 in [9]. Using permutation-matrices exact-
this trade-off correspond to the minimum possible storagk aMSR codes for all(n, k) pairs with d = n — 1 which
the minimum possible repair-bandwidth for dn, k)-DSS. only ensure repair bandwidth-efficient repair of systemati
These two points are termed msnimum storage regeneratingnodes are presented in [10] arid /[11]. [n][12], Wang et al.
(MSR) point and minimum bandwidth regenerating (MBR)generalize these constructions to enable repair of all :iode
point, respectively. The MSR point corresponds to with d = n — 1 helper nodes. However, we note that the sub-
M d M packetization leved of the constructions presented fin [9]=][12]
(SR, BMSR) = (f’ m?) . is exponential ink.
o . Recently, Sasidharan et al. have presented a construction
The MBR point is defined by of a constant (high) rate MSR codes with polynomial sub-
2d M 2 M packetization in[[ll]. This construction enables repairlbfree
(anpr; Aupr) = (2d —k+1k (2d—k+1) Z) nodes in the system and works fér=n — 1, i.e., all the re-
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mainingn—1 nodes has to be contacted to repair a single failébte that the matrix(:,S) comprises those coefficients in
node. The construction with polynomial sub-packetizatiod the linear constraints defined by the parity-check makiix
enabling repair of only systematic nodes are also presentedhat are associated with the vector code symbols indexed by
[13], [14]. As for the converse results, Goparaju et al.ld&h  the setsS.
a lower bound on the sub-packetization level of an MSR code
with givenn andk in [15].

In this paper, we present a construction for exact-MSR In what follows, we usé: to represent a linear combination
codes that allow for any given number of helper nodes, i.#hose coefficients are not specified explicitly. For exaryfiole
k < d<n—1. In addition to working for an arbitrary (but @1,a2,---,a, € Fg, 377, a; denotes a linear combination of
fixed) d, our construction possesses the desirable propertiegser elements where unspecified coefficients of the linear
of having polynomial sub-packetization level for a constafombination belong td,. For an integey > 0, we use[g]
rate and enabling repair-bandwidth efficient repair of h# t and[0 : ¢—1] to denote the set§l, 2,..., ¢} and{0,1,...,¢—
nodes in the system. We obtain this construction by suitably. respectively.
modifying the construction of Sasidharan et@l. [1]. The cds ~ Assume thatr = (¢ — 1)(d — k+ 1) + s, for ¢ > 1 and
the paper is organized as follows. We introduce the notatifr= s < d — k. We take

IIl. CoDE CONSTRUCTION

and necessary background in Sectign Il. In Seclich IlI, we _ t—1 _ t—1  if o _

X ) (d-—k+1)t1=gq if s=0
present our code construction. In Secfion IV, we descrilee th C=N k1) ot therwi (1)
node repair process for the proposed code construction. We (d-k+1)'=q otherwise

establish the MDS property (a.k.a. ‘any k out of n’ property)ote that we usg to denoted — k+ 1. Moreover, as compared
for the construction in Sectidn]V. We conclude the paper it [1], we describe the construction for the wider range of
Section V. parameters which correspondssto- 0. Therefore, fors > 0,

we havea = (d—k+1)" = ¢'. For these values of parameters,

Il. PRELIMINARIES t the MSR boint q i Step | | q loadi
L . . at the oint, a node repair step involves downloadin
Let 1, denote the standard indicator function which takes P o P P g

the valuel if the condition stated ir{-} is true and takes the f=——"-=(d-k+1)"=¢""!
value 0 otherwise. For twona-length vectorsx andy, we d—k+1

defined the Hamming distance between them as follows. Symbols from each of the contacted nodes. Let = (¢ —
1)¢ + s nodes be indexed by tuples

du(x,y) = Z} Liistyi}s N={(i,0): (i,0)eft—1x[0:q—1]} U

where fori € [n], we havex; = (z(-1)at1s--->Tia) {t.0): 0€l0:s—1]}. (2)
andy; = (Yu-1)at1:---+¥ia). We say that a set of vec-Note that each node in the system stares ¢* code symbols.
tors € C Fg* is an (n, M, dmin,)q vector code if we Let {c((z1,72,...,2¢);(i,0))} (... 2 e[0:q—1)¢ TEPresent the
have || = M and dyin = mingyecedu(x,y). Given ¢' code symbols stored on thg,6)-th node. In order to
a codewordc = (c1,¢2,...,cha) € €, we usec; = specify the MSR cod€, we specify(n — k)a = (n — k)q*
(Cli=1)a+1s C(i-1)a+2, - - - » Cia) 1O denote the-th vector (code) linear constraints oveF( that each codeword i€ has to
symbol in the codeword. When the codespans a linear satisfy. We partition these: — k)« constraints into two types
subspace of dimensidng, M, we callC to be a linear vector of constraints which we refer to afype I and Type II
code and refer to it as a[m,logQ M, dmin, &g vector code. constraints, respectively.

Note that ann, ko, dmin, @] vector code can be defined by Type | constraints: For each(z1,...,z;) € [0: ¢—1]*, we
a parity-check matrix haven — d constraints of the following form.
Hiy  Hip - Hi, S (@) (1,0)+
Hy Hyo - Hy.,, (n—k)axna 0€[0:q—1]
H= _ eFy ; S el@r, )i (2,0) + -+
" " " 0€[0:q—1]
D cllwn . m)i(t-1,6)+
where eaclH; ; is ana x a matrix with its entries belonging 9€[0:9—1]
to Fq. For a setS = {iy,ia,...,45} C [n], we define the . B
(n — k)a x |8 matrix H(:,8) as follows. Z o((@1;--s2); (4,6)) = 0. (3)
0€[0:s—1]
Hi, Hig, o Hug The coefficients of these constraints are chosen in such a way
Hsy Hy;y - Hy i, that the following holds for eactry, 22, ..., 2¢) € [0 : ¢—1].
H(:, ) = . . . : Given any subset off code symbols out ofi code symbols
{e((@1, 22, ... 2¢); (4,0) }(3,0))en, the remainingn — d code

Hokiy Hn—ki, -+ Hnokig, symbols can be recovered using th@3ge I constraints.



Type Il constraints: We now described the remainiig — that for a tuple(xy,...,2; 1,00, Tit1,...,2¢) € [0: ¢ — 1]
k)a — (n —d)a = (d — k)a = (d — k)q' constraints satisfied and a non-zero integek € [¢ — 1], the corresponding Type Il

by the codewords. For everfy,zs,...,2;) € [0 : ¢ — 1]* constraint is as follows:
andA € [1: ¢ — 1], we have
A 1 C((Il s Lij— 17007x1+17"'7'rt);(17x1))+"'+
o 7:CA27 P (@1, = A, 00, igr, . we); (10— 1, wi1))+
c((‘rlaxQ ). Xt)7(27:.2))1+ + C((xl,  Ti 1790 A .Ti.’_l,.- ) (Z 90))
EE“ e A’;”t()t’ o T )t (1o, B et — A1) i L)) o+
c((T1, T2, y Tt — L, @
! 2 ! ! C((Ilv y Lj— 17003I1+17" A)a(t :Ct))
c((z1,...,2¢); (1,0))+
QE[O‘ZIJ—I] (( ! t) ( )) ( C(('rlv"'7xi713007xi+17"'7It);(179))+
i 0 0€[0:q—1]
c((xy,...,xe);(2, 4+
QE[O‘ZIJ—I] (( ! t) ( )) Z (('rlv"'7xi713007xi+17"'7:625);(279))+"'+
3l )it - 1,6)) e
c((x1,...,x¢);(t—1,0))+
9€[0:q—1] ((ZCl, vy Lj—1, 90, Lj41ye - ,xt); (t, 9))) =0. (6)
0€[0:q—1]
c((zn, ..., 20); (¢, 0)) = 0. 4) _
9€[0:5—1] Note that except the underlined code symbol we know every

other code symbol involved i](6) (cf](5)). Therefore, wsin
the constraints i {6), we can complete the second stageof th
Fepair process which recovers the remainiag- 1)¢'~* code

Here, the computationz; — A, for ¢ € [t], is per-
formed modulog. Furthermore, the underlined code symbol

c((x1,x9,...,x¢ — A); (t,x¢)) correspond td for z; > s as svmbols from the failed node

there is no node which is indexed by the tuptex;) with y '

Ty 2 8. V. MDS PROPERTY OF THE CODE

Remarkl. One key difference from the construction if [1] is _ . o . _

that for each tuplgxy,...,z¢) € [0 : ¢ — 1]¢, we generate In this section, we prove that it is possible to obtain the

n — d Type | Constra”']ts |n|:u1] 0n|)& SUCh Constra|nt was COdeS from the COﬂStI’UCtlon deSCI’Ibed II’I Secﬁﬁh “I th&t ar
generated as the case @f= n — 1 was considered. The Maximum-distance separable (MDS). In particular, we argue
coefficients of these constraints need to be carefully ahod@at if the coding coefficients in the construction are selec

to ensure the requirements specified affér (3). We address fom a finite field of large enough size, then there exists a

issue in RemarKkl2. choice for coding coefficients which lead to the obtainedecod
being an MDS code. (We note that the argument presented in
IV. RECOVERING A FAILED NODE this section follows very closely to the argument used in)[1]

Assume that the node indexed by the tugled,) fails. Recall that for a code® defined in Sectioi 1ll, we can
We now describe the repair process of the failed nod@present a codeword in the co@eby an na-length vector
The repair process can be viewed to have two stages.iMnFg*. In particular, letc = (c1,c2,...,¢,) be a generic
the first stage, we use the Type I constraints to recove@deword from the cod€. Here, for eacly € [n], c; € Fg
B = %7 = ¢! out of @ = ¢' code symbols that represent the code symbols stored on tit& node in the
are lost due to the node failure. Towards this, from each 8ystem. Assuming that the node indexed by the tupke) rep-
the d contacted nodes, we download the code symbols ifgsents thé(i — 1)g + 6 + 1)-th node in the system, we have

dexed by the tuple$(z1, ...,z 1,00, Zis1,...,2)}, where €i—1)gror1 = {c((@1, 22, ., 20); (1,0)) } 2y ... .20 e0:g—1]¢-
(x1,. ., Ti1,Tit1,-..,2¢) Span over all values if0 : q — Let H € Fg“k)”"“ be the parity check matrix of the

1]*~* from each of thel contacted nodes. These symbols alongbde @ defined by the Type | and Type Il linear constraints
with the Type | constraints (cf[13)) allow us to recover th@resented ir({3) andl(4), respectively. Note that it folldwsn

symbols the code construction that the parity check malfixhas the
. following structure.
C(('rlv"'7xi713007xi+17"'7:625);(7’59))7 (5) g
for every (z1,...,2i_1,2Zi41,...,2¢) € [0 : ¢ —1]"! and H— H' @
(i,0) €N. HI )

It is clear from [B) that after the first stage we have access to
B = ¢'~! code symbols stored on the failed node as well as there, H' is an(n —d)a x na matrix overFg which is defined
3 symbols stored on the remainimg- 1 nodes. In the second by the (n — d)a = (n — d)q* Type I constraints (cf.[(3)). On
stage, we employ the Type Il constraints (€f. (4)) to recovéine other hand, théd — k)a = (d — k)q* Type II constraints
the remainingd — k)3 = (¢ — 1)¢'~* symbols stored on the (cf. (@)) constitute théd — k) x na matrix H'' overFq. We
failed node, i.e., the node indexed by the tuplgdy). Recall now focus on the structure of the two matridd$ and H''.



Note that With all the components of the parity check matrix defined,
we can represent the parity check matkk as sum of two

I
Hj (n — k)a x na matrix as follows.
HI
H-| (8) H'
o, "

(n—k)axna (n—k)axna
where, fori € [n— dJ, the matrixH} € F*"* is obtained by gﬁ:)?/v}]ngemzf?ices andE € F, denote the

taking one of thes—d Type 1 constraints associated with each

of the ¢! vglges for the tupl€zy,2a,...,2¢) € [0: g — 1]* JH(1) J@ || )
(cf. (3)). Similarly, we have (1) A2 Ji(n)

! . : .

H3! 1 1 1

HH = ? s (9) J = Jn—d(l) Jn—d(z) T Jn—d(n) 7 (15)
: JI) | 4N2) Ji'(n)

Hg' L) | 5N2) 3t (n)
where, fori € [d — k], the matrix ]! € Fg,*"* is defined by : : :
one of thed — k Type II constraints corresponding to each JIL ) [T |- | TR ()
of the ¢* values for the tupl€z,z2,...,2;) € [0: ¢ — 1]*
(cf. @)). Recall that for a tuplézy, xo, ..., z¢) € [0: ¢ — 1]t U 0q e 0,
thed — k Type II constraints corresponding to the tuple are 0, 0. e 0.
associated with thé—k values of the parameteéx € [1 : ¢—1]
(cf. @)). Exploring the structure of the parity check muatri
further, we note that for everye [n — dJ, the o x na matrix 0, 0, e 0,
H} is a block matrix consisting of blocks where each blocks E= EN(1) EN@) |-+ | Eln) (16)
is ana x o diagonal matrix oveF . In particular, let's denote 11 11 }1
it as E5 (1) E5(2) E5 (n)

= (|2 || T ). (10) :
E(IiI k(1) EtIiI—k(2) Ellil—k}(n)

where J!(j) € Fy** is a diagonal matrix with all of
its diagonal entries being non-zero. On the other hand,
i € [d— k], the a x na matrix H!! is also a block matrix
which can be written in the following form.

1Jgpte that, we us@®, to represent thex x « all zero matrix.
We now specify the non-zero entries in both the matriges
andE. Let Hyps be an(n — k) x n Cauchy matrix,

1 1 1
at = (alo) [ are) | Ee) ). a wn wm T wn
as—b as—b as—by,
where H}'(j) = Ji'(j) + E}'(j) € FZ**. In this sum, the Hyps = o T ’ , (17)
matrix J}'(j) € F3*“ is a diagonal matrix with all of its ) ) )
diagonal entries being non-zero. On the other hand, thensleco Gn k—b1  an kb2 an_x—bn
matrix in the sumE!(j) € 3 has at mostl non-zero -
element in each of its row. In particular, for everg [d— k], WNere {a1, a2, Gn, b1, b2, ., bn} @re 2n — k distinct

elements from the fieldg. Assuming thatl, denotes the
a x « identity matrix, we define the matrid (cf. (I8)) as

( EMN) | ER@) | .| ER ) ) (12) follows.

the block matrix

has exactlyt non-zero elements in each of its row. Here, we J=Hyps @1Ia, (18)

note that the matrixs!! contains coefficients of the following :
P : ; where® denotes the Kronecker product between two matrices.
part of thosen = ¢* Type Il constraints which correspond to ; .
) As for non-zero elements in the matr, we set all of its
a fixed value of the parametéx € [d — k| (cf. ()). . ) ;
non-zero elements to be an indeterminate F7,. In order to
c((z1 — Ay xg, .. ) (L,21)) + -+ make it more clear, we denote the obtained matriésand

(@10 Tt — Az (E— 1,20 1))4+ accordingly the parity-check matrix defined [n(14) becomes
c((x1,xa, ... 2 — A); (t,24)). (13) H=J+E’=Hyps®1, +E”". (19)



Next, we show that for large enougdh, there exists a choice p. Now consider the polynomial

for p which makes the code defined by the parity check matrix

H an MDS code. However, before showing this, we argueh(P) = H det(H(:,8)) = H Js(p).

that our choice of the matrid meets the requirement for 8C[nl: |8|=n—k 8C[nl: |S|=n—k

the Type I constraints. This requirement states that for eVelere, h(p) is a non-trivial polynomial inp as it is a product
(21,...,2) € [0: ¢—1]", given any subset af code symbols of non-trivial polynomials{ fs(p) } ;. Furthermore, the degree
out of n code symbolc((x1, 2, - -, 24); (i,0)) }i.0)en: the  of 1(p) is bounded by(,,” ) (n — k)ov. Therefore, forQ large
remainingn — d code symbols can be recovered using th@nough, there exists a value @fsay p* such that(p*) # 0.
correspondindl'ype I constraints (cf.[(3)). This requirementcompining this with Propositiolll 1, we obtain that the vector

indeed holds as for a tupléry,...,2) € [0 : ¢ = 1]', ¢ode defined by the parity check matiik = J + E** is an
the coefficients associated with fI§pe I constraints are the \;ps vector code. -

elements of the followingn — d) x n sub-matrix of Hy;ps.

VI. CONCLUSION
1 1 1

@ —b a—bs a1—bn, For a given rate, we present a construction for MSR codes
m lb - ib R ib that allows for bandwidth-efficient repair of a single node
Hyps = o c : o . failure with arbitrary (but fixed) number of helper nodés
' ' - ' In addition, for the constant rate, the code has a polynomial
T i T e sub-packetization (a.k.a. node size)However, in the present

form the construction suffers from a large field sige Note

Since any(n —d) x (n —d) sub-matrix ofH}, 5 is full-rank, that the requirement on the field size emerges from the requir
given any subset off code symbols out of. code symbols ment that the code should be an MDS code (cf. Sediibn V).
{c((z1,22,...,24); (i,0))} (1,0)en, the remainings — d code It is an important question to resolve if the code constoucti
symbols can indeed be recovered. with similar system parameters, k,d and polynomial sub-
packetization can be achieved for a smaller field size. In

has only1 associated Type | constraint inl [1]. Therefore thga_rtmula_r, the Ipwer bound on the field size for an MSR code
. I . . IS investigated in[[16], and the results presented here fmmm

requirement onf ,, , ¢ reduces to having all of its eIementsu er bound

non-zero. On the other hand fdr# n — 1 case, we have an PP '
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