
ON THE PERFORMANCE OF RANDOM RESHUFFLING IN STOCHASTIC LEARNING

Bicheng Ying Kun Yuan Stefan Vlaski Ali H. Sayed

Department of Electrical Engineering
University of California, Los Angeles

ABSTRACT
In empirical risk optimization, it has been observed that gradient de-
scent implementations that rely on random reshuffling of the data
achieve better performance than implementations that rely on sam-
pling the data randomly and independently of each other. Recent
works have pursued justifications for this behavior by examining
the convergence rate of the learning process under diminishing step-
sizes. Some of these justifications rely on loose bounds, or their con-
clusions are dependent on the sample size which is problematic for
large datasets. This work focuses on constant step-size adaptation,
where the agent is continuously learning. In this case, convergence is
only guaranteed to a small neighborhood of the optimizer albeit at a
linear rate. The analysis establishes analytically that random reshuf-
fling outperforms independent sampling by showing that the iterate
at the end of each run approaches a smaller neighborhood of size
O(µ2) around the minimizer rather than O(µ). Simulation results
illustrate the theoretical findings.

Index Terms— Random reshuffling, stochastic gradient de-
scent, mean-square performance, convergence analysis.

1. THE RANDOM RESHUFFLING IMPLEMENTATION

We consider minimizing an empirical risk function J(w), which is
defined as a sample average of loss values over a possibly large but
finite training set:

w? ∆
= arg min

w∈RM

J(w)
∆
=

1

N

N∑
n=1

Q(w;xn), (1)

where the {xn}Nn=1 are training data samples and the loss functions
Q(w;xn) are assumed differentiable. We assume the empirical risk
J(w) is strongly-convex so that the minimizer, w?, is unique. Prob-
lems of the form (1) are common in many areas of machine learning
including linear regression, logistic regression and their regularized
versions.

When the size of the dataset N is large, it is impractical to
solve (1) directly with traditional gradient descent. One simple,
yet powerful approach is to employ the stochastic gradient method
(SGD) [1–7]. In this method, at every iteration, rather than compute
the full gradient∇wJ(w) on the entire data set, the algorithm picks
one index ni at random, and employs ∇wQ(w;xni) to approxi-
mate ∇wJ(w). Specifically, at iteration i, the update for estimating
the minimizer is of the form [8]:

wi = wi−1 − µ∇wQ(wi−1;xni), (2)

This work was supported in part by NSF grants CCF-1524250 and
ECCS-1407712. Emails:{ybc,kunyuan,svlaski,sayed}@ucla.edu

where µ is the step-size parameter. Note that we are using boldface
notation to refer to random variables. Normally, the index ni is
uniformly distributed over the discrete set {1, 2, . . . , N}.

However, it has been noted in the literature [9–12] that incorpo-
rating random reshuffling into the gradient descent implementation
helps achieve better performance. In a random reshuffling imple-
mentation, the gradient descent algorithm is run multiple times over
the data where each run is indexed by k ≥ 1 and is referred to as
an epoch. For each run, the original data is first reshuffled so that
the sample of index i becomes the sample of index σk(i), where the
symbol σ represents a uniform random permutation of the indices.
In this way, we can express the random reshuffling algorithm for the
k−th run in the following manner:

wk
i = wk

i−1 − µ∇wQ(wk
i−1;xσk(i)), i = 1, . . . , N (3)

with the boundary condition:

wk
0 = wk−1

N (4)

In other words, the initial condition for run k is the last iterate from
run k − 1. The boldface notation for the symbols w and σ in (3)
is meant to emphasize the random nature of these variables due to
the randomness in the permutation operation. The uniformity of the
permutation function implies the following useful properties:

σk(i) 6=σk(j), 1 ≤ i 6= j ≤ N (5)

P[σk(i) = n] =
1

N
, 1 ≤ n ≤ N (6)

P[σk(i+ 1) = n |σk(1 : i)] =


1

N − i , n /∈ σk(1:i)

0 , n ∈ σk(1:i)

(7)

where σk(1:i) represents the collection of permuted indices for the
original samples numbered 1 through i.

Recent works [10, 11, 13] have pursued justifications for the en-
hanced behavior of random reshuffling implementations over inde-
pendent sampling (with replacement) by examining the convergence
rate of the learning process under diminishing step-sizes. Some of
these justifications rely on loose bounds, or their conclusions are de-
pendent on the sample size which is problematic for large datasets.
Also, some of the results only establish that random reshuffling will
not degrade performance relative to the stochastic gradient descent
implementation. In this work, we focus on constant step-size adap-
tation, where the agent is continuously learning. In this case, con-
vergence is only guaranteed to a small neighborhood of the opti-
mizer albeit at a linear rate. The analysis will establish analytically
that random reshuffling outperforms independent sampling (with re-
placement) by showing that the mean-square-error of the iterate at

the end of each run in the random reshuffling strategy will be in the
order of O(µ2) rather than O(µ), which is a significant improve-
ment. Simulation results will illustrate this conclusion.

1.1. Weight-Error Dynamics

To analyze the behavior of the reshuffling algorithm (3), we first
introduce the gradient noise process, which is the difference between
the true gradient of the empirical risk and its approximation by the
gradient of the loss function, i.e., we rewrite (3) in the form:

wk
i = wk

i−1 − µ∇wJ(wk
i−1) +

µ
[
∇wJ(wk

i−1)−∇wQ(wk
i−1;xσk(i))

]
︸ ︷︷ ︸

∆
= s

σk(i)
(wk

i−1)

(8)

where the notation sσk(i)(·) refers to the gradient noise process. One
main difficulty for the analysis in the subsequent derivations arises
from the fact that the gradient noise sσk(i)(w

k
i−1) is not indepen-

dent of past selections, σk(1:i − 1). However, this same noise is
independent of index choices over different epochs, σk′(1:i − 1),
for k′ 6= k. For ease of reference, we introduce the error vector and
the Hessian matrix of the empirical risk at the optimizer and denote
them by:

w̃k
i

∆
= w? −wk

i (9)

H
∆
= ∇2

wJ(w?) (10)

Assumption 1 (CONDITION ON LOSS FUNCTION). It is assumed
that Q(w;xn) is differentiable and has a δn-Lipschitz continuous
gradient, i.e., for every n = 1, . . . , N and any w1, w2 ∈ RM :

‖∇wQ(w1;xn)−∇wQ(w2;xn)‖ ≤ δn‖w1 − w2‖ (11)

where δn > 0. We also assume J(w) is ν-strongly convex:(
∇wJ(w1)−∇wJ(w2)

)T
(w1 − w2) ≥ ν‖w1 − w2‖2 (12)

�

If we introduce δ = max{δ1, δ2, · · · , δN}, then each∇wQ(w;xn)
and∇wJ(w) are also δ-Lipschitz continuous.

Assumption 2 (HESSIAN IS LIPSCHITZ CONTINUOUS). The risk
function J(w) has a Lipschitz continuous Hessian matrix, i.e., there
exists a constant κ ≥ 0, such that

‖∇2
wJ(w1)−∇2

wJ(w2)‖ ≤ κ‖w1 − w2‖ (13)

�

Under this last assumption, the gradient vector, ∇wJ(w), can be
expressed in Taylor expansion in the form [14, p. 378]:

∇wJ(w) = ∇2
wJ(w?)(w − w?) + ξ(w), ∀w (14)

where the residue term satisfies:

‖ξ(w)‖ ≤ κ

2
‖w − w?‖2 (15)

Subtracting w? from both sides of (8) gives

w̃k
i = (I − µH)w̃k

i−1 − µsσk(i)(w
k
i−1) + µξ(wk

i−1) (16)

1.2. Properties of the Gradient Noise Process

Recursion (16) describes the evolution of the error dynamics of the
learning algorithm. To proceed with the analysis, we need to high-
light some properties of the gradient noise process.

To begin with, we observe that, conditioned on prior data, the
gradient noise is generally biased since

E
[
sσk(i)(w

k
i−1) |wk

i−1,σ
k(1 : i− 1)

]
=

1

N − i+ 1

∑
n/∈σk(1 : i−1)

sn(wk
i−1)

=∇wJ(wk
i−1)− 1

N − i+ 1

∑
n/∈σk(1 : i−1)

Q(wk
i−1;xn) (17)

and the difference (17) is nonzero in general in view of the definition
(1). In comparison, it is easy to check that the following conditional
mean is zero:

E
[
sσk(i)(w

k
0)
∣∣∣wk

0

]
(6)
=

1

N

N∑
n=1

[∇J(wk
0)−Q(wk

0 ;xn)]

= 0 (18)

This second property motivates us to expand (16) into the following
error recursion by adding and subtracting the same gradient noise
term evaluated atwk

0 :

w̃k
i =(I − µH)w̃k

i−1 − µsσk(i)(w
k
0)

− µ
(
sσk(i)(w

k
i−1)− sσk(i)(w

k
0)
)︸ ︷︷ ︸

noise mismatch

+µξ(wk
i−1) (19)

Iterating (19) and using (4) we can establish the following useful
relation, which we call upon in the sequel:

w̃k+1
0 = (I − µH)Nw̃k

0 − µ
N∑
i=1

(I − µH)N−isσk(i)(w
k
0)

− µ
N∑
i=1

(I − µH)N−i
(
sσk(i)(w

k
i−1)− sσk(i)(w

k
0)
)

+ µ

N∑
i=1

(I − µH)N−iξ(wk
i−1) (20)

2. CONVERGENCE ANALYSIS

We next provide two results that establish the stability and perfor-
mance of the random reshuffling algorithm. The first lemma below
establishes in (21) the convergence of every iterate wk

i to a neigh-
borhhod of size O(µ) around w? for inifinitely many epoch runs.
The second lemma focuses on the convergence of the starting point
of each epoch and establishes in (31) that it actually approaches a
smaller neighborhood of size O(µ2) around w?.

Lemma 1 (ACCURACY OF ITERATES). Under assumptions 1 and
2, it holds for sufficiently small step-sizes that

lim sup
k→∞

E ‖wk
i − w?‖2 = O(µ), 1 ≤ i ≤ N (21)

lim sup
k→∞

E ‖wk
i − w?‖4 = O(µ2), 1 ≤ i ≤ N (22)

Proof. In a manner similar to (18), we can verify that

Eσ[sσk(i)(w
k
i−1) |wk

i−1] = 0, ∀ i, k (23)

Now, using the mean-value theorem [14, p.744], we can rewrite (8)
into:

w̃k
i = (I − µHk

i−1)w̃k
i−1 − µsσk(i)(w

k
i−1) (24)

where

Hk
i−1

∆
=

∫ 1

0

∇2
wJ(w? − rw̃k

i−1)dr (25)

After squarring (24), taking the expectation conditioned on wk
i−1,

and cancelling out the cross-term using (23), we obtain:

E [‖w̃k
i ‖2 |wk

i−1] ≤‖I − µHk
i−1‖2‖w̃k

i−1‖2+

µ2E ‖sσk(i)(w
k
i−1) |wk

i−1‖2 (26)

Note that it is critical to condition only on wk
i−1, and not on

σk(1:i− 1), in order to remove the cross-term. Otherwise, the
cross-term will not be zero because of (17). Next, we recall that

‖I−µHk
i−1‖2 ≤ max{(1−µδ)2, (1−µν)2} = 1−O(µ) (27)

where ν and δ are the strongly-convex and gradient Lipschitz con-
stants for the risk function J(w). Moreover, the gradient noise vari-
ance satisfies:

E ‖sσk(i)(w
k
i−1) |wk

i−1‖2 =
1

N

N∑
n=1

‖sn(wk
i−1)‖2

≤ β2
e‖w̃k

i−1‖2 + σ2
e (28)

where β2
e and σ2

e are some data-related non-negative constants and
the inequality in (28) was established in [8, Lemma 1]. Combining
(24), (27), and (28), we conclude that

lim sup
k→∞

E ‖w̃k
i ‖2 = O(µ) (29)

Likewise, using an argument similar to [14, pp. 352-355] we can
establish the validity of (22).

We can provide a more accurate bound about the size of the
error for the starting points of the various runs by exploiting another
useful property of the gradient noise process, namely, the fact that

1

N

N∑
i=1

sσk(i)(w) =
1

N

N∑
i=1

si(w) ≡ 0, ∀w (30)

This property does not hold for traditional stochastic gradient de-
scent implementations with data replacement.

Lemma 2 (ACCURACY OF STARTING POINTS). Under assump-
tions 1 and 2, the starting point of each run satisfies

lim sup
k→∞

E ‖wk
0 − w?‖2 = O(µ2) (31)

Proof. Squaring (20), conditioning on w̃k
0 , and using Jensen’s in-

equality gives:

E
[
‖w̃k+1

0 ‖2 | w̃k
0

]
≤ 1

t
E

∥∥∥∥∥(I − µH)Nw̃k
0 − µ

N∑
i=1

(I − µH)N−isσk(i)(w
k
0)

∥∥∥∥∥
2

︸ ︷︷ ︸
,A

+
2µ2

1− t E

∥∥∥∥∥
N∑
i=1

(I − µH)N−i
(
sσk(i)(w

k
i−1)− sσk(i)(w

k
0)
)∥∥∥∥∥

2

︸ ︷︷ ︸
,B

+
2µ2

1− t E

∥∥∥∥∥
N∑
i=1

(I − µH)N−iξ(wk
i−1)

∥∥∥∥∥
2

︸ ︷︷ ︸
,C

(32)

for any 0 < t < 1. Let us examine the terms in (32). To begin with:

A
(18)

≤ ‖I − µH‖2N‖w̃k
0‖2 + µ2E

∥∥∥∥∥
N∑
i=1

(I − µH)N−isσk(i)(w
k
0)

∥∥∥∥∥
2

(33)

while

B
(a)

≤ N

N∑
i=1

E
∥∥∥(I − µH)N−i

(
sσk(i)(w

k
i−1)− sσk(i)(w

k
0)
)∥∥∥2

(b)

≤ N
N∑
i=1

‖(I − µH)N−i‖2E
∥∥∥sσk(i)(w

k
i−1)− sσk(i)(w

k
0)
∥∥∥2

(c)

≤ N
N∑
i=1

E
∥∥∥sσk(i)(w

k
i−1)− sσk(i)(w

k
0)
∥∥∥2

(34)

where step (a) is due to Jensen’s inequality:∥∥∥∥∥
N∑
i=1

xi

∥∥∥∥∥
2

= N2

∥∥∥∥∥
N∑
i=1

1

N
xi

∥∥∥∥∥
2

≤ N
N∑
i=1

‖xi‖2 (35)

step (b) is due to the sub-multiplicative property of norms, and step
(c) assumes a small enough µ so that

‖(I − µH)N−i‖2 ≤
(

max{1− µν, 1− µδ}
)2N−2i ≤ 1 (36)

With regards to the term involving the gradient noise difference
in (34), we have:

‖sσk(i)(w
k
i−1)− sσk(i)(w

k
0)‖

(a)

≤ ‖∇J(wk
i−1)−∇J(wk

0)‖

+ ‖∇Q(wk
i−1;xσk(i))−∇Q(wk

0 ;xσk(i))‖
(11)

≤ δ‖wk
i−1 −wk

0‖+ δ‖wk
i−1 −wk

0‖

(3)
= 2δµ

∥∥∥∥∥
i−1∑
n=1

∇Q(wk
n−1;xσk(n))

∥∥∥∥∥
(b)

≤ 2δµ

i−1∑
n=1

(
δ
∥∥∥wk

n−1 − w?
∥∥∥+

∥∥∇Q(w?;xσk(n))
∥∥) (37)

where (a) follows from the triangle inequality, and (b) follows from
the triangle inequality and the Lipschitz assumption (11). To sim-
plify the notation, we introduce the constant:

K ∆
= max

n∈{1,...,N}

∥∥∇Q(w?;xσk(n))
∥∥ (38)

After substituting (37) into (34), we obtain:

B ≤ 4δ2µ2N

N∑
i=1

E

(
i−1∑
n=1

{
δ
∥∥∥wk

n−1 − w?
∥∥∥+K

})2

(35)

≤ 4δ2µ2N

N∑
i=1

(i− 1)

i−1∑
n=1

(
2δ2E

∥∥∥wk
n−1 − w?

∥∥∥2

+ 2K2

)
(21)

≤ 4δ2µ2N

N∑
i=1

(i− 1)

i−1∑
n=1

(
O(µ) +O(1)

)
, k � 1

= O(µ2), k � 1 (39)

Similarly, using the established stability of the algorithm in Lemma 1,
we bound the third term after sufficient number of epochs:

C
(35)

≤ N

N∑
i=1

‖I − µH‖2N−2iE ‖ξ(wk
i−1)‖2

(15)

≤ Nκ2
N∑
i=1

E ‖w̃k
i−1‖4

(22)
= O(µ2), k � 1 (40)

Substituting the three bounds (33), (39), and (40) into (32), we obtain
for k � 1:

E
[
‖w̃k+1

0 ‖2 | w̃k
0

]
≤ 1

t
‖I − µH‖2N‖w̃k

0‖2 +
µ2

t
E

∥∥∥∥∥
N∑
i=1

(I − µH)N−isσk(i)(w
k
0)

∥∥∥∥∥
2

+
1

1− tO(µ4) (41)

Using the zero-sum property (30) of the random reshuffling scheme,
it further follows that:

E

∥∥∥∥∥
N∑
i=1

(I − µH)N−isσk(i)(w
k
0)

∥∥∥∥∥
2

(30)
= E

∥∥∥∥∥
N∑
i=1

(I − µH)N−isσk(i)(w
k
0)−

N∑
i=1

sσk(i)(w
k
0)︸ ︷︷ ︸

=0

∥∥∥∥∥
2

(a)
= E

∥∥∥∥∥
N∑
i=1

[(N − i)µH +O(µ2)]sσk(i)(w
k
0)

∥∥∥∥∥
2

(35)

≤ µ2N

N∑
i=1

E
∥∥∥[(N − i)H +O(µ)]sσk(i)(w

k
0)
∥∥∥2

≤ µ2N

N∑
i=1

(
2(N − i)2‖H‖2E

∥∥∥sσk(i)(w
k
0)
∥∥∥2

+O(µ2)E ‖sσk(i)(w
k
0)‖2

)
(42)

where step (a) uses the binomial expansion. Moreover, from (21)
and (28) we can bound the variance of the gradient noise for k � 1
by:

E ‖sσk(i)(w
k
i−1)‖2 ≤ β2

eE ‖w̃k
i−1‖2 + σ2

e = O(1) (43)

which allows us to conclude that

E

∥∥∥∥∥
N∑
i=1

(I − µH)N−isσk(i)(w
k
0)

∥∥∥∥∥
2

= O(µ2) (44)

This fact is a critical improvement over traditional, independently
sampled, gradient descent, where the zero-sum property (30) does
not hold, causing (44) to be O(1) instead. Setting t = ‖I − µH‖N ,
expression (41) implies that:

E ‖w̃k+1
0 ‖2 ≤ ‖I − µH‖NE ‖w̃k

0‖2 +
1

‖I − µH‖N O(µ4)

+
1

1− ‖I − µH‖N O(µ4) (45)

Note that, when µ is small enough, we have

‖I − µH‖N (27)
= 1−O(µ) (46)

so that

lim sup
k→∞

E ‖w̃k
0‖2 ≤O(µ3) +O(µ2) = O(µ2) (47)

3. EXPERIMENTS AND SIMULATIONS

In this section we illustrate the theoretical findings by means of nu-
merical simulations. We consider the following logistic regression
problem:

min
w

J(w) =
1

N

N∑
n=1

Q(w;hn, γ(n)), (48)

where hn ∈ RM is the feature vector, γ(n) ∈ {±1} is the label
scalar, and

Q(w;hn, γn)
∆
= ρ‖w‖2 + ln

(
1 + exp(−γ(n)hT

nw)
)
. (49)

The constant ρ is the regularization parameter. In the first simula-
tion, we compare the performance of the standard stochastic gradi-
ent descent (SGD) algorithm (2)with replacement and the random
reshuffling (RR) algorithm (3). In this simulation, we set N = 1000
and M = 10. Each hn is generated from the normal distribution
N (0; ΛM), where ΛM is a diagonal matrix with each diagonal en-
try generated from the uniform distribution U(1, 10). To generate
γ(n), we first generate an auxiliary random vector w0 ∈ RM with
each entry following N (0, 1). Next, we generate u(n) from a uni-
form distribution U(0, 1). If u(n) ≤ 1/(1 + exp(−hT

nw0)) then
γ(n) is set as +1; otherwise γ(n) is set as −1. We select ρ = 0.1
during all simulations. Figure 1 illustrates the MSD performance of
the SGD and RR algorithms when µ = 0.003. It is observed that
the RR algorithm oscillates during the steady-state regime, and that
the MSD at the wk

0 is the best among all iterates {wk
i }N−1

i=1 during
epoch k. Furthermore, it is also observed that RR has better MSD
performance than SGD. Similar observations also occur in Fig. 2,
where µ = 0.0003. It is worth noting that the gap between SGD and
RR is much larger in Fig. 2 than in Fig. 1. Since the steady-state
MSD of standard SGD is on the order of O(µ), Fig. 2 implies that
RR is on a higher order than O(µ).

Next, in the second simulation we verify the conclusion that the
MSD for the starting point of each epoch for the random reshuffling
algorithm, i.e., wk

0 , can achieve O(µ2) instead of O(µ). We still
consider the regularized logistic regression problem (48) and (49),
and the same experimental setting. In Lemma 2, we proved that

lim sup
k→∞

E ‖w̃k
0‖2 ≤O(µ2), (50)

which indicates that when µ is reduced by ten times, the MSD-
performance E ‖w̃k

0‖2 should be improved by at least 20 dB. We
observe a decay of about 20dB per decade in Fig. 3 for a logistic
regression problem with N = 25 data points and 30dB per decade
in Fig. 4 with N = 1000.

4. REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, Prentice Hall, NJ, 1989.

0 2000 4000 6000 8000 10000
−30

−25

−20

−15

−10

−5

0

iterations

M
e
a
n
−

s
q
u
a
re

−
d
e
v
ia

ti
o
n
 (

d
B

)

Standard SGD (2)

SGD with RR (3)

Fig. 1. RR has better MSD performance than standard SGD when
µ = 0.003. The dotted blue curve is drawn by connecting the MSD
performance at the starting points of the successive epochs.

0 2 4 6 8

x 10
4

−60

−50

−40

−30

−20

−10

0

iterations

M
e
a
n
−

s
q
u
a
re

−
d
e
v
ia

ti
o
n
 (

d
B

)

Standard SGD (2)

SGD with RR (3)

Fig. 2. RR has much better MSD performance than standard SGD
when µ = 0.0003. The dotted blue curve is drawn by connecting the
MSD performance at the starting points of the successive epochs.

[2] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approxi-
mation by averaging,” SIAM Journal on Control and Optimization, vol.
30, no. 4, pp. 838–855, 1992.

[3] B. T. Polyak, Introduction to Optimization, Optimization Software,
New York, 1987.

[4] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proc. International Conference on Computational Statistics
(COMPSTAT), Paris, France, 2010, pp. 177–186.

[5] O. Bousquet and L. Bottou, “The tradeoffs of large scale learning,”
in Proc. Advances in Neural Information Processing Systems (NIPS),
Vancouver, Canada, 2008, pp. 161–168.

[6] E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning,” in Proc. Advances in
Neural Information Processing Systems (NIPS), Granada, Spain, 2011,
pp. 451–459.

[7] T. Zhang, “Solving large scale linear prediction problems using
stochastic gradient descent algorithms,” in Proc. International Con-
ference on Machine Learning (ICML), Canada, 2004, pp. 116–124.

[8] K. Yuan, B. Ying, S. Vlaski, and A. H. Sayed, “Stochastic gradient de-
scent with finite samples sizes,” in Proc. IEEE International Workshop

10-5 10-4 10-3

step size

80

75

70

65

60

55

50

45

40

35

M
e
a
n
-s

q
u
a
re

-d
e
v
ia

ti
o
n
(d

B
)

N=25

random reshuffling (simulation)

regression line: slope=2.051866

Fig. 3. Mean-square-deviation performance at steady-state versus
the step size for a logistic problem involving N = 25 data points.
The slope is around 20 dB per decade.

10-5 10-4 10-3

step size

100

90

80

70

60

50

40

30

M
e
a
n
-s

q
u
a
re

-d
e
v
ia

ti
o
n
(d

B
)

N=1000

random reshuffling (simulation)

regression line: slope=2.884524

Fig. 4. Mean-square-deviation performance at steady-state versus
the step size for a logistic problem involving N = 1000 data points.
The slope is around 30 dB per decade.

on Machine Learning for Signal Processing, Salerno, Italy, 2016, pp.
1–6.

[9] L. Bottou, “Curiously fast convergence of some stochastic gradient de-
scent algorithms,” in Proc. Symposium on Learning and Data Science,
Paris, 2009.

[10] B. Recht and C. Ré, “Toward a noncommutative arithmetic-geometric
mean inequality: Conjectures, case-studies, and consequences,” in
Proc. Conference On Learning Theory (COLT), 2012, pp. 1–11.

[11] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo, “Why random reshuf-
fling beats stochastic gradient descent,” arXiv:1510.08560, Oct. 2015.

[12] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific
Belmont, 2015.

[13] O. Shamir, “Without-replacement sampling for stochastic gradient
methods: Convergence results and application to distributed optimiza-
tion,” arXiv:1603.00570, Mar. 2016.

[14] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4–5, pp. 311–
801, 2014.

