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Abstract—This paper proposes a novel achievable scheme for
the index problem and applies it to the caching problem. Index
coding and caching are noiseless broadcast channel problems
where receivers have message side information. In the index
coding problem the side information sets are fixed, while in the
caching problem the side information sets correspond the cache
contents, which are under the control of the system designer.
The proposed index coding scheme, based on distributed source
coding and non-unique decoding, is shown to strictly enlarge
the rate region achievable by composite coding. The novel index
coding scheme applied to the caching problem is then shown to
match an outer bound (previously proposed by the authors and
also based on known results for the index coding problem) under
the assumption of uncoded cache placement/prefetching.

I. INTRODUCTION

The index coding problem, originally proposed by Birk

and Kol in [1], is a distributed source coding problem

with side information that has received considerable attention

over the past decade. In a general multicast index coding

problem, a server/sender wishes to communicate N ′ inde-

pendent messages to K ′ users through an error-free link.

Each client/receiver knows a subset of the N ′ messages and

demands a subset of the unknown messages. The server

broadcasts packets such that each client can recover the desired

messages. The objective is to determine the largest message

rate region for a fixed assignment of side information sets.

If each client demands a single district message, we have a

so-called multiple unicast index coding problem.

For the general index coding problem, an outer bound based

on the polymatroidal properties of the entropy function [2] was

originally proposed in [3, Theorem 3.1] and later extended

in [4, Theorem 1]. A looser version of [4, Theorem 1]

but easier to evaluate for the multiple unicast index coding

problem was given in [4, Corollary 1], which we shall refer to

as acyclic outer bound in the following. Several inner bounds

are known for the index coding problem. A scheme based on

rank minimization of certain matrices was proposed in [5], and

interference alignment based schemes were proposed in [6],

[7]. Since a multiple unicast index coding problem can be

represented as a directed graph, schemes leveraging graph

proprieties such as clique-cover, partial clique-cover, local

clique cover, partial local clique covering were proposed in [5],

[8]–[10], respectively. Random coding schemes have also been

studied. The schemes proposed in [11]–[14] are based on

the Heegard-Berger [15] idea of source compression with

different receiver side information sets. By using Slepian-Wolf

coding [16], the authors in [4] proposed a scheme known as

composite coding, which is optimal for the multiple unicast

index coding problem with up to five messages.

The index coding problem has connection to the coded

caching problem as originally formulated by Maddah-Ali and

Niensen in [17], [18], where a server with a library of N files

is connected via a shared error-free link to K users. Each user

has a local cache of size M ≤ N files to store information.

There are two phases in the caching problem. In the placement

phase (during network peak-off traffic times) users store parts

of the files within their cache without knowledge of later

demands. When each user directly copies some bits of the

files in his cache, the placement phase is said to be uncoded;

otherwise it is coded. If central coordination (among users)

during the placement phase is possible, the caching system

is said to be centralized; otherwise it is decentralized. In the

delivery phase (during network peak traffic times) each user

demands a specific file and, based on the users’ demands and

cache contents, the server broadcasts packets so that each user

can recover the demanded file. The objective is to design a

two-phase scheme so that the number of transmitted packets

in the delivery phase is minimized for the worst-case demands,

referred to as worst-case load, or just load for simplicity.

The connection between caching and index coding is as

follows [17]. After the users’ demands are revealed in a

caching scheme with uncoded cache placement, the delivery

phase is equivalent to a general index coding problem. Even

if the capacity region of the general index coding problem

is not known, available inner and outer bounds can be used

to bound the worst-case load in the caching problem. To the

best of our knowledge, the first outer bound on the worst-

case load under the constraint of uncoded cache placement

for centralized caching systems was derived in [19], [20] and

for decentralized caching systems in [21]. To this end, we used

the acyclic index coding outer bound in [4, Corollary 1] and

leveraged the intrinsic symmetries of the caching problem to

derive an outer bound that not only outperforms cut-set-based

bounds (which are valid for coded cache placement too) but

shows the optimality of the Maddah-Ali and Niensen’s original
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schemes in [17], [18] for systems with more files than users

and under the constraint of uncoded cache placement.

Our outer bound in [19], [20] has been recently shown to

be tight for caching systems with more users than files as

well in [22]. The key observation is that certain packets sent

in the Maddah-Ali and Niensen’s original scheme in [17] are

linear combinations of other packets and thus need not be

sent. In [22] matching inner and outer bounds for systems

with uniform demands were given.

Contributions: This work is motivated by the observation

that the coding inner bound is not optimal when applied to the

caching problem with uncoded placement. We first propose

an inner bound for the index coding problem based on Han’s

coding scheme [23], Slepian-Wolf coding [16], and non-unique

decoding [24]. This inner bound is proved to strictly improve

on composite coding by way of an example. We then apply

the novel inner bound to the caching problem with uncoded

cache placement and show that it matches our worst-case load

outer bound in [19], [20], thus providing an alternate ‘source

coding with side information’ proof to some results in [22].

Compared to the achievable scheme in [22], which is a clever

analysis of the linear code originally proposed by Maddah-

Ali and Niensen in [17], our inner bound has the following

pleasing features: (i) it applies to the general index coding

problem, (ii) it is not restricted to linear codes, and (iii) it

can be easily extended to index coding problems over noisy

broadcast channels.

Paper Outline: The rest of the paper is organized as

follows. Section II presents the system models for the index

coding and the caching problems, and formally connects them.

Section III proves the main result of this paper. Section IV

concludes the paper.

Notation: Calligraphic symbols denotes sets. | · | is the

cardinality of a set. We denote [1 : K] := {1, 2, . . . ,K}
and A\B := {x ∈ A|x /∈ B}. ⊕ represents the bit-wise XOR

operation (zeros may need to be appended to make the vectors

have the same length).

II. SYSTEM MODELS AND RELATED RESULTS

In this section, we start by describing the caching problem

and the index coding problem, and we finish by discussing

their relationship. By way of an example, we show the need

to improve the composite coding inner bound for the index

coding problem before inner bounds from index coding can

be applied to the caching problem.

A. Caching Problem

In the coded caching problem a central server is equipped

with N independent files of B bits. Files are denoted by

F1, . . . , FN . The server is connected to K users through an

error-free broadcast link.

In the placement phase, user i ∈ [1 : K] stores infor-

mation about the N files in his cache of size MB bits

without knowledge of users’ demands. Here M ∈ [0, N ].
The cache content for user i ∈ [1 : K] is denoted by

Zi; we let Z := (Z1, . . . , ZK). Centralized systems allow

for coordination among users in the placement phase, while

decentralized systems do not. So in decentralized systems the

caching functions are random and independent functions.

In the delivery phase, each user demands one file and the

demand vector d := (d1, . . . , dK) is revealed to everyone,

where Fdi
, di ∈ [1 : N ], is the file demanded by user i ∈

[1 : K]. Given (Z,d), the server broadcasts a message XZ,d

of length BR(d,M) bits. It is required that user i ∈ [1 : K]
recovers his desired file from the broadcast message and his

local cache content with arbitrary high probability as B → ∞.

The objective is to minimize the worst-case load

R∗
t (M) := minmax

d

R(d,M), (1)

where t = c if the placement phase is centralized, and

t = d the placement phase is decentralized. Note that R∗
t (M)

represents the number of transmissions needed to deliver one

file to each user.

We briefly revise the details of the scheme originally pro-

posed by Maddah-Ali and Niensen in [17], [18] next.

1) Centralized Caching Systems (cMAN) [17]: Let the

cache size be M = tN
K

, for some positive integer t ∈ [0 : K],
and R[t] be the corresponding worst-case load. The worst-

case load R(M) for other values of M is obtained as the lower

convex envelope of the set of points
(

tN
K
, R[t]

)

for t ∈ [0 : K].

In the placement phase, each file is split into
(

K
t

)

non-

overlapping sub-files of equal size. The sub-files of Fi are

denoted by Fi,W for W ⊆ [1 : K] where |W| = t. User

k ∈ [1 : K] fills his cache as

Zk =
(

Fi,W : k ∈ W ⊆ [1 : K], |W| = t, i ∈ [1 : N ]
)

. (2)

In the delivery phase, the server transmits

XZ,d =
(

⊕s∈S Fds,S\{s} : S ⊆ [1 : K], |S| = t+ 1
)

, (3)

which requires broadcasting at a rate

RcMAN[t] :=

(

K

t+1

)

(

K
t

) . (4)

Let N (d) be set of distinct demanded files in the demand

vector d. In [22] it was shown that among all the
(

K
t+1

)

linear

combinations in (3),
(

K−|N (d)|
t+1

)

of them can be obtained

by linear combinations of the remaining ones and thus need

not be transmitted. Hence, the worst-case load is attained for

|N (d)| = min(K,N), which requires a broadcast rate of [22]

Rc,uncoded placement[t] :=

(

K

t+1

)

−
(

K−min(K,N)
t+1

)

(

K
t

) . (5)

The worst-case load in (5) coincides with the outer bound

under the constraint of uncoded cache placement in [19], [20]

and it is thus optimal.



2) Decentralized Caching Systems (dMAN) [18]: In de-

centralized systems, user coordination during the placement

phase is not possible, so each user stores a subset of M
N
B bits

of each file, chosen uniformly and independently at random.

Given the cache content of all the users, the bits of the files

can be grouped into sub-files Fi,W , where Fi,W is the set of

bits of file i ∈ [1 : N ] that are only known by the users in

W ⊆ [1 : K]. By the Law of Large Numbers, the size of the

sub-files converges in probability to

|Fi,W |

B

p.
→

(

M

N

)|W|(

1−
M

N

)K−|W|

when B → ∞. (6)

In the delivery phase, for each t ∈ [0 : K − 1], all the
(

K

t+1

)

sub-files Fi,W with |W| = t and i ∈ [1 : N ] are gathered

together; since they all have approximately the same length

that only depends on how many users have stored them in

their cache (given by (6)), the server uses the cMAN scheme

for M = tN
K

to deliver them. Thus, the worst-case load of the

dMAN scheme is

RdMAN (M) :=
∑

t∈[0:K−1]

(

K

t+ 1

)(

M

N

)t (

1−
M

N

)K−t

=
1− M

N
M
N

[

1−

(

1−
M

N

)K
]

. (7)

The optimal load for decentralized caching systems with

uncoded cache placement can be achieved following the

dMAN original idea without the redundant transmissions in

the underlying cMAN scheme, which leads to [22]

Rd,uncoded placement (M) :=
1− M

N
M
N

[

1−

(

1−
M

N

)min(K,N)
]

.

(8)

The worst-case load in (8) coincides with the outer bound

under the constraint of uncoded cache placement in [21] and

it is thus optimal.

Before we connect the caching problem with uncoded cache

placement to the index coding problem, we need to introduce

the index coding problem formally.

B. Index Coding Problem

In the index coding problem a central server with N ′

independent messages is connected to K ′ users. Each user

j ∈ [1 : K ′] demands a set of messages indexed by

Dj ⊆ [1 : N ′] and knows a set of messages indexed by

Aj ⊆ [1 : N ′]. In order to avoid trivial problems, it is assumed

that Dj 6= ∅, Aj 6= [1 : N ′], and Dj ∩ Aj = ∅. The server

is connected to the users through a noiseless channel with

alphabet X . Without loss of generality we can take X to

be GF(2) [4]. A (2nR1 , . . . , 2nRN′ , n, ǫn)-code for this index

coding problem is defined as follows.

Each message Mi, for i ∈ [1 : N ′], is uniformly distributed

in [1 : 2nRi ] where n is the block-length, Ri ≥ 0 is the trans-

mission rate in bits per channel use. In order to satisfy users’

demands, the server broadcasts Xn = enc(M1, . . . ,MN ′) ∈

Xn where enc is the encoding function. Each user j ∈ [1 : K ′]
estimates the messages indexed by Dj by the decoding func-

tion decj

(

Xn, (Mi : i ∈ Aj)
)

. The probability of error is

ǫn := max
j∈[1:K′]

Pr
[

decj

(

Xn, (Mi : i ∈ Aj)
)

6= (Mi : i ∈ Dj)
]

.

A rate vector (R1, . . . , RN ′) is said to be achievable if

there exists a family of (2nR1 , . . . , 2nRN′ , n, ǫn)-codes with

limn→∞ ǫn = 0.

For later use, we close this subsection with a description

of the composite coding inner bound, which was proposed for

the multiple unicast index coding problem in [4]. We trivially

extended it here to the general index coding problem.

Composite Coding Inner Bound: Composite coding is a

two-stage scheme based on binning and non-unique decoding.

In the first encoding stage, for each J ⊆ [1 : N ′], the

messages (Mi : i ∈ J ) are encoded into the ‘composite

index’ WJ ∈ [1 : 2nSJ ] based on random binning at some rate

SJ ≥ 0. By convention S∅ = 0. In the second encoding stage,

the collection of all composite indices (WJ : J ⊆ [1 : N ′])
is mapped into a length-n sequence Xn ∈ Xn. In the first

decoding stage, every user recovers all composite indices

by making use of the available side information. In the

second decoding stage, user j ∈ [1 : K ′] chooses a set

Kj such that Dj ⊆ Kj ⊆ [1 : N ′]\Aj and simultaneously

decodes all messages (Mi : i ∈ Kj), based on the recovered

(WJ : J ⊆ Kj ∪ Aj). The achievable rate region with

composite coding is as follows.

Theorem 1 (Composite Coding Inner Bound, generalization

of [4] to allow for multicast messages). A non-negative

rate tuple R := (R1, . . . , RN ′) is achievable for the index

coding problem
(

(Aj ,Dj) : j ∈ [1 : K ′]
)

with N ′ =
∣

∣∪j∈[1:K′]Aj ∪ Dj

∣

∣ if

R ∈
⋂

j∈[1:K′]

⋃

Kj:Dj⊆Kj⊆[1:N ′]\Aj

Rcc(Kj |Aj ,Dj), (9a)

Rcc(K|A,D) :=
⋂

J :J⊆K

{

∑

i∈J

Ri < vJ

}

, (9b)

where in (9b) vJ is defined as

vJ :=
∑

P:P⊆A∪K,P∩J 6=∅

SP , (9c)

and where in (9c) the non-negative quantities (SJ : J ⊆ [1 :
N ]) must satisfy

∑

J :J∈[1:N ′],J*Aj

SJ ≤ log2(|X |), ∀j ∈ [1 : K ′]. (9d)

Note that the constrain in (9d) is from the first decoding

stage and the region Rcc(Kj |Aj ,Dj) in (9a) is from the second

decoding stage at receiver j ∈ [1 : K ′].



C. Connecting Caching to Index Coding

Under the constraint of uncoded cache placement, when the

cache contents and the demands are fixed, the delivery phase

of the caching problem is equivalent to the following index

coding problem. For each i ∈ N (d) and for each W ⊆ [1 :
K], the sub-file Fi,W (containing the bits of file Fi within the

cache of the users indexed by W) is an independent message

in the index coding problem with user set [1 : K] Hence,

by using the notation introduced in Sections II-B and II-A,

K ′ = K and N ′ = |N (d)|(2K−1). For each user k ∈ [1 : K]
in this general index coding problem, the desired message and

side information sets are

Dk =
(

Fdk,W : W ⊆ [1 : K], k /∈ W
)

, (10)

Ak =
(

Fi,W : W ⊆ [1 : K], i ∈ N (d), k ∈ W
)

. (11)

In [19], [20], we proposed an outer bound on the worst-

case load in centralized caching systems under the constraint

of uncoded cache placement by exploiting the acyclic index

coding outer bound in [4, Corollary 1]. For a demand vector

d, we considered all possible multiple unicast index coding

problems with |N (d)| users. By summing together the result-

ing bounds and by taking the worst-case demand vector d,

we showed that (5) is a lower bound to the worst-case load

under uncoded cache placement for centralized systems [19],

[20]. We followed a similar approach for decentralized caching

systems in [21].

When we attempted to match the worst-case load lower

bounds in (5) and (8) with an achievable load from the

composite coding inner bound for index coding in Theorem 1

we failed1. The following example shows that composite

coding is insufficient for the index coding problem. This was

already pointed out in [4]. The example we give next will be

used later on to show that our proposed index coding inner

bound is strictly better than composite coding.

Example 1. Consider a multiple unicast index coding problem

with K = 6 equal rate messages and with

D1 = {1}, A1 = {3, 4},

D2 = {2}, A2 = {4, 5},

D3 = {3}, A3 = {5, 6},

D4 = {4}, A4 = {2, 3, 6},

D5 = {5}, A5 = {1, 4, 6},

D6 = {6}, A6 = {1, 2}.

Composite Coding Inner Bound. In [25, Example 1] the

authors showed that the largest symmetric rate with the

composite coding inner bound in Theorem 1 for this problem

is Rsym,cc = 0.2963 · log2(|X |). It the same paper, the authors

proposed an extension of the composite coding idea (see [25,

Section III.B]) and showed that this extended scheme for this

problem gives Rsym,enhanced cc = 0.2987 · log2(|X |).

1 The reason why we do not consider the other index coding achievable
schemes we mentioned in the Introduction is because they do not provide
easily computable rate expressions for the general index coding problem, or
because they were designed for the case of two messages only.

Converse. Give message F5 as additional side information

to receiver 1 so that the new side information set satisfied

{3, 4, 5} ⊂ A2. With this receiver 1, in addition to message 1,

can decode message 2 and then message 6. Thus

3Rsym ≤ lim
n→∞

1

n
H(Xn) ≤ log2(|X |). (12)

Next we show that Rsym = 1/3 · log2(|X |) is tight. This shows

the strict sub-optimality of composite coding and its extension.

Achievability. Take the messages to be binary digits. All

users can be satisfied by the transmission of the three coded

bits X = (F1 ⊕ F3 ⊕ F4, F2 ⊕ F4 ⊕ F5, F1 ⊕ F2 ⊕ F6).
Receivers 1, 2 and 6 can ‘read off’ the desired message bit

from one of the transmitted bits after subtracting the known

bits. Receiver 3 first sums the three transmitted bits and

then recovers F3 thanks to its side information; receivers 4

and 5 proceed similarly. This shows that one bit per user

can be delivered in one channel use, where one channel use

corresponds to three bits. Therefore, Rsym = 1/3 · log2(|X |)
is achievable and is optimal. �

Given that composite coding is insufficient, in the rest of

the paper we derive a novel index coding achievable scheme,

which we shall prove to strictly improve on composite coding

and to be sufficient for caching.

III. NOVEL INDEX CODING SCHEME AND ITS

APPLICATION TO THE CACHING PROBLEM

A. Novel Index Coding Scheme

In this section, we first introduce a novel achievable scheme

for index coding and then prove that it strictly outperforms

composite coding by continuing Example 1. Intuitively, the

improvements in our scheme come from:

• For each subset J ⊆ [1 : K ′] in the composite coding

scheme, the composite index WJ is determined by the

messages indexed by J . Thus, composite indices are cor-

related among themselves. We leverage this correlation to

lower the required rate in the first decoding stage.

• In the composite coding scheme, decoder j ∈ [1 : K ′]
wants to recover uniquely the messages in Kj , and for that

he only uses the composite indices (WJ : J ⊆ Kj∪Aj).
In our proposed scheme, every user uses all the composite

messages (XJ : J ⊆ [1 : N ′]) to uniquely recover

the desired messages in Dj and non-uniquely those in

Kj\Dj , while the remaining messages are treated as

noise.

Theorem 2 (Novel Achievable Scheme for Index Coding). A

non-negative rate tuple R := (R1, . . . , RN ′) is achievable for

the index coding problem
(

(Aj ,Dj) : j ∈ [1 : K ′]
)

with

N ′ =
∣

∣∪j∈[1:K′]Aj ∪ Dj

∣

∣ if

R ∈
⋂

j∈[1:K′]

⋃

Kj :Dj⊆Kj⊆[1:N ′]\Aj

R(Kj |Aj ,Dj), (13a)

R(K|A,D) :=
⋂

J :J⊆K,D∩J 6=∅

{

∑

i∈J

Ri < κJ

}

, (13b)



where in (13b) κJ is defined as

κJ :=I
(

(

Ui : i ∈ J
)

;
(

XP : P ⊆ [1 : N ′]
)

∣

∣

∣

(

Ui : i ∈ Aj ∪Kj \ J
)

)

, (13c)

for some independent auxiliary random variables (Ui : i ∈

[1 : N ′]) and some functions
(

fP : P ⊆ [1 : N ′]
)

, such that

XP = fP

(

(

Ui : i ∈ P
)

)

and satisfying for all j ∈ [1 : K ′]

H
(

(

XP : P ⊆ [1 : N ′]
)∣

∣

(

Ui : i ∈ Aj

)

)

≤ log2(|X |). (13d)

Proof: Intuitively, the proof is as follows.

Encoding. Each message Mi, i ∈ [1 : N ′], is encoded into

a codeword Un
i generated in an i.i.d. fashion according to

some distribution pUi
. Then the collection (Un

i : i ∈ P) is

mapped into a ‘composite index’ Xn
P ∈ [1 : 2nSP ], for all

P ⊆ [1 : N ′], by using the function fP component-wise.

Each receiver observes the ‘channel input’ Xn := bin
(

Xn
P :

P ⊆ [1 : N ′]
)

∈ Xn, where bin is the bin index of the

collection
(

Xn
P : P ⊆ [1 : N ′]

)

. Binning is done uniformly

and independently.

Decoding. Receiver j ∈ [1 : K ′], given the side information

Aj , can recover the ‘channel input’ Xn if the condition

in (13d) is satisfied, i.e., only the ‘composite indices’ that are

not fully determined by the side information must be recov-

ered. Finally, receiver j ∈ [1 : K ′] chooses a set Kj ∈ [1 : N ′]
such that it includes all the desired messages but none of the

side information messages (that is, Dj ⊆ Kj ⊆ [1 : N ′]\Aj);

he then simultaneously decodes all messages (Mi : i ∈ Kj),
but uniquely only the messages in Dj . For this equivalent

multiple access channel with user set Kj , the achievable region

is in the form of (13a) where the messages indexed by J can

be reliably decoded, given that those in the side information

or already decoded are known (that is, given the messages

indexed by Aj ∪Kj \J ), if the condition in (13c) is satisfied.

This concludes the proof.

Corollary 1. The composite coding region in Theorem 1 is a

special case of our Theorem 2.

Proof: In general, for a set B ⊆ [1 : N ′] and for the

auxiliary random variables as defined in Theorem 2, we have

H
(

(

XP : P ⊆ [1 : N ′]
)

∣

∣

∣

(

Ui : i ∈ B
)

)

≤ H
(

(

XP : P ⊆ [1 : N ′],P 6⊆ B
)

)

≤
∑

P:P⊆[1:N ′],P6⊆B

H
(

XP

)

≤
∑

P:P⊆[1:N ′],P6⊆B

SP , where log2(|XP |) = SP . (14)

In the following, we choose (Ui : i ∈ [1 : N ′]) and

(XP : P ⊆ [1 : N ′]) such that all the inequality leading

to (14) holds with equality for any B ⊆ [1 : N ′], that is,

we construct random variables (XP : P ⊆ [1 : N ′]) that

are independent and uniformly distributed, where the alphabet

of XP has support of size |XP | = 2SP . With this choice of

auxiliary random variables we show that Theorem 2 reduces

to Theorem 1.

Assume that SP log2(|X |) is an integer for all P ⊆ [1 : N ′].
Let Ui, for i ∈ [1 : N ′], be an equally likely binary vector of

length Li. Let XP be a binary vector of length SP log2(|X |)
obtained as a linear code for the collection of bits in (Ui, i ∈
P). If Li ≥

∑

P⊆[1:N ′]:i∈P SP log2(|X |) for all i ∈ [1 : N ′],
then all the linear combinations that determine XP can be

chosen to be independent and therefore all the inequalities

leading to (14) holds with such choice of auxiliary random

variables. As a result, we have that the bound in (13d) reduces

to the one in (9d) by using (14) with B = Aj , and that the

bound in (13c) reduces to the one in (9c) by using (14) twice,

once with B = A∪ K \ J and once with B = A ∪ K, which

is so because

κJ =
∑

P:P⊆[1:N ′]:P6⊆(A∪K\J )

SP −
∑

P:P⊆[1:N ′]:P6⊆(A∪K)

SP

=
∑

P:P⊆A∪K:P∩J 6=∅

SP .

This concludes the proof.

Example 2. We continue Example 1. Let each file be an

independent bit, Kj = Dj for j ∈ [1 : 6], and

U1 = F1, U2 = F2, · · · , U6 = F6,

for all P ⊆ [1 : 6] set XP = 0 except

X{1,3,4} = U1 ⊕ U3 ⊕ U4,

X{2,4,5} = U2 ⊕ U4 ⊕ U5,

X{1,2,6} = U1 ⊕ U2 ⊕ U6,

X = (X{1,3,4}, X{2,4,5}, X{1,2,6}).

Here X = GF(23) so one channel use corresponds to three

bits. From (13c), we have that for example the rate of user 5

is bounded by

Rsym ≤ I(U5;U1 ⊕ U3 ⊕ U4, U2 ⊕ U4 ⊕ U5, U1 ⊕ U2 ⊕ U6|U1, U4, U6)

= I(U5;U3, U2 ⊕ U5, U2) = I(U5;U2, U3, U5)

= I(U5;U5) = H(U5) = 1/3 · log2(|X |),

and similarly for all the other users. As a result, Rsym = 1/3 ·
log2(|X |) is achievable by the proposed scheme and coincides

with the outer bound. �

B. Application to the Caching Problem

We are now ready to show that Theorem 2 can be used

to determine the optimal load in caching problems under the

constraint of uncoded cache placement.

Theorem 3. For a caching system under the constraint of

uncoded cache placement, Theorem 2 achieves the worst-case

loads in (5) and (8) for centralized and decentralized caching

systems, respectively.

Proof: We only do the proof for centralized caching

systems under the constraint of uncoded cache placement as

the one for decentralized systems follows similarly.



We use the same placement phase as cMAN for M = tN
K

,

for t ∈ [0 : K], so that the delivery phase is equivalent to

an index coding problem with K users in which each sub-

file Fi,W , for i ∈ N (d), W ⊆ [1 : K] and |W| = t, is an

independent message, and where the desired message and side

information sets are given by (10) and (11), respectively. Note

that the message rates in this equivalent index coding problem

are identical by construction and the number of messages for

the worst case-load is N ′ = min(N,K)
(

K

t

)

.

In Theorem 2, following in Example 2, we let Kj = Dj for

j ∈ [1 : K], we represent Fi,W as a binary vector for length k
and we let the corresponding random variable U to be equal to

the message. We also let XP to be non zero only for the linear

combinations of messages sent by the scheme in [22]. With

this we have Rsym = H(U) = k and log2(|X |) = H(X) =

k
(

(

K

t+1

)

−
(

K−min(N,K)
t+1

)

)

, so the symmetric rate is

Rsym =
1

(

K

t+1

)

−
(

K−|N (d)|
t+1

)
log2(|X |).

Each receiver in the original caching problem is interested

in recovering
(

K
t

)

messages, or one file of k
(

K
t

)

bits, thus the

‘sum-rate rate’ delivered to each user is

Rsum-rate =

(

K
t

)

(

K
t+1

)

−
(

K−|N (d)|
t+1

)
log2(|X |)

[

bits

ch.use

]

.

The load in the caching problem is the number of transmis-

sions (channel uses) needed to deliver one file to each user,

thus the inverse of Rsum-rate for |X | = 2 indeed corresponds

to the load in (5).

IV. CONCLUSION

In this paper, we investigated the index coding problem and

its application to the caching problem with uncoded placement.

We proposed a novel index coding inner bound based on

distributed source coding that provably strictly improves on

composite coding. The novel index coding scheme was then

shown to be sufficient to match a known outer bound on

the optimal worst-case load in caching systems under the

constraint of uncoded cache placement.
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