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Info-Clustering: An Efficient Algorithm by
Network Information Flow
Chung Chan, Ali Al-Bashabsheh and Qiaoqiao Zhou

Abstract—Motivated by the fact that entities in a social
network or biological system often interact by exchanging in-
formation, we propose an efficient info-clustering algorithm that
can group entities into communities using a parametric max-flow
algorithm. This is a meaningful special case of the info-clustering
paradigm where the dependency structure is graphical and can
be learned readily from data.

I. I NTRODUCTION

Info-clustering was proposed in [1] as an application of
network information theory to the problem of clustering in
machine learning. It regards each object as a piece of in-
formation, namely a random variable, and groups random
variables with sufficiently large amount of mutual information
together. Clustering is often an important first step in studying
a large biological system such as the human connectome and
genome. It can also identify communities in a social network
so that resources can be allocated efficiently based on the
communities discovered. Since entities in a social or biological
system often possess information and interact with each other
by the transmission of information, clustering them by their
mutual information intuitively gives meaningful results.

Using the multivariate mutual information (MMI) in [2]
as the similarity measure, info-clustering defines a hierar-
chy of clusters of possibly different sizes at different levels
of mutual information. The clustering solution is intimately
related to the principal sequence of partitions (PSP) [3] of
a submodular function, namely, that of the entropy function
of the set of random variables to be clustered. From this, it
follows that the clustering solution is unique and solvable
using a polynomial number of oracle calls to evaluate the
entropy function. However, in general, learning the entropy
function of a finite setV of random variables from data takes
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exponential time in the size ofV [4]. The computation of the
PSP [3, 5], [1, Algorithm 3] without any approximation also
takesΩ(|V |2) calls to a submodular function minimization
(SFM) algorithm, which in turn makesΩ(|V |5) oracle calls
to evaluate the submodular function. Hence, the practicality
of the general info-clustering algorithm is limited by boththe
sample complexity and computational complexity.

Fortunately, info-clustering reduces to faster algorithms un-
der special statistical models that are also easier (compared
to a general model) to learn from data. For instance, under
the Markov tree model, info-clustering reduces to an edge-
filtering procedure that runs inO(|V |2) time [6]. Furthermore,
this procedure coincides with an existing functional genomic
clustering method by mutual information relevance networks
(MIRN) [7]. While rediscovering a simple clustering algo-
rithm under the Markov tree simplification, the info-clustering
paradigm provides a theoretical justification of the MIRN
algorithm and helps discover how the algorithm may fail when
the Markov tree assumption does not hold [1, Example 6].

In this work, we propose an efficient info-clustering al-
gorithm under a different graphical model called the pair-
wise independent network (PIN) [8, 9]. Using the idea of
the matroidal network link model in [10], the MMI has a
concrete operational meaning as the maximum network broad-
cast throughput [11]. The info-clustering solution therefore
identifies clusters with large intra-cluster communication rates,
which naturally maps to communities of closely related entities
in a social network. Learning the PIN model simplifies to
learning the weights ofO(|V |2) edges in a graph onV . In
a social network, the weight of each edge can simply be the
amount/rate of communication between the edge’s incident
nodes.

As shown in [1, Proposition 9], the info-clustering solution
for the PIN model can be obtained from the PSP of the cut
function of a weighted graph. It is well-known that faster SFM
algorithms are possible for the cut function using min-cut or
max-flow algorithms (e.g., see [12–14]). An algorithm was
given in [15] that computes the PSP efficiently by reducing
the problem to a parametric max-flow problem, where the
capacities of the edges are certain monotonic functions of
a parameter. The reduction is carefully done such that the
parametric max-flow algorithm in [16] can compute the PSP
in O(|V |3

√

|E|) time, whereE is the set of edges with non-
zero weight. We will adapt this algorithm to compute the info-
clustering solution and modify it to improve the performance
further.
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Fig. 1: Identifying the clusters of the PIN in (2.1a) by brute-force search over subsets satisfying the threshold constraint (2.9).

II. PRELIMINARIES ON INFO-CLUSTERING

A. Formulation

Let V be the finite index set of the objects we want to
cluster. Without loss of generality, we assume

V = [|V |] := {1, . . . , |V |} and |V | > 1

The idea of info-clustering is to treat each objecti ∈ V

as a random variableZi (denoted in san serif font) taking
values from a finite setZi (denoted in the usual math font),
and cluster the objects according to their mutual information.
PZV

denotes the distribution of the entire vector of random
variables

ZV := (Zi | i ∈ V ).

We will illustrate the idea of info-clustering via a simple
example shown in Fig.1a, whereV = [3] = {1, 2, 3} and
the corresponding random variables are defined as

Z1 := (Xa, Xc)

Z2 := (Xa,Xb )

Z3 := ( Xb,Xc),

(2.1a)

with Xa,Xb and Xc being independent uniformly random
variables with entropies

H(Xa) = H(Xb) = 1

H(Xc) = 5.
(2.1b)

This is a PIN (Definition2.2) with correlation represented by
the weighted triangleG shown in Fig.1acharacterized by the
weight functionc where

c({1, 2}) = c({2, 3}) := H(Xa) = H(Xb) = 1

c({1, 3}) := H(Xc) = 5.
(2.1c)

The vertex set isV := [3] and the edge set is

E := supp(c) = {{1, 2}, {2, 3}, {1, 3}}. (2.1d)

Note that, for ease of comparison, this is the same graph used
as an example in [15] to illustrate the algorithm. A formal
definition of the (hyper-)graphical source model is as follows:

Definition 2.1 (Definition 2.4 of [17]) ZV is a hypergraphi-
cal sourcew.r.t. a hypergraph(V,E, ξ) with edge functions
ξ : E → 2V \ {∅} iff, for some independent (hyper)edge
variablesXe for e ∈ E with H(Xe) > 0,

Zi := (Xe | e ∈ E, i ∈ ξ(e)), for i ∈ V. (2.2)

The weight functionc : 2V \ {∅} → R of a hypergraphical
source is defined as

c(B) := H(Xe | e ∈ E, ξ(e) = B) with support

supp(c) :=
{
B ∈ 2V \ {∅} | c(B) > 0

}
(2.3a)

(2.3b)

The PIN model [9] is an example, where the corresponding
hypergraph is a graph.

Definition 2.2 ([9]) ZV is a pairwise independent network
(PIN) iff it is hypergraphical w.r.t. a graph(V,E, ξ) with edge
function ξ : E → V 2 \ {(i, i) | i ∈ V } (i.e., no self loops).✷

The mutual information among multiple random variables
is measured by the multivariate mutual information (MMI)
defined in [2] as

I(ZV ) := min
P∈Π′(V )

IP (ZV ), with

IP(ZV ) :=
1

|P| − 1

[
∑

C∈P
H(ZC)−H(ZV )

︸ ︷︷ ︸

=D(PZV
‖
∏

C∈P PZC
)

]

(2.4a)

(2.4b)

andΠ′(V ) being the set of partitions ofV into at least 2 non-
empty disjoint subsets ofV . We may also writeIP (ZV ) more
explicitly as

IP (ZV ) = I(ZC1 ∧ · · · ∧ ZCk
) (2.5)

for P = {C1, . . . , Ck}. Note that Shannon’s mutual informa-
tion I(Z1 ∧Z2) is the special case whenP is a bipartition. It
is sometimes convenient to expandIP(ZV ) using Shannon’s
mutual information [2, (5.18)] as follows:

IP (ZV ) = I(ZC1 ∧ · · · ∧ Ck)

=
1

k − 1

k−1∑

i=1

I(ZCi
∧ Z⋃

k
j=i+1 Cj

). (2.6)



For the example with the random vector defined in (2.1a),

I(Z{v,w}) = I(Zv ∧ Zw) = c({v, w})

=

{

1, {v, w} ∈ {{1, 2}, {2, 3}}

5, {v, w} = {1, 3}

(2.7a)

which reduces to Shanon’s mutual information, and

I(Z[3]) = min
{
I{{2,3},{1}}(Z[3]),

I{{1,3},{2}}(Z[3]),

I{{1,2},{3}}(Z[3]),

I{{1},{2},{3}}(Z[3])
}

= min
{
I(Z2,Z3 ∧ Z1),

I(Z1,Z3 ∧ Z2),

I(Z1,Z2 ∧ Z3),
I(Z1,Z3∧Z2)+I(Z1∧Z3)

2

}

= min
{
6, 6, 2, 2+5

2

}
= 2,

(2.7b)

where we have applied (2.6) to calculateI{{1},{2},{3}}(Z[3])
for the partition into singletons as the average of the value
I(Z1,Z3 ∧ Z2) of the cut that separates node2 from nodes1
and3, and the valueI(Z1∧Z3) of the cut that further separates
node1 from node3.

Note that the sequence of two cuts effectively partitions the
vertex set into singletons. From this expansion, it is clearthat
the partition into singletons cannot be optimal in this case,
since the mutual information between nodes1 and 3 is very
large. Indeed, the optimal partition turns out to be a clustering
of the random variable into correlated groups. In general, the
set of optimal partitions to (2.4a), denoted asΠ∗(ZV ), form
a semi-lattice w.r.t. the partial order thatP � P ′ for the
partitionsP andP ′ when

∀C ∈ P , ∃C′ ∈ P ′ : C ⊆ C′. (2.8)

P ≺ P ′ denotes the strict inequality. There is a unique
finest/minimum partitionP∗(ZV ), referred to as thefunda-
mental partition for ZV [2, Theorem 5.2]. For athreshold
γ ∈ R, the set ofclustersis defined as [1, Definition 1]

Cγ(ZV ) := maximal{B ⊆ V | |B| > 1, I(ZB) > γ} (2.9)

wheremaximalF is used to denote the inclusion-wise maxi-
mal elements ofF , i.e.,

maximalF := {B ∈ F |6 ∃B′ ) B,B′ ∈ F} . (2.10)

Proposition 2.1 ([1, Theorem 5]) Cγ(ZV ) = P∗(ZV ) \ {i |
i ∈ V } with γ = I(ZV ), i.e., the non-singleton subsets in the
fundamental partition are the maximal subsets (clusters) with
MMI larger than that of the entire set. ✷

For the example, applying the definition (2.9) of clusters with
the MMI calculated in (2.7), the clustering solution is

Cγ(Z[3]) =







{[3]} γ ∈ (−∞, 2)

{1, 3} γ ∈ [2, 5)

∅ γ ∈ [5,∞).

(2.11)

The info-clustering solution above consists of two clusters
shown in Fig.1c for different intervals of the thresholdγ.
For γ ≥ 2, the subset{1, 3} is the only feasible solution that
satisfies the threshold constraint in (2.9). Forγ ≤ 2, the entire
set [3] also satisfies the threshold constraint and is maximal.
Recall from (2.7b) that there is a unique optimal partition for
I(Z{1,2,3}), which is therefore the finest optimal partition

P∗(Z[3]) =
{
{1, 3},

︸ ︷︷ ︸

C2(Z[3])

{2}
}
. (2.12)

As expected from Proposition2.1, the non-singleton element
{1, 3} is the only possible subset with MMI larger than2.

It turns out that the computation of the MMI, fundamental
partition, and the entire info-clustering solution can be done
in strongly polynomial time from theprincipal sequence of
partition (PSP) of the entropy function

h : B ⊆ V 7→ H(ZB). (2.13)

The PSP is a more general mathematical structure [3] in
combinatorial optimization defined for a submodular function.
More precisely, a reveal-valued set functiong : 2V → R is
said to besubmodulariff

g(B1) + g(B2) ≥ g(B1 ∩B2) + g(B1 ∪B2) (2.14)

for all B1, B2 ⊆ V . The entropy function, in particular, is a
submodular function [18]. The PSP of the submodular function
g is the characterization of the solutions to the following for
all γ ∈ R:

ĝ(V ) := min
P∈Π(V )

gγ [P ], (2.15a)

referred to as the Dilworth truncation [19], whereΠ(V ) is the
partition ofV into one or more non-empty disjoint subsets,

gγ [P ] :=
∑

C∈P

gγ(C)

gγ(C) := g(C)− γ

(2.15b)

(2.15c)

(n.b.,Π′(V ) in (2.4a) is Π(V ) but without the trivial partition
{V }, i.e., Π′(V ) = Π(V ) \ {{V }}.) For everyγ, submodu-
larity of g implies that there exists a unique finest/minimum
(w.r.t. the partial order (2.8)) optimal partition to (2.15a),
denoted asP∗(γ). It can be characterized as

P∗(γ) = Pℓ ∀γ ∈ [γℓ, γℓ+1), ℓ ∈ {0, ..., N} (2.16a)

for some integerN > 0, a sequence of critical values ofγ

−∞ < γ1 < · · · < γN <∞ (2.16b)

with γ0 := −∞ and γN+1 := ∞ for convenience, and a
sequence of successively finer partitions

P0 = V ≻ P1 ≻ · · · ≻ PN = {{i}|i ∈ V }. (2.16c)

The sequence of partitions (together with the corresponding
critical values) is referred to as the PSP ofg. The PSP of
the entropy function (2.13) characterizes the info-clustering
solution as follows:



Proposition 2.2 ([1, Corollary 2]) For a finite setV with
size |V | > 1 and a random vectorZV ,

Cγ(ZV ) =
[

min{P ∈ Π(V ) | hγ [P ] = ĥγ(V )}
]

∖
{{i} | i ∈ V } ,

(2.17)

namely, the non-singleton elements of the finest optimal par-
tition to the Dilworth truncation(2.15a). ✷

III. I NFORMATION FLOW INTERPRETATION

For PIN, the MMI can be interpreted as the maximum
broadcast throughput of a network [10, 11], and hence info-
clustering reduces to clustering by network information flow.
When applied to clustering social network, it can identify
communities naturally based on the amount of information
flow.

More precisely, treating each edge as an undirected com-
munication link with capacityc, at most a total of1 bit can
be communicated between node 1 and 2, and between node
2 and 3; and at most a total of5 bits can be communicated
between node 1 and 3. It can be seen that, for every pair of
distinct nodesv, w ∈ V , the broadcast throughput betweenv
andw is given by the MMI in (2.7a). Fig. 1b illustrates how
2 bits of information can be broadcast in the entire network,
achieving the MMI of the entire set of random variables in
(2.7b). With the interpretation of the MMI as information flow,
a cluster at thresholdγ is therefore a maximal subnetwork with
broadcast throughput larger thanγ. For instance, the cluster
{1, 3} ∈ C2(Z{1,2,3}) is the only subset of nodes on which the
induced subnetwork has a throughput exceeding2.

Specializing to the (hyper-)graphical model, it was shown in
[1, Proposition 8] that the clustering solutions can be obtained
directly as the non-singleton subsets from the PSP of the incut
function. More precisely, from the weighted graphG with
vertex setV and capacity functionc, define for every pair
(v, w) of verticesv, w ∈ V

c(v, w) :=

{

c({v, w}), v < w

0, otherwise.
(3.1)

This defines the capacity function of a weighted digraphD

with vertex setV and edge setE which can be defined as
the set of arcs(v, w) with positive capacityc(v, w) > 0.
For example, Fig.2a is the weighted digraph obtained by
orienting the weighted graph in Fig.1a according to (3.1),
i.e., by directing an edge from the incident node with a smaller
label to the other incident node with a larger one.

For convenience, we also write for arbitrary subsets
B1, B2 ⊆ V

c(B1, B2) :=
∑

v∈B1

c(v,B2) where

c(v,B2) :=
∑

w∈B2

c(v, w) for v ∈ V , and

c(B1, w) :=
∑

w∈B1

c(v, w) for w ∈ V .

(3.2a)

(3.2b)

(3.2c)

The incut function of the weighted digraph is defined as

g(B) := c(V \B,B). (3.3)

The incut function for the digraph in Fig.2a is shown in
Fig. 2b and calculated below:

g({2}) = c({1, 3}, {2}) = c(1, 2) + c(3, 2) = 1

g({3}) = c({1, 2}, {3}) = c(1, 3) + c(2, 3) = 6

g({2, 3}) = c({1}, {2, 3}) = c(1, 2) + c(1, 3) = 6

g({1, 3}) = c({2}, {1, 3}) = c(2, 1) + c(2, 3) = 1

g({1}) = g({1, 2}) = g({1, 2, 3}) = 0.

(3.4)

To compute the PSP ofg, we first evaluate (2.15b) for different
partitions as follows:

gγ [{{1, 2, 3}}] = gγ({1, 2, 3})

= g([3])− γ

= −γ

gγ [{1, 3}, {2}] = gγ({1, 3}) + gγ({2})

= g({1, 3}) + g({2})− 2γ

= 2− 2γ

gγ [{1}, {2}, {3}] = gγ({1}) + gγ({2}) + gγ({3})

= 7− 3γ

(3.5a)

Similarly,

gγ [{1, 2}, {3}] = 6− 2γ > gγ [{1, 3}, {2}]

gγ [{1}, {2, 3}] = 6− 2γ > gγ [{1, 3}, {2}].
(3.5b)

Fig. 2c plots the Dilworth truncation̂gγ(V ) in (2.15) against
γ as the minimum ofgγ [P ] over all partitionsP ∈ Π(V ). It
can be seen that for a givenP , gγ [P ] is linear with integer
slope −|P| ∈ {−|V |, . . . , 1} and so ĝγ(V ) is piecewise
linear consisting, in this example, of|V | = 3 line segments
(highlighted in blue) and|V |−1 = 2 break points (highlighted
in red). (In general, the number of line segments is at most
|V |.) The finest optimal partition for each value ofγ is

P∗(γ) =







{{1, 2, 3}}
︸ ︷︷ ︸

P0

, γ ∈ (−∞, 2]

{{1, 3}, {2}}
︸ ︷︷ ︸

P1

, γ ∈ [ 2
︸︷︷︸

γ1

, 5)

{{1}, {2}, {3}}
︸ ︷︷ ︸

P2

, γ ∈ [ 5
︸︷︷︸

γ2

,∞)

(3.6)

with the PSP and the corresponding critical values annotated
above and in the Fig.2c.

IV. CLUSTERING USING PARAMETRIC MAX-FLOW

By [1, Proposition 9], the PSP of the incut function
B 7→ c(V \ B,B) of the digraphD coincides with the
PSP of the cut function (divided by2) of the corresponding
undirected graphG, which was shown in [15] to be com-
putable by running aparametric max-flow algorithmO(|V |)
times. The parametric max-flow algorithm was introduced by
[16], which runs inO(|V |2

√

|E|) times using the well-known
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Fig. 2: Computing the clusters of the PIN model (2.1a) as the non-singleton elements of the PSP (2.16).

push-relable/preflowalgorithm [20, 21] implemented with the
highest-level selection rule [22]. Hence, the info-clustering
algorithm solution for the PIN model can be obtained in
O(|V |3

√

|E|) time.
In this section, we will adapt and improve the algorithm

in [15] to compute the desired PSP for the info-clustering
solution. The algorithm will be illustrated using the same
example as in the last section, which is chosen to be the same
example as in [15] for ease of comparison.

We first give a procedure in Algorithm1 for computing
the minimum minimizerP∗(γ) to (2.15) for all γ ∈ R and
any submodular functiong, assuming a parametric submodular
function minimizer. This procedure can be specialized further
to the PIN model whereg is chosen to be the incut func-
tion (3.3), so that the parametric max-flow algorithm can be
applied instead.

Consider the example withg defined in (3.4) and illustrated
in Fig. 2b, and withgγ defined in (2.15c). Whenj = 2, Line 1
initializes xγ,1 as

xγ,1 = g({1})− γ = −γ. (4.2)

Then, (4.1) becomes

min{gγ({1, 2})− xγ,1, gγ({2})} = min{0, 1− γ}

=

{

1− γ, γ < 1

0 γ ≥ 1,

which is a piecewise linear function plotted in Fig.3a. The
minimum minimizer is therefore given by

B∗(γ) =







{1, 2}
︸ ︷︷ ︸

B0

, γ < 1

{2}
︸︷︷︸

B1

, γ ≥ 1
︸︷︷︸

γ′
1

.
(4.3)

With P∗(γ) initialized in Line 1 to {{1}}, Line 4–5 update

Algorithm 1: Computing the PSP as a parametric SFM.

Input : Submodular functiong : 2V 7→ R defined on a
finite ground setV .

Output : The functionP∗(γ) of γ ∈ R defined in (2.16a).
1 P∗ ← {{1}}, B∗(γ)← {1}, xγ,1 ← gγ({1}), µi ← −∞

for all i ∈ V ;
2 for j = 2 to |V | do
3 setB∗(γ) as the (inclusion-wise) minimum

minimizer to

min
B⊆[j]:j∈B

gγ(B) − xγ(B\{j}), (4.1)

wherexγ(C) :=
∑

i∈C xγ,i for convenience;
4 remove everyC that intersectsB∗(γ) from P∗(γ);
5 addB∗(γ) to P∗(γ);
6 if j < |V | then
7 for i = 1 to j do
8 µi ← max{µi,min{γ | i 6∈ B∗(γ)}} ;
9 xγ,i ← gmax{γ,µi}({i}) ;

10 end
11 end
12 end

P∗(γ) to

P∗(γ) =







{
{1, 2}
︸ ︷︷ ︸

B0

}
, γ < 1

︸︷︷︸

γ′
1

{
{1}, {2}

︸︷︷︸

B1

}
, γ ≥ 1

︸︷︷︸

γ′
2

.
(4.4)

Next, with µ1 and µ2 initialized to −∞ in Line 1, the
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Fig. 3: Illustration of the computation of PSP in Algorithm1.

subsequent steps following Line5 give

µ1 = max{−∞, γ′
1} = 1

xγ,1 = gmax{γ,1}({1}) =

{

−1, γ < 1

−γ, γ ≥ 1.

µ2 = max{−∞,−∞} = −∞

xγ,2 = gmax{γ,−∞}({2}) = 1− γ.

(4.5a)

(4.5b)

(4.5c)

(4.5d)

Similarly, whenj = 3, the function of the minimum in (4.1)
is plotted in Fig.3b. It follows that the minimum minimizer
is

B∗(γ) =







{1, 2, 3}
︸ ︷︷ ︸

B0

, γ ∈ (−∞, 2]

{1, 3}
︸ ︷︷ ︸

B1

, γ ∈ [ 2
︸︷︷︸

γ′
1

, 5)

{3}
︸︷︷︸

B2

, γ ∈ [ 5
︸︷︷︸

γ′
2

,∞).

(4.6)

With P∗(γ) given by (4.4) and illustrated in Fig.3a, Lines4–

5 updateP∗(γ) to the desired solution (3.6) characterized by
the PSP.

The procedure is said to be parametric since the solution
P∗ is computed for all possible values ofγ ∈ R rather than
a particular value. To realize such a procedure, the charac-
terization (2.16a) of P∗(γ) through the PSP in (2.16c) and
the corresponding critical values ofγ in (2.16b) is computed
instead.

The minimization in (4.1) is a submodular function mini-
mization (SFM) (over a lattice family). In contrast with [15],
we perform (4.1) on a growing set[j] = {1, . . . , j} instead
of the entire setV in every loop. The idea follows from the
algorithm for computing Dilworth truncation such as the one
given in [19]. In contrast with [19], however, we follow [15] to
consider the update rule in Lines8–9, which guaranteesxγ,i

to be piecewise linear with at most one break point, possibly
at γ = µi if µi is finite. Wheni = j, the step in Line8
givesµj = −∞ asB∗(γ) always containj (see (4.1)), and so
xγ,j = gγ({j}), which is linear without any breakpoint. As
pointed out in [15], the update rule is particularly useful for
the the parametric procedure since the complexity often grows
with the number of break points.

Specializing to PIN models whereg is the incut function
defined in (3.3), the parametric SFM in (4.1) can be solved as
a parametric min-cut problem as shown in Algorithm2.

Algorithm 2: Computing the parametric SFM in (4.1) as
a parametric min-cut.
Input : A weighted digraphD on vertex setV with

capacity functionc : V 2 → R satisfying (3.1).
Output : The minimum minimizer to (4.1) with g defined

as the incut function in (3.3).
1 define a weighted digraphDj(γ) with vertex set
U ← {s, 1, . . . , j} (wheres is a new node outside[j])
and capacity functioncγ : U2 → R initialized to 0;

2 for v = 1 to j − 1 do
3 cγ(s, v)← max{0,−xγ,v} ;
4 cγ(v, j)← max{0, xγ,v}+ c(v, j) ;
5 cγ(v, w)← c(v, w) for all w ∈ [j − 1] \ [v] ;
6 end
7 compute the minimum minimizerB∗(γ) to

min
T⊆U\{s}:j∈T

cγ(U\T, T ) (4.7)

which is the minimums–j cut value ofDj(γ).

For the current example, the digraphDj(γ) with j = 2 is
shown in Fig.4. The vertex set isU = {s, 1, 2}. The for-loop
setsv = 1 and initializes the capacityc(s, 1) = |−xγ,1|

+ and
c(1, 2) = |xγ,1|

+
+ 1, where

|x|+ := max{0, x} for x ∈ R. (4.8)

Evaluating the capacities with the initial value ofxγ,1 in (4.2)
gives the non-decreasing and non-increasing piecewise linear
functionsc(s, 1) andc(1, 2) respectively shown in the figure.
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Similarly, the digraphDj(γ) with j = 3 is shown in Fig.5,
with the vertex set now beingU = {s, 1, 2, 3} instead, and
xγ,1 andxγ,2 updated to the functions in (4.5).

The weighted digraphDj(γ) can be viewed as a result of
processing the weighted digraphD as follow:

1. Augment the digraphD with two new nodess andt (both
outsideV ) such that

a. the capacity fromj to t is set to infinity;
b. for v from 1 to j − 1, if xγ,v < 0, add an arc with

capacity−xγ,v from s to v, else add an arc with
capacityxγ,v from v to t.

2. Remove all outgoing arcs from nodej and contract node
t to nodej.

3. Remove all incoming arcs of nodesj + 1, ..., |V | and
contract the nodes to nodes. (4.7).

This procedure is illustrated forD2(γ) andD3(γ) in Fig. 4b
and Fig. 5b respectively, where the red dotted arcs are
removed, and the nodes circled together by blue lines are
contracted.

Step 2 implies the formula in Line4 directly. Step 3 gives

cγ(s, v) = max{0,−xγ,v}+
∑

u∈V \[j]

c(u, v)

but this reduces to the formula in Line3 because the last
summation is zero by the assumption (3.1) that all the arcs
point from a node with a smaller label to a node with a larger
label. For the same reason, in Line5, we do not need to set

cγ(v, w) = c(v, w) for w ∈ [v−1] as they are zero by default.
In contrast with [15], the additional node contraction and edge
removal in Steps 2 and 3 above reduce the number of vertices
from |V | to |U | = j and therefore the complexity in solving
(4.7).

For eachj ∈ V , (4.7) can be solved by the parametric max-
flow algorithm in [16] in O(j3

√

|E|) time by invokingO(j)
times the preflow algorithm [20, 21] implemented with highest
level selection rule [22], which in turn runs inO(j2

√

|E|)
times. The procedure is described in Algorithm3, which
returns the characterization of the solutionB∗(γ) to (4.7) as

B∗(γ) = Bℓ for γ ∈ [γ′
ℓ, γ

′
ℓ+1), ℓ ∈ {0, ..., N

′} (4.9)

for some integerN ′ > 0, whereγ′
0 := −∞, γ′

N ′+1 := +∞
andB0 := [j]. Note also thatB∗(γ) = {j} for sufficiently
largeγ and soBN ′+1 = {j}.

To solve (4.7) for any fixed j, we assume the following
subroutine

[f∗, T ∗] = MaxFlow(c̄, Ū , s̄, t̄, f̄) (4.11)

which takes as arguments the capacity functionc̄ (fixed and
not parametric), the vertex set̄U on which c̄ is defined, the
source nodēs ∈ Ū , the sink nodēt ∈ Ū and a valid preflow
f̄ associated with the weighted digraphDj(γ) defined by the
previous arguments. It returns the maximums̄–t̄ flow f∗ and



Algorithm 3: Solving the parametric min-cut problem in
(4.7) using the parametric max-flow algorithm [16].

Input : The weighted digraphDj(γ) on vertex setU with
capacity functioncγ created in Algorithm2.

Output : A list L containing(γ′
ℓ, Bℓ) for ℓ ∈ [N ′] that

characterizes (4.7) as in (4.9).
1 create empty listsL andPL;
2 γ+ ← maxv∈[j−1]{c([v − 1], v) + c(v, [j] \ [v])};
3 γ− ← min{max{µv, c(v, j)} | v ∈ [j − 1]};
4 if γ− = γ+ then
5 L← (γ−, {j}) and returnL;
6 end
7 setf as the zero flow0 from s to j;
8 [f∗, T ∗]← MaxFlow(cγ− , U, s, j, f);
9 add (γ−, γ+, f∗, {s}, {j}) to PL;

10 while PL is not emptydo
11 withdraw any element(γ−, γ+, f, S, T ) from L;
12 computeγ̄ ∈ [γ−, γ+] as the solution to

cγ(S,U \ S) = cγ(U \ T, T ); (4.10)

13 define a weighted digraph̄Dj with vertex set
Ū ← ([j] \ (S ∪ T )) ∪ {s, j} and capacity function
c̄ : Ū2 → R initialized to 0;

14 for v in Ū \ {s, j} do
15 c̄(s, v)←

∑

u∈S cγ̄(u, v) ;
16 c̄(v, j)←

∑

w∈T cγ̄(v, w) ;
17 c̄(v, w)← c(v, w) for all w ∈ Ū \ {s, j, v} ;
18 end
19 for v in Ū \ {j} do
20 f̄(v, j)←

∑

w∈T min{f(v, w), c̄(v, j)} and
f̄(j, v)← −f̄(v, j) to ensure anti-symmetry;

21 f̄(v, w)← f(v, w) for all w ∈ Ū \ {j, v} ;
22 end
23 [f∗, T ∗]← MaxFlow(c̄, Ū , s, j, f);
24 if T ∗ = {j} then
25 add (γ−, T ) to L;
26 end
27 add (γ−, γ̄, f, S, T ∪ T ∗) and

(γ̄, γ+, f∗, S ∪ (U \ T ∗), T ) to PL;
28 end

the inclusion-wise minimum setT ∗ that solves

min
T⊆Ū\{s̄}:t̄∈T

c(Ū \ T, T ), (4.12)

and is referred to as the minimum̄s–t̄ cut.
Roughly speaking,γ+ in Line 2 is the value ofγ at which

(4.7) (i.e., B∗(γ)) is constant forγ ≥ γ+. Similarly, γ− in
Line 3 is the value ofγ at which (4.7) is constant forγ ≤ γ−.
Whenγ− = γ+, there is only one critical valueγ′

1 of γ where
B∗(γ) changes fromB0 = [j] to B1 = {j}.

To illustrate the above, considerj = 2, i.e., with D2(γ)
shown in Fig.4a as the input to Algorithm3. Then, Lines2–

3 give
γ+ = c(1, 2) = 1

γ− = max{µ1, c(1, 2)} = 1,

where the last equality is becauseµ1 is initialized to be−∞
by Line 1 of Algorithm 1. Sinceγ− = γ+ in this case, the
algorithm returns at Line5 the list

L = [( 1
︸︷︷︸

γ′
1

, {1}
︸︷︷︸

B1

)].

This gives the desiredB∗(γ) in (4.3). Fig. 4c shows the
digraphD2(γ) at γ = 1. It can be seen that both{1, 2} and
{2} are solutions to the minimization in (4.7).

If γ− 6= γ+ (or more specificallyγ− < γ+), then the
interval (γ−, γ+) must contain other critical values ofγ
whereB∗(γ) changes. The critical values are then computed
iteratively by the preflow algorithmMaxFlow (4.11) (Lines8
and23) applied on the digraph̄Dj with capacities derived from
those ofDj(γ) (Lines 15–17), and withγ evaluated at some
value γ̄ ∈ (γ−, γ+) satisfying (4.10). This either resolves
B∗(γ) for the entire interval (in which case the solution is
updated in Line25) or reduces the problem to two smaller
subproblems for later processing (i.e., with the original interval
(γ−, γ+) replaced by the two smaller intervals(γ−, γ̄) and
(γ̄, γ+) in Line 27).

To illustrate the procedure above, considerj = 3, i.e., with
D3(γ) shown in Fig.5a as the input to Algorithm3. Then,
Lines 2–3 give

γ+ = max{c(1, 2) + c(1, 3), c(1, 2) + c(2, 3)}

= max{1 + 5, 1 + 1} = 6

γ− = min{max{µ1, c(1, 3)},max{µ2, c(2, 3)}}

= min{max{1, 5},max{−∞, 1}} = 1

where we used the valuesµ1 = 1 and µ2 = −∞ by (4.5).
Sinceγ− < γ+ in this case, Line5 is skipped. Line8 invokes
the preflow algorithm for the graphD3(γ

−) = D3(1) shown
in Fig. 5c. The min-cut isT ∗ = [3] = U \ {s} (whereU =
{s, 1, 2, 3} is the vertex set ofD3) by the construction ofγ−.
The max-flow is

f∗(s, 1) = f∗(1, 3) = 1

f∗(1, s) = f∗(3, 1) = −1
(4.13)

and0 otherwise. Note that the second line of equations ensures
the anti-symmetry property of a flow function, i.e.,

f∗(w, v) = −f∗(v, w) (4.14)

for all pairs of distinct nodesv andw. The flow along each
arc is indicated in Fig.5c by the parentheses next to the
corresponding capacity of the arc.

The tuple (γ−, γ+, f∗, {s}, {j}) is then added toPL in
Line 9 and then retrieved (and deleted fromPL) subsequently
inside the while-loop (Line11). With γ− = 1, γ+ = 6,
S = {s} and T = {j} in Line 11, the l.h.s. of (4.10) is
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given as (see Fig.5a)

cγ(S,U \ S) = cγ(s, {1, 2, 3})

=

{

1, γ < 1

γ, γ ≥ 1
+

{

0, γ < 1

γ − 1, γ ≥ 1

=

{

1, γ < 1

2γ − 1, γ ≥ 1

and r.h.s. of (4.10) is given as

cγ(U \ T, T ) = cγ({s, 1, 2}, 3)

= 5 +

{

2− γ, γ < 1

1, γ ≥ 1

=

{

7− γ, γ < 1

6, γ ≥ 1.

γ̄ is computed as the solution to (4.10), namely γ̄ = 3.5.
In general, such a value must exist and is unique because
U \ S and T are optimal solutions to (4.7) at γ− and γ+

respectively. The computation is inO(j) time since both sides
of the equations are piecewise linear with at mostO(j) break
points.

The new weighted digraph̄Dj with the capacity function
c̄ assigned in the first for-loop (Lines15–17) can be obtained
from Dj(γ) by

1) settingγ = γ̄, contractingS to the source nodes,
2) contractingT to the sink nodej, and then
3) removing the incoming arcs tos and outgoing arcs

from j.
The second for-loop turnsf to a valid preflowf̄ of D̄j .

Recall that for the current example,γ̄ = 3.5 in the last
execution of the algorithm. Fig.6ashows two digraphs, where
the top one is the digraphD3(γ) at γ = γ̄ = 3.5 and the
bottom one is the new weighted digraphD̄3. The setsS, T and
the flowf indicated on the top digraphD3(3.5) satisfy (4.10),
while D̄3 is annotated with the max-flowf∗ and min-cutT ∗

computed by Line23. Note that, sinceT ∗ = {1, 3} 6= {j},

Line 25 will be skipped. Instead, Line27 adds the following
two tuples to the listPL, which becomes

PL = [(1, 3.5, f∗, {s}, {1, 3}), (3.5, 6, f, {s, 2}, {3})].

(4.15)
Repeating the while-loop with the first element retrieved from
PL, it can be shown that (4.10) is solved by the valuēγ = 2.
Similar to Fig.6a, Fig. 6b shows the digraphD3(2) at the top
andD̄3 at the bottom. It can be verified thatS andT satisfies
(4.10) for the top graph andT ∗ is the min-cut in the bottom
graph. SinceT ∗ = {3} in this case, a new element(2, {1, 3})
is added toL in Line 25.

Finally, repeating the while-loop again with the last element
retrived fromPL (4.15), it can be shown that̄γ = 5. Fig. 6c
again givesD3(5) and the min-cutT ∗ = {3}, in which case
a new element(5, {3}) is added toL again in Line25. Since
PL is not empty, the algorithm terminates with

L = [( 2
︸︷︷︸

γ′
1

, {1, 3}
︸ ︷︷ ︸

B1

), ( 5
︸︷︷︸

γ′
2

, {3}
︸︷︷︸

B2

)].

This gives the desiredB∗(γ) in (4.6) that yields the de-
sired PSP in (3.6), and therefore the info-clustering solution
in (2.11) for the PIN model (2.1a).

V. CONCLUSION

We have adapted the parametric max-flow algorithm of
computing the PSP to an info-clustering algorithm that clusters
a graphical network based on the information flow over its
edges. The overall running time isO(|V |3

√

|E|), where|V |
is the size of the network and|E| is the number of edges
or communication link. The algorithm simplifies the general
info-clustering algorithm by a few orders of magnitude, and
is applicable to systems, such as the social networks, where
similarity can be measured by mutual information.

To implement the algorithm in a large-scale social network,
the preflow algorithm may be made distributive and adaptive:
Servers may be deployed in different parts of the network to
measure and store the information exchange rates of different



pair of nodes. The push and relabel operations in the preflow
algorithm can be done locally by the servers first and then
communicated to other servers when necessary. The preflow
of the network may be stored in conjunction with the clustering
solution, so that the clusters can be updated incrementally
over time based on the changes of information exchange rates.
The allocation of the servers and other resources may also be
adapted to the clustering solution. For instance, as intra-cluster
communication is more frequent than inter-cluster communica-
tion, the nodes in a cluster with larger mutual information may
be assigned to the same server so that changes in the network
can be updated more frequently without much communication
overhead among the servers.
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