
ar
X

iv
:1

70
1.

03
45

8v
1

 [c
s.

LG
]

12
 J

an
 2

01
7

An Asynchronous Parallel Approach to Sparse
Recovery

Deanna Needell
Department of Mathematical Sciences

Claremont McKenna College
Claremont, CA 91711, USA

Email: dneedell@cmc.edu

Tina Woolf
Institute of Mathematical Sciences

Claremont Graduate University
Claremont, CA 91711, USA
Email: tina.woolf@cgu.edu

Abstract—Asynchronous parallel computing and sparse re-
covery are two areas that have received recent interest. Asyn-
chronous algorithms are often studied to solve optimization
problems where the cost function takes the form

∑
M

i=1
fi(x),

with a common assumption that eachfi is sparse; that is, each
fi acts only on a small number of components ofx ∈ R

n.
Sparse recovery problems, such as compressed sensing, can be
formulated as optimization problems, however, the cost functions
fi are dense with respect to the components ofx, and instead
the signal x is assumed to be sparse, meaning that it has onlys
non-zeros wheres ≪ n. Here we address how one may use an
asynchronous parallel architecture when the cost functionsfi are
not sparse inx, but rather the signal x is sparse. We propose an
asynchronous parallel approach to sparse recovery via a stochas-
tic greedy algorithm, where multiple processors asynchronously
update a vector in shared memory containing information on the
estimated signalsupport. We include numerical simulations that
illustrate the potential benefits of our proposed asynchronous
method.

I. I NTRODUCTION

Technological advances in data gathering systems have led
to the rapid growth of big data in diverse applications. At
the same time, the recent emergence of inexpensive multicore
processors, with the number of cores on each workstation
on the rise, has motivated the study of parallel computing
strategies. This has presented a challenge to many existing
and popular algorithms that are designed to run iterativelyand
sequentially.

One possible approach to this problem issynchronous
parallel computing, which assigns tasks to multiple cores and
then waits for all cores to complete before the next step begins.
Of course, the drawback of this approach is that all cores
must wait for the slowest core to finish, even if the remaining
cores all complete their computation quickly. An alternative
approach, and one that has received much recent interest, is
asynchronous parallel computing. In an asynchronous system,
all cores run continuously, thus eliminating the idle time
present in the synchronous approach, and all cores have access
to shared memory and are able to make updates as needed.

Asynchronous algorithms are often studied to solve opti-
mization problems where the cost function takes the form∑M

i=1 fi(x). The decision variablex ∈ R
n is updated iter-

atively, and its current state is accessible in shared memory
by all processors. Many approaches to asynchronous parallel

computing for solving optimizations problems of this form
assume that eachfi is sparse, which means that eachfi
acts only on a small number of components ofx; therefore,
this implies that individual core computations only dependon
and update a small number of coordinates ofx (e.g., [11],
[25]). The benefit of this setup is that memory overwrites are
rare, making it unlikely for the progress of faster cores to be
overwritten by updates from slower cores.

There has also been a surge of interest in sparse recov-
ery problems; for instance, literature incompressed sensing
(e.g., [4], [5], [10]) addresses the problem of recovering a
sparse vectorx ∈ R

n from few nonadaptive, linear, and
possibly noisy measurements of the formy = Ax+ z, where
A ∈ R

m×n is the measurement matrix andz ∈ R
m is

noise. Recoveringx from the noisy measurementsy can be
formulated as the optimization problem,

min
x̃∈Rn

1

2m
‖y −Ax̃‖22 subject to ‖x̃‖0 ≤ s. (1)

It is then natural to ask whether we can apply asynchronous
parallel computing to solve (1). The challenge, however, is
that the cost function depends onA, which is typically not
taken to be sparse (e.g.,A is commonly taken to have standard
i.i.d. Gaussian entries). This is in stark contrast to the typical
assumptions made in the asynchronous parallel computing
literature since the cost function isdense in the components
of x, and instead the signalx is assumed to be sparse. Indeed,
since the signalx is sparse, it is very likely that the same
non-zero entries will be updated from one iteration to the next,
while the remaining entries are set to zero to maintain a sparse
solution. If executed asynchronously, then memory overwrites
would be frequent, and a slow core could easily “undo” the
progress of previous updates by faster cores.

Contribution: In this paper, we consider one of the stochas-
tic greedy algorithms studied in [22] for sparse recovery.
Focusing on the compressed sensing problem, we propose a
strategy for utilizing the algorithm asynchronously despite the
matrixA (and thus the cost function) not being sparse. Instead
of having the current solution estimate in shared memory, a
current estimate of the location of the non-zeros of the signal
will be shared and available to each core. Thus, we provide a
solution that merges asynchronous parallel architectureswith

http://arxiv.org/abs/1701.03458v1

sparse recovery problems that have iterative updates whichare
not sparse, and will be a springboard to other more general
approaches.

II. RELATION TO PRIOR WORK

The seminal text [2] provides foundational work for parallel
and distributed optimization algorithms. More recently, [25]
studies an asynchronous variant of stochastic gradient descent
called HOGWILD!. A key assumption in their analysis is
that the cost function of the optimization problem is sparse
with respect to the decision variable, meaning that most
gradient updates only modify small and distinct parts of
the solution. Much of the recent literature on asynchronous
parallel computing borrows from the framework proposed in
[25]. [11] also studies stochastic optimization when the cost
function is sparse, and proposes two asynchronous algorithms
with their analysis influenced by that in [25]. Also following
the technique in [25], [19] presents an asynchronous parallel
variant of the randomized Kaczmarz algorithm for solving
the linear systemAx = y when A is large and sparse. [1]
is interested in the same linear system withA symmetric
positive definite and presents an asynchronous solver; notethat
the convergence rate analysis again depends on the sparsity
of the matrix. Asynchronous parallel stochastic coordinate
descent algorithms (which are clearly not designed for sparse
solutions) are proposed in [18] and [17], which also follow the
model of [25]. Other recent and relevant work on asynchronous
parallel algorithms and analysis frameworks includes [6]–[9],
[12]–[16], [20], [24], [27].

In the sparse recovery literature, popular greedy recovery
algorithms include IHT [3], OMP [26], and CoSaMP [21].
Most relevant to our work is IHT, which we briefly review
here. Starting with an initial estimationx1 = 0, the IHT
algorithm computes the following recursive update,

xt+1 = Hs(x
t +A⋆(y −Axt)), (2)

where Hs(a) is the thresholding operator that sets all but
the largest (in magnitude)s coefficients ofa to zero. The
work [22] proposes a stochastic variant of IHT called StoIHT,
which is the algorithm of focus here. Note that [22] also
proposes a stochastic variant of GradMP [23] which is based
on CoSaMP; our work here can easily be generalized to these
other algorithms as well.

III. A SYNCHRONOUSSPARSERECOVERY WITH TALLY

UPDATES

Notation: We denote by[M] the set{1, 2, . . . ,M} and let
p(1), . . . , p(M) be the probability distribution of an indexi
selected at random from the set[M], so that

∑M

i=1 p(i) = 1.
Let A⋆ denote the conjugate transpose of the matrixA. For
a vectora ∈ R

n, let supps(a) be the operator that returns
the set of cardinalitys containing the indices of the largest
(in magnitude) elements ofa. For a setΓ, let aΓ denote the
vector a with everything except the components indexed in
Γ ⊂ {1, . . . , n} set to zero.

As described above, suppose we observey = Ax + z,
wherex is s-sparse and supported onT ⊂ {1, . . . , n} (that is,
‖x‖0 = |{i : xi 6= 0}| = |T | ≤ s ≪ n). To recoverx from
the noisy measurementsy, we aim to solve the optimization
problem (1). Note that we can also express the cost function
in (1) as

1

2m
‖y −Ax̃‖22 =

1

M

M∑

i=1

1

2b
‖ybi −Abi x̃‖

2
2,

wherey has been decomposed into non-overlapping vectors
ybi of sizeb, Abi has been decomposed into non-overlapping
b× n submatrices ofA, andM = m/b (which for simplicity
we assume is integral). Notice that the cost function now takes
the form

∑M

i=1 fi(x), and eachfi(x) = 1
2bM ‖ybi − Abix‖

2
2

accounts for a block of observations of sizeb. The StoIHT
algorithm from [22] for solving (1), specialized to the com-
pressed sensing setting, is shown in Algorithm1, where
γ denotes a step-size parameter. The recovery error of the
algorithm depends on the block sizeb; we refer the reader to
[22] for details.

Algorithm 1 StoIHT Algorithm [22]

input: s, γ, p(i), and stopping criterion
initialize: x1 and t = 1
repeat

randomize: selectit ∈ [M] with probabilityp(it)
proxy: bt = xt + γ

Mp(it)
A⋆

bit
(ybit − Abit

xt)

identify: Γt = supps(b
t)

estimate: xt+1 = btΓt

t = t+ 1
until halting criteriontrue
output: x̂ = xt

In the asynchronous approach, each core will execute its
own slightly modified version of Algorithm1. In order to avoid
having each core update the entire solution in shared memory
at each iteration, we propose to instead keep atally vectorφ ∈
R

n in shared memory. The tallyφ will contain information on
the estimated support locations identified by each core’s most
recent iteration.

The steps executed byeach core at each iteration are
detailed in Algorithm2, where the tally vectorφ is available
for read and write by each core. Note that in Algorithm2 the
iteration numbert and the iteratext are local to each core.
Also note that in the tally update step, the tally is incremented
by t (the core’s local iteration number) onΓt and decremented
by t− 1 on Γt−1 (as mentioned in [25], these operations can
be performed atomically on most modern processors). This is
to provide more weight to faster cores that are further along
in the algorithm and should thus be able to provide a better
support estimate, and less weight to slower cores. In order
to maintain only the information from each core’s most recent
iteration, the tally contribution from the previous iteration t−1
is removed.

2

It is worth mentioning thatinconsistent reads, where com-
ponents of the shared memory vector variables may be written
by some cores while being simultaneously read by others, is
discussed in the current literature on asynchronous computing.
It is desirable to incorporate this feature into any models and
analyses to more faithfully represent modern computational
architectures. Our approach is not immune to inconsistent
reads of the tallyφ by any means, however, the hope is that the
algorithm will be more robust to inconsistent reads ofφ than a
current solution estimate since its use in the algorithm is more
passive, and that an inconsistently read version ofφ will still
provide valuable information on the support locations of the
signal. Although not addressed here, analyses and simulations
of this impact are certainly of interest.

Algorithm 2 Asynchronous StoIHT Iteration

Each core performs the following at each iteration. The tally
vectorφ is available to each core.

randomize: selectit ∈ [M] with probability p(it)
proxy: bt = xt + γ

Mp(it)
A⋆

bit
(ybit −Abit

xt)

identify: Γt = supps(b
t)

T̃ t = supps(φ)
estimate: xt+1 = bt

Γt∪T̃ t

update tally: φΓt = φΓt + t
φΓt−1 = φΓt−1 − (t− 1)
t = t+ 1

IV. SIMULATIONS

In this section, we provide encouraging experimental results
for the proposed asynchronous tally update scheme. In all of
the experiments, we take the signal dimensionn = 1000, the
sparsity levels = 20, the number of measurementsm = 300,
the block sizeb = 15, the step-sizeγ = 1, and the initial
estimatex1 = 0. The algorithms exit once‖y −Axt‖2 drops
below the tolerance10−7 or a maximum of 1500 iterations is
reached.

A. StoIHT with an Accurate Support Estimate

Our first experiment provides evidence that performing the
estimation step onto the tops coefficients in addition to a
set that accurately describes the true signal support will in-
crease the convergence rate of the standard StoIHT algorithm.
That is, we execute Algorithm1 with the modification that
xt+1 = bt

Γt∪T̃
, where T̃ estimates the true supportT with

|T̃ | = s and accuracy|T̃∩T |

|T̃ |
= α. Figure1 compares the mean

recovery error as a function of iteration over 50 trials of the
standard StoIHT algorithm (Algorithm1) with the modified
StoIHT algorithm as described for various values ofα. Indeed,
for α > 0.5, fewer iterations are needed on average for the
algorithm to converge. Whenα = 1, on average roughly
half as many iterations as the standard algorithm are needed
for convergence. We emphasize that this experiment, as a
proof of concept, has no parallel implementation, and hence
iterations are comparable to runtime. This result suggeststhat

the asynchronous approach using Algorithm2 could lead to
speedups as long as the tallyφ becomes accurate fast enough.

0 50 100 150 200 250 300 350 400 450
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iteration

M
ea

n
R

ec
ov

er
y

E
rr

or

Standard
α = 1.0

α = 0.9
α = 0.8
α = 0.7

α = 0.6
α = 0.5

Fig. 1: Mean recovery error over 50 trials versus iteration of
StoIHT and a modified version of StoIHT. In the modified
StoIHT, we execute Algorithm1 where the estimation step is
performed by projectingbt ontoΓt∪T̃ at each iteration, where
T̃ has accuracy|T̃∩T |

|T̃ |
= α.

Fig. 2: Comparison of the number of time steps executed
until convergence versus the number of cores used in the
asynchronous StoIHT method. The heavy line denotes the
mean number of time steps over 500 trials, and the boundaries
of the shaded region indicate±1 standard deviation from the
mean. (Upper) All cores are simulated to complete an iteration
in a single time step; (lower) half of the cores are “slow” and
complete an iteration only once out of every four time steps.

3

B. Asynchronous StoIHT

Here, we simulate the execution of asynchronous StoIHT
with c cores, where each core uses the iteration defined in
Algorithm 2. For clarity, define atime step to be the amount
of time needed for the fastest core to complete an iteration
of Algorithm 2. First, we assume each core takes the same
amount of time to perform an iteration; thus, in a single time
step, all c cores complete an iteration of Algorithm2. We
also assume that an iteration of Algorithm1 takes a single
time step. When executing thet-th time step, and hence the
t-th iteration for each core, every core utilizes the same set
T̃ t identified by the tallyφ. Once each core completes its
estimation step, the tally is updated viaΓt from each core.
As soon asany core achieves the exit criteria at its local
iteration t, the algorithm terminates, andt time steps are
recorded as the number of time steps until exit is achieved.
The upper plot of Figure2 displays the mean number of time
steps until exit, over 500 trials, for both the standard and
asynchronous StoIHT algorithms, plotted against the number
of cores used in the asynchronous method. The shaded regions
indicate ±1 standard deviation from the mean. Since the
standard method does not depend on the number of cores,
horizontal lines are shown. Notice that the mean number of
time steps required in the asynchronous method is always less
than the standard algorithm; therefore, a speedup in the total
time for the algorithm to converge is expected when executed
asynchronously.

Next, we modify the previous experiment to simulate the
impact of slow cores. We take half of the cores to be “fast,”
meaning that they continue to update the shared tally at each
time step; the other half of the cores, however, are “slow”
and only complete an iteration and update the tally once out
of every four time steps. The lower plot of Figure2 displays
the mean number of time steps until exit versus the number of
cores in the asynchronous method. Forc = 2, no improvement
is gained from the asynchronous method on average, however,
improvement is observed for the larger values ofc tested.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed an asynchronous parallel
variant of an existing stochastic greedy algorithm for sparse
recovery. Our method is distinct from much of the existing
literature on asynchronous algorithms because: 1) sparsity
assumptions on the cost function, which are common to
the existing literature, are not necessary, and 2) the current
solution iterate is not available in shared memory, but instead
a tally vector containing the latest information from the cores
on the estimated support of the signal is shared and utilized;
this approach provides necessary robustness to asynchronous
updates and inconsistent reads even when traditional updates
cannot be made sparse.

A similar approach could also be applied to the sec-
ond stochastic greedy algorithm studied in [22], namely,
StoGradMP. Although we specialized to the compressed sens-
ing problem, both StoIHT and StoGradMP are studied for
general sparse recovery problems in [22]; thus, it would be

interesting to explore the proposed idea in other settings.It
would also be beneficial to develop theory for the proposed
approach, perhaps building from the theory in [22] and the cur-
rent literature analyzing asynchronous algorithms, and include
the incorporation of architecture realities such as inconsistent
reads.

ACKNOWLEDGMENT

The work of Deanna Needell was partially supported by
NSF CAREER grant #1348721 and the Alfred P. Sloan
Foundation. The work of Tina Woolf was partially supported
by NSF CAREER grant #1348721.

REFERENCES

[1] H. Avron, A. Druinsky, and A. Gupta. Revisiting asynchronous linear
solvers: Provable convergence rate through randomization. J. ACM,
62(6):51, 2015.

[2] D.P. Bertsekas and J.N. Tsitsiklis.Parallel and distributed computation:
numerical methods, volume 23. Prentice Hall, Englewood Cliffs, NJ,
1989.

[3] T. Blumensath and M. Davies. Iterative hard thresholding for compres-
sive sensing.Appl. Comput. Harmon. Anal., 27(3):265–274, 2009.

[4] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information.
IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[5] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from
incomplete and inaccurate measurements.Comm. Pure Appl. Math.,
59(8):1207–1223, 2006.

[6] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari. Asynchronous
parallel algorithms for nonconvex big-data optimization:Model and
convergence.arXiv preprint arXiv:1607.04818, 2016.

[7] D. Davis. The asynchronous palm algorithm for nonsmoothnonconvex
problems.arXiv preprint arXiv:1604.00526, 2016.

[8] D. Davis, B. Edmunds, and M. Udell. The sound of apalm clapping:
Faster nonsmooth nonconvex optimization with stochastic asynchronous
palm. arXiv preprint arXiv:1606.02338, 2016.

[9] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives. Proc. Adv. in Neural Processing Systems (NIPS), pages 1646–
1654, 2014.

[10] D. Donoho. Compressed sensing.IEEE Trans. Inform. Theory,
52(4):1289–1306, 2006.

[11] J. Duchi, M.I. Jordan, and B. McMahan. Estimation, optimization, and
parallelism when data is sparse.Proc. Adv. in Neural Processing Systems
(NIPS), pages 2832–2840, 2013.

[12] J.C. Duchi, S. Chaturapruek, and C. Ré. Asynchronous stochastic convex
optimization. arXiv preprint arXiv:1508.00882, 2015.

[13] H.R. Feyzmahdavian, A. Aytekin, and M. Johansson. An asynchronous
mini-batch algorithm for regularized stochastic optimization. Proc. IEEE
Conf. Decision and Control (CDC), pages 1384–1389, 2015.

[14] Z. Huo and H. Huang. Asynchronous stochastic gradient descent
with variance reduction for non-convex optimization.arXiv preprint
arXiv:1604.03584, 2016.

[15] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Asaga: Asynchronous
parallel saga.arXiv preprint arXiv:1606.04809, 2016.

[16] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic
gradient for nonconvex optimization.Proc. Adv. in Neural Processing
Systems (NIPS), pages 2737–2745, 2015.

[17] J. Liu and S.J. Wright. Asynchronous stochastic coordinate descent: Par-
allelism and convergence properties.SIAM J. Optimization, 25(1):351–
376, 2015.

[18] J. Liu, S.J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous
parallel stochastic coordinate descent algorithm.J. Machine Learning
Research, 16(285-322):1–5, 2015.

[19] J. Liu, S.J. Wright, and S. Sridhar. An asynchronous parallel randomized
Kaczmarz algorithm.arXiv preprint arXiv:1401.4780, 2014.

[20] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and
M.I. Jordan. Perturbed iterate analysis for asynchronous stochastic
optimization. arXiv preprint arXiv:1507.06970, 2015.

4

[21] D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples.Appl. Comput. Harmon. Anal.,
26(3):301–321, 2009.

[22] N. Nguyen, D. Needell, and T. Woolf. Linear convergenceof stochastic
iterative greedy algorithms with sparse constraints.arXiv preprint
arXiv:1407.0088, 2014.

[23] N. H. Nguyen, S. Chin, and T. D. Tran. A unified iterative greedy
algorithm for sparsity-constrained optimization. 2013. Submitted.

[24] Z. Peng, Y. Xu, M. Yan, and W. Yin. Arock: an algorithmic frame-
work for asynchronous parallel coordinate updates.arXiv preprint
arXiv:1506.02396, 2015.

[25] B. Recht, C. Ré, S. Wright, and F. Niu. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent.Proc. Adv. in
Neural Processing Systems (NIPS), pages 693–701, 2011.

[26] J. Tropp and A. Gilbert. Signal recovery from partial information via
orthogonal matching pursuit.IEEE Trans. Inform. Theory, 53(12):4655–
4666, 2007.

[27] S.Y. Zhao and W.J. Li. Fast asynchronous parallel stochastic gradient
decent.arXiv preprint arXiv:1508.05711, 2015.

5

	I Introduction
	II Relation to Prior Work
	III Asynchronous Sparse Recovery with Tally Updates
	IV Simulations
	IV-A StoIHT with an Accurate Support Estimate
	IV-B Asynchronous StoIHT

	V Conclusions and Future Work
	References

