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Abstract—Asynchronous parallel computing and sparse re- computing for solving optimizations problems of this form
covery are two areas that have received recent interest. ABYy assume that eaclf; is sparse, which means that eag¢h
chronous algorithms are often studied to solve optimizatio acts only on a small number of componentsaoftherefore

problems where the cost function takes the form>", fi(z), S L :
with a common assumption that eachy; is sparse; that ié, each this implies that individual core computations only depend

f; acts only on a small number of components of: ¢ R". and update a small number of coordinateszofe.g., [.1],
Sparse recovery problems, such as compressed sensing, can b[25]). The benefit of this setup is that memory overwrites are
formulated as optimization problems, however, the cost fuations  rare, making it unlikely for the progress of faster cores ¢o b
Ji are dense with respect to the components ofz, and instead 5yapwritten by updates from slower cores.

the signal z is assumed to be sparse, meaning that it has only Th h Iso b fint ti
non-zeros wheres < n. Here we address how one may use an ere has also been a surge or Interest In sparse recov-

asynchronous parallel architecture when the cost functios f; are ~ €ry problems; for instance, literature oompressed sensing
not sparse inx, but rather the signal z is sparse. We propose an (e.g., f], [5], [10]) addresses the problem of recovering a
asynchronous parallel approach to sparse recovery via a sthas- sparse vector: € R™ from few nonadaptive, linear, and

tic greedy algorithm, where multiple processors asynchroausly  ,qqibly noisy measurements of the fogne= Az + 2, where
update a vector in shared memory containing information on he A Rmxn is th ¢ trix and € R™ |
estimated signalsupport. We include numerical simulations that € IS the measurement matrix and < IS

illustrate the potential benefits of our proposed asynchronus Noise. Recovering: from the noisy measuremengscan be
method. formulated as the optimization problem,

|. INTRODUCTION min —— |y — AZ|2  subjectto [|#llo <s. (1)
Technological advances in data gathering systems have led €& 2m
to the rapid growth of big data in diverse applications. At is then natural to ask whether we can apply asynchronous
the same time, the recent emergence of inexpensive mudticparallel computing to solvelf. The challenge, however, is
processors, with the number of cores on each workstatithat the cost function depends oh which is typically not
on the rise, has motivated the study of parallel computirigken to be sparse (e.gl,is commonly taken to have standard
strategies. This has presented a challenge to many existing. Gaussian entries). This is in stark contrast to thecsl
and popular algorithms that are designed to run iteratimaly assumptions made in the asynchronous parallel computing
sequentially. literature since the cost function dense in the components
One possible approach to this problem ggnchronous of z, and instead the signalis assumed to be sparse. Indeed,
parallel computing, which assigns tasks to multiple core asince the signal is sparse, it is very likely that the same
then waits for all cores to complete before the next stepriseginon-zero entries will be updated from one iteration to thet,ne
Of course, the drawback of this approach is that all corggile the remaining entries are set to zero to maintain asgpar
must wait for the slowest core to finish, even if the remainingplution. If executed asynchronously, then memory oveesri
cores all complete their computation quickly. An altermati would be frequent, and a slow core could easily “undo” the
approach, and one that has received much recent interesprizgress of previous updates by faster cores.
asynchronous parallel computing. In an asynchronous system, Contribution: In this paper, we consider one of the stochas-
all cores run continuously, thus eliminating the idle timéic greedy algorithms studied in2f] for sparse recovery.
present in the synchronous approach, and all cores havesac&®cusing on the compressed sensing problem, we propose a
to shared memory and are able to make updates as needesdrategy for utilizing the algorithm asynchronously déspihe
Asynchronous algorithms are often studied to solve optiratrix A (and thus the cost function) not being sparse. Instead
mization problems where the cost function takes the forof having the current solution estimate in shared memory, a
Zi]\il fi(x). The decision variable: € R™ is updated iter- current estimate of the location of the non-zeros of theaign
atively, and its current state is accessible in shared mgmavill be shared and available to each core. Thus, we provide a
by all processors. Many approaches to asynchronous garadl@lution that merges asynchronous parallel architectwits
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sparse recovery problems that have iterative updates velnech  As described above, suppose we obseyve- Az + z,

not sparse, and will be a springboard to other more genevdierex is s-sparse and supported @hcC {1,...,n} (thatis,
approaches. lzllo = |{¢ : 2 # 0} = |T| < s < n). To recoverz from
the noisy measurements we aim to solve the optimization
Il. RELATION TO PRIOR WORK problem (). Note that we can also express the cost function

The seminal text]] provides foundational work for parallel in (1) as
and distributed optimization algorithms. More recentlyy][
studies an asynchronous variant of stochastic gradiesedes 1
called HogwiLD!. A key assumption in their analysis is 2m
that the cost function of the optimization problem is sparse
with respect to the decision variable, meaning that mo&herey has been decomposed into non-overlapping vectors
gradient updates only modify small and distinct parts ¢f: Of sizeb, Ay, has been decomposed into non-overlapping
the solution. Much of the recent literature on asynchronofis< » Submatrices ofd, and M = m /b (which for simplicity
parallel computing borrows from the framework proposed Y€ assume ]{f integral). Notice that the cost function nowsak
[25]. [11] also studies stochastic optimization when the code form >_i=1 fi(z), and eaChfi(f_U) = #M_H?/bi — Ap, |3
function is sparse, and proposes two asynchronous algsiticcounts for a block of observations of sizeThe StolHT
with their analysis influenced by that in]. Also following ~algorithm from P2] for solving (1), specialized to the com-
the technique inq5], [19] presents an asynchronous parallgPreéssed sensing setting, is shown in Algorittim where
variant of the randomized Kaczmarz algorithm for solving denotes a step-size parameter. The recovery error of the
the linear systemdz = y when A is large and sparsel] algorithm de_pends on the block sizpewe refer the reader to
is interested in the same linear system withsymmetric [27] for details.
positive definite and presents an asynchronous solverthate
the convergence rate analysis again depends on the spa/lgprithm 1 StolHT Algorithm [27]
of the matrix. Asynchronous parallel stochastic coordinat input: s, ~, p(i), and stopping criterion
descent algorithms (which are clearly not designed forspar initialize: z! andt = 1
solutions) are proposed in§] and [17], which also follow the repeat
model of [5]. Other recent and relevant work on asynchronous  randomize: selecti, € [M] with probability p(i;)

1 3L
~112 __ ~112
ly = A%l = 57 ; o7 s = A3,

parallel algorithms and analysis frameworks includgs{p], proxy: bt =zt + o A, Wi, — Ay, x")
[12-26], [24), [24), [27]. identify: I'* = supp, (b?)

In the sparse recovery literature, popular greedy recovery estimate: pttl = bt
algorithms include IHT §], OMP [26], and CoSaMP 11]. t=t+1

Most relevant to our work is IHT, which we briefly review until halting criteriontrue
here. Starting with an initial estimation' = 0, the IHT output: & = ¢
algorithm computes the following recursive update,

o =H, (2 + A% (y — Az?)), @) In the asynchronous approach, each core will execute its

_ ) own slightly modified version of Algorithr. In order to avoid
where 7{;(a) is the thresholding operator that sets all bu{aving each core update the entire solution in shared memory
the largest (in magnitudej coefficients ofa to zero. The at each iteration, we propose to instead keéalg vectors €
work [27] proposes a stochastic variant of IHT called StolHTr~ jn shared memory. The tally will contain information on
which is the algorithm of focus here. Note thai’] also the estimated support locations identified by each core’stmo
proposes a stochastic variant of GradM#®][which is based gcent iteration.
on CoSaMP; our work here can easily be generalized to thesgpe steps executed bgach core at each iteration are

other algorithms as well. detailed in Algorithm2, where the tally vectop is available
for read and write by each core. Note that in Algorit@rthe
iteration numbert and the iterate:’ are local to each core.
Also note that in the tally update step, the tally is incretedn
Notation: We denote by ] the set{1,2,..., M} and let by (the core’s local iteration number) dif and decremented
p(1),...,p(M) be the probability distribution of an index byt —1 onT*"! (as mentioned in45], these operations can
selected at random from the dét/], so thath‘ilp(z') = 1. be performed atomically on most modern processors). This is
Let A* denote the conjugate transpose of the mattixFor to provide more weight to faster cores that are further along
a vectora € R", let supp,(a) be the operator that returnsin the algorithm and should thus be able to provide a better
the set of cardinalitys containing the indices of the largestsupport estimate, and less weight to slower cores. In order
(in magnitude) elements af. For a setl’, let ar denote the to maintain only the information from each core’s most recen
vector a with everything except the components indexed iiteration, the tally contribution from the previous itaéoat¢ — 1
I'c{1,...,n} set to zero. is removed.

IIl. ASYNCHRONOUSSPARSERECOVERY WITH TALLY
UPDATES



It is worth mentioning thatnconsistent reads, where com- the asynchronous approach using Algorit2ntould lead to
ponents of the shared memory vector variables may be writtgpeedups as long as the tafijpecomes accurate fast enough.
by some cores while being simultaneously read by others, is
discussed in the current literature on asynchronous cangput 10
It is desirable to incorporate this feature into any modeld a 10
analyses to more faithfully represent modern computationa -
architectures. Our approach is not immune to inconsistent
reads of the tallyy by any means, however, the hope is that the
algorithm will be more robust to inconsistent readg)dhan a
current solution estimate since its use in the algorithmasem
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passive, and that an inconsistently read version efill still 107
provide valuable information on the support locations @& th 10°
signal. Although not addressed here, analyses and simogati e o Do s
of this impact are certainly of interest. CO T Qe YT
_ : Fig. 1: Mean recovery error over 50 trials versus iteratibn o
Algorithm 2 Asynchronous StolHT lteration StolHT and a modified version of StolHT. In the modified
Each core performs the following at each iteration. The/talStolHT, we execute Algorithni where the estimation step is
vector ¢ is available to each core. - _ performed by projecting’ ontoI'* UT at each iteration, where
rando.mlze. stelectit € [zvg] WI'[P probab|I|typ(it) T has accurac T;T| _
proxy: b =z' + 350547, (Yb;, — Ap;, 1) 7]
identify: I'* = supp,(b?)
. T¥ = supp,(9)
eStImate v - thUTt 0 Standard, +/- 1 Standard Deviation
update ta”y: ¢F' = ¢F' +1 Asyrc, +/i 1 Standard Deviation
¢Ft—1 = QZSI‘t—l — (t — 1) 400 __‘__i;?:iasez:aﬂ
t=t+1
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IV. SIMULATIONS
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In this section, we provide encouraging experimental tssul
for the proposed asynchronous tally update scheme. In all of 250
the experiments, we take the signal dimensioa 1000, the
sparsity levels = 20, the number of measuremenis= 300, sl T

. . e 0 5 10 15 20 25 30 35 40 45 50
the block sizeb = 15, the step-sizey = 1, and the initial Number of Cores
estimatez! = 0. The algorithms exit oncéy — Az!||> drops -
below the toleranc&0~" or a maximum of 1500 iterations is Standard, +/ 1 Standard Deviation
reaChed, Asyne, +- 1 Standard Deviation

== Standard Mean
== Async Mean

400

A. SolHT with an Accurate Support Estimate

Our first experiment provides evidence that performing the
estimation step onto the top coefficients in addition to a
set that accurately describes the true signal support mall i
crease the convergence rate of the standard StolHT algorith
That is, we execute Algorithni with the modification that

ot = btrtu:?’ where T estimates the true suppdft with
200

IT| = s and accuracQ'T—‘%T| = a. Figurel compares the mean I Neb ) e'gfc @ %5 a0 45 50

recovery error as a function of iteration over 50 trials of th _ ) )

standard StolHT algorithm (Algorithra) with the modified Fi9- 2: Comparison of the number of time steps executed
StolHT algorithm as described for various valueswofndeed, Until convergence versus the number of cores used in the
for a > 0.5, fewer iterations are needed on average for tf@$ynchronous StolHT method. The heavy line denotes the
algorithm to converge. Whem —= 1, on average roughly Mean number of time steps over 500 trials, and the boundaries
half as many iterations as the standard algorithm are nee@&dhe shaded region indicatel standard deviation from the
for convergence. We emphasize that this experiment, agngan- (Upper) All cores are simulated to complete an i@mati
proof of concept, has no parallel implementation, and hent@ Single time step; (lower) half of the cores are “slow” and
iterations are comparable to runtime. This result suggbsis complete an iteration only once out of every four time steps.
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B. Asynchronous SoIHT interesting to explore the proposed idea in other settitigs.

Here, we simulate the execution of asynchronous Stolyould also be beneficial to develop theory for the proposed
with ¢ cores, where each core uses the iteration defined@RProach, perhaps building from the theory:in][and the cur-
Algorithm 2. For clarity, define dime step to be the amount ent literature analyzing asynchronous algorithms, actige
of time needed for the fastest core to complete an iteratidf#f incorporation of architecture realities such as intstest
of Algorithm 2. First, we assume each core takes the sarfRads.
amount of time to perform an iteration; thus, in a single time
step, allc¢ cores complete an iteration of Algorithtx We
also assume that an iteration of Algorithintakes a single ~ The work of Deanna Needell was partially supported by
time step. When executing theth time step, and hence theNSF CAREER grant #1348721 and the Alfred P. Sloan
t-th iteration for each core, every core utilizes the same deundation. The work of Tina Woolf was partially supported
Tt identified by the tally¢. Once each core completes itdy NSF CAREER grant #1348721.
estimation step, the tally is updated i4 from each core.
As soon asany core achieves the exit criteria at its local
iteration ¢, the algorithm terminates, and time steps are [1] H. Avron, A. Druinsky, and A. Gupta. Revisiting asynchaus linear

recorded as the number of time steps until exit is achieved. solvers: Provable convergence rate through randomizatianACM,
The upper plot of Figur displays the mean number of time ,; oo )on 2015.
pperp g9 play [2] D.P. Bertsekas and J.N. TsitsikliBarallel and distributed computation:

steps until exit, over 500 trials, for both the standard and numerical methods, volume 23. Prentice Hall, Englewood Cliffs, NJ,
asynchronous StolHT algorithms, plotted against the numbe = 1989.

. . [3] .T. Blumensath and M. Davies. Iterative hard threshajdior compres-
of cores used in the asynchronous method. The shaded regl(grlssive sensing Appl. Comput. Harmon, Anal., 27(3):265-274, 2009.

indicate +1 standard deviation from the mean. Since th@4] E. Candés, J. Romberg, and T. Tao. Robust uncertaifitgiptes: Exact
standard method does not depend on the number of cores, signal reconstruction from highly incomplete frequencyoimation.

. ) : IEEE Trans. Inform. Theory, 52(2):489-509, 2006.
horizontal lines are shown. Notice that the mean number of; ¢ Candoe gorg:)mbgfgy ané)T Tao. ‘Stable signal regofrem

time steps required in the asynchronous method is alwags les incomplete and inaccurate measuremen@mm. Pure Appl. Math.,
than the standard algorithm; therefore, a speedup in tlad tot  59(8):1207-1223, 2006.

. . . L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scut#@synchronous
time for the algorithm to converge is expected when execut parallel algorithms for nonconvex big-data optimizatidiiodel and

asynchronously. convergencearXiv preprint arXiv:1607.04818, 2016.
Next, we modify the previous experiment to simulate thd?] D. Davis. The asynchronous palm algorithm for nonsmauthconvex

; “ »  problems.arXiv preprint arXiv:1604.00526, 2016.
impact of slow cores. We take half of the cores to be “fast, 8] D. Davis, B. Edmunds, and M. Udell. The sound of apam piag:

meaning that they continue to update the shared tally at each Faster nonsmooth nonconvex optimization with stochasjmehronous
time step; the other half of the cores, however, are “slow” palm. arXiv preprint arXiv:1606.02338, 2016.

: : ] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fastédmental
and only complete an iteration and update the tally once ol aradient method with SUpport for non-strongly convex cosifaoobjec-

of every four time steps. The lower plot of Figu2edisplays tives. Proc. Adv. in Neural Processing Systems (NIPS), pages 1646—
the mean number of time steps until exit versus the number of 1654, 2014.

; ; [10] D. Donoho. Compressed sensinglEEE Trans. Inform. Theory,
cores in the asynchronous method. Eet 2, no improvement 52(4):1289-1306, 2006,

is gained from the asynchronous method on average, howeygs, J. buchi, M.I. Jordan, and B. McMahan. Estimation, optiation, and
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