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Info-Clustering: An Efficient Algorithm by
Network Information Flow

Chung Chan, Ali Al-Bashabsheh and Qiaogiao Zhou

Abstract—Motivated by the fact that entities in a social
network or biological system often interact by exchanging n-
formation, we propose an efficient info-clustering algorihm that
can group entities into communities using a parametric maxtow
algorithm. This is a meaningful special case of the info-clstering
paradigm where the dependency structure is graphical and aa
be learned readily from data.

exponential time in the size df [4]. The computation of the
PSP B, 5], [1, Algorithm 3] without any approximation also
takes (|V|*) calls to a submodular function minimization
(SFM) algorithm, which in turn make&(|V|°) oracle calls
to evaluate the submodular function. Hence, the praciycali
of the general info-clustering algorithm is limited by bdtte

sample complexity and computational complexity.
I. INTRODUCTION . ) .
Fortunately, info-clustering reduces to faster algorihum-

Info-clustering was proposed inlj[as an application of yor gpecial statistical models that are also easier (cazdpar
network information theory to the problem of clustering i, 5 general model) to learn from data. For instance, under
machine learning. It regards each object as a piece Of ¥z \arkov tree model, info-clustering reduces to an edge-
formation, namely a random variable, and groups randG{jering procedure that runs i@(|V'|?) time [6]. Furthermore,
variables with sufficiently large amount of mutual informoat 1,iq procedure coincides with an existing functional geitom

together. Clustering is often an important first step in gl ) ;stering method by mutual information relevance network
a large biological system such as the human connectome RN) [7]. While rediscovering a simple clustering algo-

genome. It can also identify communities in a social netwotky, 1 under the Markov tree simplification, the info-cluitey
so that resources can be allocated efficiently based on

communities discovered. Since entities in a social or Igjicial

system often possess information and interact with eacér otly,

adigm provides a theoretical justification of the MIRN
algorithm and helps discover how the algorithm may fail when
e Markov tree assumption does not hold Example 6].

by the transmission of information, clustering them by tthei

mutual information intuitively gives meaningful results.
Using the multivariate mutual information (MMI) in2]

as the similarity measure, info-clustering defines a hier

chy of clusters of possibly different sizes at differentdlsv

of mutual information. The clustering solution is intimigte

related to the principal sequence of partitions (PSR)of

a submodular function, namely, that of the entropy functid

In this work, we propose an efficient info-clustering al-
gorithm under a different graphical model called the pair-

dyise independent network (PINB,[9]. Using the idea of

the matroidal network link model in1p], the MMI has a
concrete operational meaning as the maximum network broad-
cast throughput1[1]. The info-clustering solution therefore
fentifies clusters with large intra-cluster communicatiates,

of the set of random variables to be clustered. From this, "ich naturally maps to communities of closely relatedtessi

follows that the clustering solution is unique and solvabl ) )
using a polynomial number of oracle calls to evaluate tHga™Ming the weights oO(
entropy function. However, in general, learning the entrof
function of a finite set/ of random variables from data takesﬁ;ndo
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i a social network. Learning the PIN model simplifies to
|V|?) edges in a graph oi. In
social network, the weight of each edge can simply be the
unt/rate of communication between the edge’s incident
es.

As shown in [L, Proposition 9], the info-clustering solution
for the PIN model can be obtained from the PSP of the cut
function of a weighted graph. It is well-known that fasteMN&F
algorithms are possible for the cut function using min-cut o
max-flow algorithms (e.g., seel?-14]). An algorithm was
given in [15] that computes the PSP efficiently by reducing
the problem to a parametric max-flow problem, where the
capacities of the edges are certain monotonic functions of
a parameter. The reduction is carefully done such that the
parametric max-flow algorithm inlp] can compute the PSP

in O(|V|*\/|E]) time, whereF is the set of edges with non-
zero weight. We will adapt this algorithm to compute the info
clustering solution and modify it to improve the performanc
further.
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Fig. 1: Identifying the clusters of the PIN ir2.(L§ by brute-force search over subsets satisfying the thidstomstraint 2.9).

Il. PRELIMINARIES ON INFO-CLUSTERING Definition 2.1 (Definition 2.4 of [L7]) Zy is ahypergraphi-
A. Formulation cal sourcew.r.t. a hypergrapiV, E,£) with edge functions
5 : E — 2V \ {0} iff, for some independent (hyper)edge

Let V be the finite index set of the objects we want tvariablesxe for e € E with H(X.) > 0,

cluster. Without loss of generality, we assume
V= HV” — {1,,|V|} and |V| >1 Z; = (Xe |8€E,i€§(€)), fori e V. (22)

v The weight functionc : 2V \ {0} — R of a hypergraphical

The idea of info-clustering is to treat each objecte ; '
source is defined as

as a random variabl&€,; (denoted in san serif font) taking
values from a finite seZ; (denoted in the usual math font), c(B) := H(X. | e € E,£(e) = B) with support (2.3a)

and cluster the objects according to their mutual infororati o v

P, denotes the distribution of the entire vector of random supp(c) i= {B €25\ {0} [e(B) > O} (2.3b)

variables The PIN model §] is an example, where the corresponding
Zy == (Z; |ieV). hypergraph is a graph.

We will illustrate the idea of info-clustering via a simplePefinition 2.2 ([9]) Zy is a pairwise independent network
example shown in Figla whereV = [3] = {1,2,3} and (PIN). iff it is hypergraphical w.r.t. agrgpﬁ/, E,¢) with edge
the corresponding random variables are defined as function¢ : E— V2 \ {(,4) | i € V'} (i.e., no self loops)o
Zi= (Xa,  Xo) The mutual information among multiple random variables
is measured by the multivariate mutual information (MMI)

Zy = (Xas Xy ) (2-13) " Gefined in Pl as
Z3 = ( Xbaxc)a . H
with X,,X;, and X. being independent uniformly random H2Zv) = PéIrlll’I(lv) Ip(2v), with (242
variables with entropies In(Z ! H(Zc) - H(Z (2.4b)
X 1 I X, He) -1 @
H(XC) _ ( . ) =D(Pzy | Tloep Pze)

This is a PIN (Definition2.2) with correlation represented byandII'(V') being the set of partitions df into at least 2 non-
the weighted trianglé&; shown in Fig.1acharacterized by the €mpty disjoint subsets df . We may also writdp(Zy ) more

weight functionc where explicitly as
C({la 2}) = C({2a 3}) = H(xd) = H(Xb) =1 (2 1C) IP(ZV) = I(ZCH ARRRNA ZCk) (25)
c({1,3}) := H(Xc) = 5. for P = {C1,...,C}. Note that Shannon’s mutual informa-
The vertex set i9” := [3] and the edge set is tion I(Z; A Z5) is the special case whe is abipartition. It
is sometimes convenient to expafg(Zy ) using Shannon’s
& =supp(c) = {{1,2},{2,3},{1,3}}. (2.1d) mutual information 2, (5.18)] as follows:
Note that, for ease of comparison, this is the same graph used Ip(Zv) =1(Zo, A--- A Cy)
as an example in1f] to illustrate the algorithm. A formal k1

definition of the (hyper-)graphical source model is as fe8o _ 1
(hyper-)grap _E;J(zcmzwzm o) (26)



For the example with the random vector defined4rl§, The info-clustering solution above consists of two cluster
shown in Fig.1c for different intervals of the threshold.
1(Z =I1(Z, NZy) = , . : .
(Zgowy) = 1(Zo N Zw) = el{v, w}) For~ > 2, the subse{1, 3} is the only feasible solution that
1 A{v,w) e {{1,2},{2,3}} (2.7a) satisfies the threshold constraint ih ). Fory < 2, the entire
15, {v,w}=1{1,3} set (3] also satisfies the threshold constraint and is maximal.
Recall from @.70) that there is a unique optimal partition for

which reduces to Shanon's mutual information, and I(Z{1.2.3)), which is therefore the finest optimal partition

1(Z3)) = min {1233, (133 (Zp3):

Iigr.sy.421 (Zi), Przm) = {352 (212

T2y 431 (Zis))s (%)

1{{1}7{2},{3}}(2[3])} As expected from Propositio.1, the non-singleton element
= min {I(Zy,Z5 A Z1), (2.7b) {1,3} is the only possible subset with MMI larger than

It turns out that the computation of the MMI, fundamental

1(Z1,Z5 N Z,), partition, and the entire info-clustering solution can lmnel

(21,25 N Z3), in strongly polynomial time from therincipal sequence of
I(Zl,zaAZ22)+I(ZlA23)} partition (PSP) of the entropy function
= min{6,6,2,232} = 2, h:BCV s H(Zp). (2.13)

where we have applied?(6) to calculatel 1y {21,{33}(Z(3)) The PSP is a more general mathematical structGieir
for the partition into singletons as the average of the valé@mpbinatorial optimization defined for a submodular fuoti

I(Z1,Z3 N'Z5) of the cut that separates noddrom nodesl  More precisely, a reveal-valued set functign 2V — R is
and3, and the valud(Z; AZ3) of the cut that further separatessaid to besubmodulariff

nodel from node3.
Note that the sequence of two cuts effectively partitiores th ~ 9(B1) +9(B2) = g(Bi N Ba) +g(B1UBz)  (2.14)

vertex set into singletons. From this expansion, it is cteat o1 gil B,, B, C V. The entropy function, in particular, is a

the partition into singletons cannot be optimal in this ¢asgypmodular function]g]. The PSP of the submodular function

since the mutual information between nodeand3 is very  is the characterization of the solutions to the following fo
large. Indeed, the optimal partition turns out to be a chisge 5| ~ ¢ R:

of the random variable into correlated groups. In geneha, t N .

. " V)= P, 2.15a
set of optimal partitions to2(4g, denoted asT*(Zy ), form 9v) Pgllll?v) 9[P] ( )
a semi-lattice w.r.t. the partial order th& =< P’ for the

" referred to as the Dilworth truncationq], whereII(V) is the
partitions? and P’ when

partition of V' into one or more non-empty disjoint subsets,

P < P’ denotes the strict inequality. There is a unique cepP

finest/minimum partition?*(Zy/), referred to as thdunda- g4(C) :=g(C) —~ (2.15¢c)
mental partitionfor Zy [2, Theorem 5.2]. For ahreshold (1, 11(v) in (2.49 is II(V) but without the trivial partition
~v € R, the set ofclustersis defined as 1, Definition 1] (V}, ie, I'(V) = (V) \ {{V}}.) For everyy, submodu-

o . larity of ¢ implies that there exists a unique finest/minimum
Zy):= H{BCV||Bl >1,I(Zg) > 2.9 ) : »
G(Zv) = maximal{ B C V| |B| (Z8) >} (29) (w.r.t. the partial order 4.8)) optimal partition to 2.153,
wheremaximal F is used to denote the inclusion-wise maxidenoted as”*(y). It can be characterized as

mal elements ofF, i.e.,
,P*('Y) = ,Pf V’Y € [7@7’7@-‘-1)7@ € {01 ceey N} (216a)

i = ) / . . . P
maximal 7':= {B € F'|AB 2 B, B’ € J'} (2.10) for some integetV > 0, a sequence of critical values of

Proposition 2.1 ([1, Theorem 5]) ¢,(Zv) = P*(Zv) \ {i |

i € V} with v = I(Zy), i.e., the non-singleton subsets in the TSN < <IN <X (2.16b)
fundamental partition are the maximal subsets (clusteit) w yith vo = —oo and w41 = oo for convenience, and a
MMI larger than that of the entire set. o

sequence of successively finer partitions

For the example, applying the definitior2.9) of clusters with s
the MMI calculated in 2.7), the clustering solution is Po=V = Prm- =Py ={{i}fi € V}. (2.16¢)
The sequence of partitions (together with the correspandin
B} ve(-00,2) critical values) is referred to as the PSP of The PSP of
C(Zz) = 4 {1.3} v €[2,5) (2.11) the entropy function .13 characterizes the info-clustering

0 v € [5,00). solution as follows:



Proposition 2.2 ([1, Corollary 2]) For a finite setV with The incut function of the weighted digraph is defined as
size|V| > 1 and a random vectoZy,

K g(B) :=¢(V\ B, B). 3.3)
C(2Zv) = [mm{P € (V) [ hy[P] = hV(V)}} (2.17) The incut function for the digraph in Fig2a is shown in
\{{i} |ieV}, Fig. 2b and calculated below:
namely, the non-singleton elements of the finest optimal par  g({2}) = ¢({1,3}.{2}) = ¢(1,2) + ¢(3,2) =1
tition to the Dilworth truncation(2.153. o 9({3}) = c({1,2},{3}) = c(1,3) + ¢(2,3) =6
[1l. | NFORMATION FLOW INTERPRETATION 9({2,3}) = c({1},{2,3}) = c(1,2) +¢(1,3) =6 (3.4)
For PIN, the MMI can be interpreted as the maximum 9({1,3}) = c({2},{1,3}) = c(2,1) +¢(2,3) = 1
broadcast throughput of a network( 11], and hence info- g({1}) = 9({1,2}) = 9({1,2,3}) = 0.

clustering reduces to clustering by network informationvflo To compute the PSP f we first evaluated. 151 for different
When applied to clustering social network, it can identifpartitions as follows:

communities naturally based on the amount of information
flow. 9v[{{1,2,3}}] = 9,({1,2,3})

More precisely, treating each edge as an undirected com- =9([3]) =~

munication link with capacity, at most a total ofl bit can

be communicated between node 1 and 2, and between node 9,[{1,3}, {21] = ¢-({1,3}) + 9, ({2})

=7

2 and 3; and at most a total &fbits can be communicated (3.5a)
between node 1 and 3. It can be seen that, for every pair of =9({1,3}) +9({2}) — 27

distinct nodesy, w € V, the broadcast throughput between =2-2v

and_w is given by_ the MMI in .79. Fig._lb iIIustra_ltes how g,[{1}, {2}, {3}] = g, ({1}) + 9, ({2}) + 9, ({3})

2 bits of information can be broadcast in the entire network, — 73y

achieving the MMI of the entire set of random variables in

(2.7h). With the interpretation of the MMI as information flow, Similarly,

a cluster at thresholdis therefore a maximal subnetwork with 1.2V 13V = 6 — 2y > 1.3} {9

broadcast throughput larger than For instance, the cluster 91,2}, {3)] 7> 9,[{1,3),{2}] (3.5b)

{1,3} € ;2(Z{1,2,3}) is the only subset of nodes on which the gy [{13,{2,3}] = 6 = 27 > g, [{1, 3}, {2}].
induced subnetwork has a throughput exceeding Fig. 2c plots the Dilworth truncatiorg, (V') in (2.15 against
Specializing to the (hyper-)graphical model, it was shown iy as the minimum ofy,[P] over all partitionsP € II(V). It
[1, Proposition 8] that the clustering solutions can be ole@incan be seen that for a giveR, g, [P] is linear with integer
directly as the non-singleton subsets from the PSP of the inslope —|P| € {—|V|,...,1} and sog,(V) is piecewise
function. More precisely, from the weighted gragh with linear consisting, in this example, ¢¥| = 3 line segments
vertex setV and capacity functiore, define for every pair (highlighted in blue) andl’|—1 = 2 break points (highlighted

(v, w) of verticesv,w € V in red). (In general, the number of line segments is at most
|[V|.) The finest optimal partition for each value gfis
c(v,w) {c({v,w}), v (3.1)
W) = - - 1,2,3}}, € (—o0,2
0, otherwise. u 7 E( ]
This defines the capacity function of a weighted digrdph To
: : : e = JUL3EA2Y, vel2.5)
with vertex setV and edge se¥ which can be defined as Pry) = —2 2 ~— (3.6)
the set of arcs(v,w) with positive capacityc(v,w) > 0. P i
For example, Fig.2a is the weighted digraph obtained by {13, {2131, €[5 0)
orienting the weighted graph in Fid.a according to 8.1), Py Y2

i.e., by directing an edge from the incident node with a semall, i, the psp and the corresponding critical values annotate
label to the other incident node with a larger one. above and in the Figc.

For convenience, we also write for arbitrary subsets
Bi1,B, CV IV. CLUSTERING USING PARAMETRIC MAX-FLOW

By [1, Proposition 9], the PSP of the incut function
323 p ¢(V '\ B,B) of the digraphD coincides with the
PSP of the cut function (divided b3) of the corresponding
c(v,By) == Y c(v,w) forveV,and  (3.2b) undirected graphG, which was shown in 5 to be com-
wEBs putable by running g@arametric max-flow algorithn®(|V|)
¢(By,w) = Z clv,w) forweV. (3.2c) times. The parametric max-flow algorithm was introduced by
weB, [16], which runs inO(|V|*\/|€]) times using the well-known

¢(B1,By) ==Y ¢(v,By) where
veB;
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Fig. 2: Computing the clusters of the PIN mod2l1g as the non-singleton elements of the PSPL§).

push-relablépreflowalgorithm 0, 21] implemented with the ~ Algorithm 1: Computing the PSP as a parametric SFM.

highest-level selection rule2f]. Hence, the info-clustering Input: Submodular function : 2V — R defined on a
algorithm solution for the PIN model can be obtained in finite ground sef/.

O(IV*/I€]) time. Output: The functionP*(v) of v € R defined in £.163.
In this section, we will adapt and improve the algorithm p+ . ({1}}, B*(y) « {1}, 21— gy ({1}), i = —o0

in [15] to compute the desired PSP for the info-clustering for all ; € V;

solution. The algorithm will be illustrated using the same for j = 2 to |V| do

example as in the last section, which is chosen to be the same| set B* () as the (inclusion-wise) minimum

example as in15 for ease of comparison. minimizer to
We first give a procedure in Algorithm. for computing ) _
the minimum minimi;eﬂD*(v) to (2.19 for all 7EeR and Bgr[l;]lz?eBgV(B) =B, “
any submodular functiog, assuming a parametric submodular _
function minimizer. This procedure can be specializedhferrt wherex, (C) := 3, x4, for convenience;

to the PIN model wherg is chosen to be the incut func-4 | remove ever)C*that intersects3™ () from P*(~);
tion (3.9), so that the parametric max-flow algorithm can b&é | addB*(y) to P*();

applied instead. 6 | ifj<[V[then
Consider the example with defined in 8.4) and illustrated ’ fori=1tojdo o _
in Fig. 2b, and withg, defined in £.150. Whenj = 2, Line1 ® pi ¢ max{p;, min{y | € B*(7)}}
initializes 2, ; as ° i 4= Gmax(y.ui} ({13) 5
10 end
11 end
ry1 = g({1}) —v = —. (4.2) 1, end
Then, @¢.1) becomes
min{g,({1,2}) = 24,1,9,({2})} = min{0,1 -~}
1= oy <1 P*(v) to
o v>1,
which is a piecewise linear function plotted in Figa The
minimum minimizer is therefore given by {{1,2} }, v < \1/
P =9y R (4.4)
{1,2}, v<1 {{1}, {2} }. vz
— —~~
B*(y) = 4.3) 5 %

Bo

> .
{2y, >
By 7

With P*(v) initialized in Line 1 to {{1}}, Line 4-5 update Next, with p; and uo initialized to —oo in Line 1, the
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Fig. 3: lllustration of the computation of PSP in Algorithin

subsequent steps following Liriegive

p1 = max{—o0,7} =1 (4.5a)
-1, v<1

Ty1 = gmax{'y,l}({l}) - {_7’ ~y > 1. (45b)

pa = max{—o0, —00} = —00 (4.5c)

Ty 2 = gmax{'y,foo}({2}) =1- Y- (45d)

Similarly, whenj = 3, the function of the minimum in4(1)
is plotted in Fig.3b. It follows that the minimum minimizer

{1,2,3}, v € (-,2]
——

Bo

{173}7

N——
B,
{3},
~—~—
B>
With P*(~) given by @.4) and illustrated in Fig3a Lines4—

ye[2.,5)
¥
yE[ D ,00).

(4.6)

¥4

5 updateP* () to the desired solutior3(6) characterized by
the PSP.

The procedure is said to be parametric since the solution
P* is computed for all possible values gfc R rather than
a particular value. To realize such a procedure, the charac-
terization @.169 of P*(~) through the PSP in2(169 and
the corresponding critical values ofin (2.161 is computed
instead.

The minimization in {.1) is a submodular function mini-
mization (SFM) (over a lattice family). In contrast withq],
we perform ¢.1) on a growing sefj] = {1,...,j} instead
of the entire sel’ in every loop. The idea follows from the
algorithm for computing Dilworth truncation such as the one
givenin [19). In contrast with [L9], however, we follow 5] to
consider the update rule in Lings9, which guarantees., ;
to be piecewise linear with at most one break point, possibly
at v = pu; if p; is finite. Wheni = 5, the step in Line8
givesp; = —oo asB*(vy) always contairy (see ¢.1)), and so
z4,; = gv({j}), which is linear without any breakpoint. As
pointed out in 9, the update rule is particularly useful for
the the parametric procedure since the complexity oftemgro
with the number of break points.

Specializing to PIN models wherg is the incut function
defined in B8.3), the parametric SFM in4(1) can be solved as
a parametric min-cut problem as shown in Algoritlam

Algorithm 2: Computing the parametric SFM idl.(1) as
a parametric min-cut.

Input: A weighted digraphD on vertex set” with
capacity functiorc : V2 — R satisfying @.1).
Output: The minimum minimizer to4.1) with ¢ defined
as the incut function in3.3).

1 define a weighted digrapP; () with vertex set
U+ {s,1,...,5} (wheres is a new node outsidg])
and capacity functior, : U? — R initialized to 0;

2forv=1toj—1do

3 cy(8,v) < max{0, —x, o} ;

4 cy(v,7) ¢ max{0, 2} + c(v,7) ;

5 cy(v,w) = c(v,w) forall w e [j — 1]\ [v] ;

6 end

7 compute the minimum minimizeB* () to

(4.7)

min

U\T.T
TgU\{s}:jeTc'y( \T.T)

which is the minimums—;j cut value ofD; (7).

For the current example, the digragh; () with j = 2 is
shown in Fig.4. The vertex set i¥/ = {s,1,2}. The for-loop
setsv = 1 and initializes the capacity(s, 1) = |-=,.1|" and
¢(1,2) = |z, 1|" + 1, where

||t := max{0,2} forz eR. (4.8)

Evaluating the capacities with the initial valueof ; in (4.2)
gives the non-decreasing and non-increasing piecewisarlin
functionsc(s, 1) ande(1,2) respectively shown in the figure.
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Fig. 4: lllustration of the parametric min-cut problem inghkithm 2 for the for-loop withj = 2.
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(a) Weighted digraptDs (7). (b) Construction ofDs3(y) from D. (c) s—3 max-flow and min-cut forDs3(1).

Fig. 5: lllustration of the parametric min-cut problem inghkithm 2 for the for-loop withj = 3.

Similarly, the digraphD;(~) with j = 3 is shown in Fig.5, ¢, (v,w) = ¢(v,w) for w € [v—1] as they are zero by default.
with the vertex set now beiny = {s,1,2,3} instead, and In contrast with 5], the additional node contraction and edge

z,1 andz, o updated to the functions i (5). removal in Steps 2 and 3 above reduce the number of vertices
The weighted digraptD;() can be viewed as a result offrom |V| to |U| = j and therefore the complexity in solving
processing the weighted digragh as follow: (4.7).
1. Augment the digrapi with two new nodes andt (both For eachj € V, (4.7) can be solved by the parametric max-
outsideV) such that flow algorithm in [L6] in O(j3+/|E|) time by invokingO(4)

a. the capacity fromj to ¢ is set to infinity; times the preflow algorithn2D, 21] implemented with highest
b. for v from 1 to j — 1, if 2,, < 0, add an arc with level selection rule 77, which in turn runs inO(;*/|E])
capacity —z,,, from s to v, else add an arc with times. The procedure is described in Algorith®n which

capacityz., ,, from v to ¢. returns the characterization of the solutibri(~y) to (4.7) as

2. Remove all outgoing arcs from nogeand contract node
B*(y)= B¢ forye [v,741). L €{0,...N'}  (4.9)

t to nodej.
3. Remove all incoming arcs of nodegs+ 1,...,|V| and
contract the nodes to node (4.7). for some integetN’ > 0, where~ := —00, vy, = +00

This procedure is illustrated fabs(v) and D(v) in Fig. 4b and Bo := [j]. Note also thatB"(y) = {;} for sufficiently

and Fig. 5b respectively, where the red dotted arcs arf@rgey and soBy: i = {J}- _

removed, and the nodes circled together by blue lines arelo solve ¢.7) for any fixed j, we assume the following

contracted. subroutine
Step 2 implies the formula in Liné directly. Step 3 gives

¢y (s,v) = max{0, —x, .} + Z c(u,v)
uEVAL] which takes as arguments the capacity functiofiixed and
but this reduces to the formula in Ling because the last not parametric), the vertex sét on which ¢ is defined, the
summation is zero by the assumptioh1j that all the arcs source node € U, the sink node € U and a valid preflow
point from a node with a smaller label to a node with a largef associated with the weighted digraph () defined by the
label. For the same reason, in LiBewe do not need to set previous arguments. It returns the maximant flow f* and

[f*,T*] = MaxFl ow(c, U, 5,7, f) (4.11)



Algorithm 3: Solving the parametric min-cut problem in 3 give

(4.7) using the parametric max-flow algorithrig]. P =c(1,2) =1
Input: The weighted digraptD; () on vertex set/ with v~ =max{p,c(1,2)} =1,
capacity functiorc, created in Algorithnm?. o o
Output: A list L containing(~, By) for ¢ € [N’] that Wher.e the last eqqallty is bgcaUﬁS} is nghzeo! to be—oco
characterizes4(7) as in ¢.9). by Lme 1 of Algorlthm 1 Smcgy = ~7T in this case, the
1 create empty lists and PL; algorithm returns at Lin& the list
2 7" = maxyepj_y{c(fv — 1), 0) + (v, [] \ [ }; L=[(1,{1})]
3 v~ + min{max{p,,c(v,5)} | v € [§ — 1]}; ~
4 if v~ =47 then M B
s | L« (v, {j}) and returnL; This gives the desired3*(vy) in (4.39). Fig. 4c shows the
6 end . digraph Dy (v) at~y = 1. It can be seen that botfi, 2} and
7 setf as the zero flovo from s 10 j; {2} are solutions to the minimization irt (7).
8 [f aTl<—+NB)iF| ovv(cT,U,s,].,f), If v~ # ~* (or more specificallyy~ < ~*), then the
9o add(y~,7", f*,{s}.{j}) to PL; interval (y~,~%) must contain other critical values of

[y
o

while PL is not emptydo
withdraw any elementy=,~v*, f,S,T) from L;
computey € [y~,~T] as the solution to

where B*(y) changes. The critical values are then computed
iteratively by the preflow algorithnvaxFl ow (4.11) (Lines8
and23) applied on the digrap®; with capacities derived from
those ofD;(v) (Lines 15-17), and with~y evaluated at some

P
N

(S UNS) = &(UNT, T); (4.10) valuey € (y~—,y") satisfying ¢.10. This either resolves

13 define a weighted digrapP; with vertex set B* () for_ the_' entire interval (in which case the solution is
U« ([j]\ (SUT))U{s,j} and capacity function updated in Line25) or reduces the problem to two smaller
¢: U2 5 R initialized to 0: subproblems for later processing (i.e., with the origingival

14 for vin U\ {s,j} do (7*,7*? replaced by the two smaller intervals—, %) and

15 c(s,v) < 3 e cy(u,v) 5 (:Ya’YJr_) in Line 27). . _ .

16 &0, 5) ¢ S per (v, 0) ; To illustrate .the _procedure apove, conS|gAe1e_ 3, i.e., with

17 &(v,w) « c(v,w) for all we U\ {s,j,v} ; D_3(7) shovyn in Fig.5a as the input to AlgorithnB. Then,

18 end Lines 2-3 give

19| forvin U\ {j} do v = max{c(1,2) + ¢(1,3), ¢(1,2) + ¢(2, 3)}

20 f(v,5) & > yermin{f(v,w),e(v, j)} and
fG,v) « —f(i,Tj) to ensure anti-symmetry; =max{145,1+1} =6

21 fv,w) « f(v,w) for all w e U\ {j,v} ; ~v~ = min{max{u1, ¢(1,3)}, max{us2, c(2,3)}}
22 end _ = min{max{1,5}, max{—o0,1}} =1
23 [f*,T*] + MaxFl ow(c,U, s, j, f);
2 if 7* = {;} then where we used the valugs = 1 and us = —oo by (4.5).
25 | add(y~,T) to L; Sincey™ < 41 in this case, Liné is skipped. Lines invokes
26 end the preflow algorithm for the grapPs;(v~) = D3(1) shown
27 add(y~,5, f, 5,7 UT*) and in Fig. 5¢c. The min-cut isT* = [3] = U \ {s} (whereU =

(3.4t 5, S U (U\T*),T) to PL; {s,1,2,3} is the vertex set oDs) by the construction of/—.
-8 end The max-flow is

f(s,1) = f(1,3) =1
and0 otherwise. Note that the second line of equations ensures

‘min ¢(U\T,T), (4.12) the anti-symmetry property of a flow function, i.e.,
TCU\{5}:teT

(4.13)

the inclusion-wise minimum seéf* that solves

and is referred to as the minimugat cut. f*w.) fv.w) (#-14)
Roughly speakingy™ in Line 2 is the value ofy at which for all pairs of distinct nodes andw. The flow along each

(4.7) (i.e., B*(v)) is constant fory > ~*. Similarly, v~ in arc is indicated in Fig5c by the parentheses next to the

Line 3 is the value ofy at which @.7) is constant fory < y~. corresponding capacity of the arc.

When~y~ =~7, there is only one critical valug| of v where  The tuple (y~,~%, f*, {s},{j}) is then added tcPL in

B*(v) changes fromB, = [j] to B; = {j}. Line 9 and then retrieved (and deleted frdth) subsequently
To illustrate the above, considgr= 2, i.e., with Dy(v) inside the while-loop (Linell). With v~ = 1, 4t = 6,

shown in Fig.4aas the input to AlgorithnB. Then, Lines2— S = {s} andT = {j} in Line 11, the Lh.s. of 4.10 is



(@) D3 from D3(3.5).

(b) D3 from D5(2).

(c) D3 from D3(5).

Fig. 6: lllustration of the parametric max-flow algorithm Adgorithm 3.

given as (see Figha)
C’Y(Sv U \ S) = C’Y(Sv {15 27 3})

Y 'y<1+ 0, y<1
)1, v<1
and r.h.s. of4.10 is given as
c(U\T,T) =c,({s,1,2},3)
2 —
_ 5. v, <l
L, y=1
7=y <1
B 6, v > 1.

~ is computed as the solution tel.(0, namelyy = 3.5.

In general, such a value must exist and is unique because

U\ S and T are optimal solutions to4(7) at v~ and v

respectively. The computation is (;) time since both sides
of the equations are piecewise linear with at mosj) break

points.

The new weighted digrap; with the capacity function
¢ assigned in the first for-loop (Linek>-17) can be obtained

from D;(~) by
1) settingy = 7, contractingS to the source nods,
2) contractingl” to the sink nodej, and then

Line 25 will be skipped. Instead, Lin€7 adds the following
two tuples to the lisPL, which becomes

PL =[(1,3.5, f*,{s},{1,3}),(3.5,6, f,{s, 2}, {3})]

(4.15)
Repeating the while-loop with the first element retrievemhir
PL, it can be shown that4(10 is solved by the valug = 2.
Similar to Fig.6a, Fig. 6b shows the digrapl®s;(2) at the top
and D at the bottom. It can be verified thatand T satisfies
(4.10 for the top graph and™ is the min-cut in the bottom
graph. Sincé&l™ = {3} in this case, a new elemeft, {1, 3})
is added td. in Line 25.

Finally, repeating the while-loop again with the last elaeme
retrived fromPL (4.19), it can be shown thay = 5. Fig. 6¢
again givesD3(5) and the min-cufl™ = {3}, in which case
a new element5, {3}) is added td. again in Line25. Since
PL is not empty, the algorithm terminates with

L=[(2{1,3}). (5 {3})
no B Y5 B
This gives the desired3*(y) in (4.6) that yields the de-

sired PSP in {.6), and therefore the info-clustering solution
in (2.11) for the PIN model 2.19.

V. CONCLUSION

We have adapted the parametric max-flow algorithm of
computing the PSP to an info-clustering algorithm thatteltss
a graphical network based on the information flow over its

3) removing the incoming arcs te and outgoing arcs edges. The overall running time @&(|V|*\/[E]), where|V|

from j.
The second for-loop turng to a valid preflowf of D;.

is the size of the network an{¥| is the number of edges
or communication link. The algorithm simplifies the general

Recall that for the current examplg, = 3.5 in the last info-clustering algorithm by a few orders of magnitude, and
execution of the algorithm. Figha shows two digraphs, whereis applicable to systems, such as the social networks, where
the top one is the digrapvs;(y) at v = ¥ = 3.5 and the similarity can be measured by mutual information.

bottom one is the new weighted digraph. The setsS, T" and
the flow f indicated on the top digrapPs(3.5) satisfy @.10),

while D3 is annotated with the max-floy* and min-cut7™*
computed by Line23. Note that, sincel™ = {1,3} # {j},

To implement the algorithm in a large-scale social network,
the preflow algorithm may be made distributive and adaptive:
Servers may be deployed in different parts of the network to
measure and store the information exchange rates of differe



pair of nodes. The push and relabel operations in the preflg®] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency
algorithm can be done locally by the servers first and then SPringer, 2002.

. d h h Th f 28‘]/ A. V. Goldberg, “Efficient graph algorithms for sequiahtand parallel
communicated to other servers when necessary. € pretio computers,” Ph.D. dissertation, Massachusetts Instivfit€echnology,

of the network may be stored in conjunction with the clustgri Dept. of Electrical Engineering and Computer Science, 1987
solution, so that the clusters can be updated incrementdfjl A. V. Goldberg and R. E. Tarjan, A new approach to the mam-

. . . flow problem,” Journal of the ACM (JACM)vol. 35, no. 4, pp. 921-940,
over time based on the changes of information exchange rates 1988? (FACNM PP

The allocation of the servers and other resources may also[4® B. V. Cherkassky and A. V. Goldberg, “On implementing thushrelabel
adapted to the clustering solution. For instance, as ititrster method for the maximum flow problemAlgorithmica vol. 19, no. 4,
communication is more frequent than inter-cluster commami pp. 390-410, 1997.

tion, the nodes in a cluster with larger mutual informatioaym

be assigned to the same server so that changes in the network

can be updated more frequently without much communication

overhead among the servers.
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