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Remote Source Coding under Gaussian Noise :

Dueling Roles of Power and Entropy Power
Krishnan Eswaran and Michael Gastpar

Abstract

The distributed remote source coding (so-called CEO) problem is studied in the case where the underlying source, not
necessarily Gaussian, has finite differential entropy and the observation noise is Gaussian. The main result is a new lower bound
for the sum-rate-distortion function under arbitrary distortion measures. When specialized to the case of mean-squared error, it is
shown that the bound exactly mirrors a corresponding upper bound, except that the upper bound has the source power (variance)
whereas the lower bound has the source entropy power. Bounds exhibiting this pleasing duality of power and entropy power have
been well known for direct and centralized source coding since Shannon’s work. While the bounds hold generally, their value is
most pronounced when interpreted as a function of the number of agents in the CEO problem.

Index Terms

Source coding, CEO problem, entropy power, entropy power inequality, source–channel separation theorem, joint source–
channel coding, rate loss

I. INTRODUCTION

In the CEO problem, there is an underlying source and M encoders [1], [2], [3]. Each encoder gets a noisy observation of the

underlying source. The encoders provide rate-limited descriptions of their noisy observations to a central decoder. The central

decoder produces an approximation of the underlying source to the highest possible fidelity. This work studies the special case

where the observation noise is additive Gaussian and independent between different encoders. When the underlying source

is also Gaussian and the fidelity criterion is the mean-squared error, this problem is referred to as the quadratic Gaussian

CEO problem and is well studied in the literature [4], [5], [6], [7], [8]. In the work presented here, we still consider additive

Gaussian observation noises, but we allow the underlying source to be any continuous distribution constrained to having a

finite differential entropy. We refer to this as the AWGN CEO problem. The contributions of the work are the following:

• A new general lower bound is presented for the AWGN CEO problem with an arbitrary underlying source, not necessarily

Gaussian, and subject to an arbitrary distortion measure. (Theorems 1 and 2.)

• When specialized to the case of the mean-squared error distortion measure, the new lower bound is shown to closely

match a known upper bound. In fact, both bounds assume the same shape, except that the lower bound has the entropy

power whereas the upper bound has the source power (variance). This parallels the well-known Shannon lower bound for

the standard rate-distortion function under mean-squared error. (Corollaries 1 and 2.)

• The strength of the new bounds is that they reflect the correct behavior as a function of the number of agents M. This fact

is leveraged and illustrated in two follow-up results. The first characterizes the rate loss in the CEO problem, i.e., the rate

penalty of distributed versus centralized encoding (Theorem 3). The second pertains to a network joint source-channel

coding problem (more specifically, a simple model of a sensor network), given in Theorem 4.

The underpinnings of the new bounds leverage and extend work by Oohama [6], by Wagner and Anantharam [9], [10] and by

Courtade [11].

We also note that there is a wealth of work about further versions of the CEO problem. Strategies are explored in [12].

The case of so-called log-loss is addressed in [13]. There is also an interesting connection between the CEO problem and

the problem of so-called “nomadic” communication and oblivious relaying, where one strategy is for intermediate nodes to

compress their received signals [14], [15].

Notation

All logarithms in this paper are natural, and log+ x = max{0, logx}. Random variables will be denoted by upper case letters

U. Random vectors will be denoted by boldface upper case letters U = (U1, U2, · · · , UM ). For every subset A ⊆ {1, 2, · · · ,M},
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Fig. 1. The M -agent AWGN CEO problem. X is an arbitrary source with variance (power) σ2
X

(not necessarily Gaussian) and entropy power N(X). The
observation noises Zi are independent and Gaussian.

we will use UA to denote the subset of those components of U whose indices are in A. Moreover, Ac denotes the complement

of the set A in {1, 2, · · · ,M}. Given a random variable X with density fX(x), its variance is denoted by σ2
X , its differential

entropy is h(X) = −
∫
fX(x) log fX(x)dx, and its entropy power is

N(X) =
e2h(X)

2πe
, (1)

and we recall that for Gaussian random variables X, we have that N(X) = σ2
X . Finally, we will use the notation X ↔ Y ↔ Z

to denote Markov chains, i.e., the statement that X and Z are conditionally independent given Y.

II. CEO PROBLEM STATEMENT

A. The CEO Problem

The CEO problem is a standard problem in multi-terminal information theory. For completeness, we include a brief formal

problem statement here. An underlying source is modeled as a string Xn of length n of independent and identically distributed

(i.i.d.) continuous random variables {X}ni=1, following the terminology in [16, p. 243]. Throughout this study, we assume that

the corresponding entropy power N(X) is non-zero and finite. The source X is observed by M encoding terminals through a

broadcast channel fY1,Y2,...,YM |X(y1, y2, . . . , yM |x). The observation sequences Y n
m, m = 1, 2, . . . ,M, are separately encoded

with the goal of finding an estimate X̂n of Xn with distortion D.
A (2nR1 , 2nR2 , · · · , 2nRM , n) code for the CEO problem consists of

• M encoders, where encoder m assigns an index jm(ynm) ∈ {1, 2, · · · , 2nRm} to each sequence ynm, for m = 1, 2, · · · ,M,
and

• a decoder that assigns an estimate x̂n to each index tuple (j1, j2, · · · , jM ).

A rate-distortion tuple (R1, R2, · · · , RM , D) is said to be achievable if there exists a sequence of (2nR1 , 2nR2 , · · · , 2nRM , n)
codes with

lim sup
n→∞

E

[

1

n

n∑

i=1

d(Xi, X̂i)

]

≤ D, (2)

where d(·, ·) is a (single-letter) distortion measure (see [16, p. 304]). In much of the present paper, we restrict attention to the

case of the mean-squared error distortion measure, i.e.,

d(xi, x̂i) = (xi − x̂i)
2. (3)

The rate-distortion region RCEO(D) for the CEO problem is the closure of the set of all tuples (R1, R2, · · · , RM ) such that

(R1, R2, · · · , RM , D) is achievable. In the present study, we are mostly interested in the minimum sum-rate, i.e., the quantity

defined as

RCEO
X (D) = min

(R1,R2,··· ,RM )∈RCEO(D)

M∑

m=1

Rm. (4)
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B. The special case M = 1

In the special case M = 1, the CEO problem is referred to as the remote source coding problem. This problem dates back

to Dobrushin and Tsybakov [17] as well as, for the case of additive noise, to Wolf and Ziv [18]. We will use the notation

RR
X(D) in place of RCEO

X (D) in this case. Here, it is well known that (see e.g. [19, Sec. 3.5])

RR
X(D) = min

f(x̂|y):E[d(X,X̂)]≤D

I(Y ; X̂). (5)

C. The AWGN CEO Problem

In much of the present study, we are concerned with the case where the source observation process is given by a Gaussian

broadcast channel. In that case, we have that Ym = X + Zm, for m = 1, 2, . . . ,M, where Zm is distributed as a zero-mean

Gaussian of variance σ2
m. We will refer to this as the AWGN CEO problem, illustrated in Figure 1. Moreover, when the

distortion measure of interest is the mean-squared error, we mimic standard terminology and refer to the quadratic AWGN

CEO problem.

For the AWGN CEO problem, it will be convenient to use the following shorthand. For any subset A ⊆ {1, 2, . . . ,M}, the

sufficient statistic for X given {Yi}i∈A can be expressed as

Y (A) =
1

|A|
∑

i∈A

σ2
A

σ2
Zi

Yi (6)

= X + Z(A), (7)

where

Z(A) =
1

|A|
∑

i∈A

σ2
A

σ2
Zi

Zi (8)

is a zero-mean Gaussian random variable of variance σ2
A/|A|, and σ2

A denotes the harmonic mean of the noise variances in

the set A, that is,

σ2
A =

(

1

|A|
∑

i∈A

1

σ2
Zi

)−1

. (9)

In the special case where A = {1, 2, . . . ,M}, we will use the notation

Y (M) =
1

M

M∑

i=1

σ2
M

σ2
Zi

Yi (10)

= X + Z(M), (11)

where σ2
M denotes the harmonic mean of all the noise variances and

Z(M) =
1

M

M∑

i=1

σ2
M

σ2
Zi

Zi, (12)

respectively. Hence, Z(M) is a zero-mean Gaussian random variable of variance σ2
M/M.

III. THE SHANNON LOWER BOUND AND ITS EXTENSIONS

The Shannon lower bound concerns the rate-distortion function RX(D) for an arbitrary (not necessarily Gaussian) source

X subject to mean-squared error distortion. It states that

RX(D) ≥ 1

2
log+

N(X)

D
. (13)

At the same time, a maximum entropy argument provides an upper bound to the same rate-distortion function:

RX(D) ≤ 1

2
log+

σ2
X

D
. (14)

These results date back to [20] (see also [19, Eqns. (4.3.32) and (4.3.42)] or [16, p. 338]). Part of their appeal is the interesting

duality played by the source power and its entropy power. This also directly implies their tightness in the case where the

underlying source X is Gaussian, since power and entropy-power are equal in that case. As a side note, tangential to the

discussion presented here, we point out that the (generalized) Shannon lower bound is not generally tight for Gaussian vector

sources, see e.g. [21].
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One can extend this result rather directly to the case of the remote rate-distortion function, i.e., the CEO problem with

M = 1, as defined above in Section II-B. Specifically, letting V = E[X |Y ], the remote rate-distortion function subject to

mean-squared error satisfies the bounds (see Appendix A)

1

2
log+

N(V )

D −D0
≤ RR

X(D) ≤ 1

2
log+

σ2
V

D −D0
, (15)

for D > D0, where D0 = E

[

(X − V )
2
]

. For the special case of additive source observation noise, that is, Y = X+Z, where

X and Z are independent, one can obtain a more explicit pair of bounds by observing that (see Appendix A)

N(X)N(Z)

N(Y )
≤ D0 ≤ σ2

Xσ2
Z

σ2
Y

. (16)

Combining Inequalities (15) and (16), we obtain the slightly weakened lower bound, for D > N(X)N(Z)/N(Y ),

RR
X(D) ≥ 1

2
log+

N(V )

D
+

1

2
log+

N(Y )

N(Y )− N(X)
D

N(Z)
(17)

and the upper bound, for D > σ2
Xσ2

Z/σ
2
Y ,

RR
X(D) ≤ 1

2
log+

σ2
V

D
+

1

2
log+

σ2
Y

σ2
Y − σ2

X

D
σ2
Z

. (18)

A second type of lower bounds of a similar flavor can be derived from entropy power inequalities (EPI). For these bounds

to work, we restrict attention to the case of the AWGN CEO problem as defined above, i.e., the scenario where the underlying

source X is observed under independent zero-mean Gaussian noise Z of variance σ2
Z . Again, we let Y = X +Z be the noisy

source observation. Moreover, let us consider an arbitrary distortion measure, and let RX(D) denote the (regular) rate-distortion

function of the source X subject to that distortion measure. Then, a lower bound to the remote rate-distortion function subject

to that arbitrary distortion measure is (see Appendix A)

RR
X(D) ≥ RX(D) +

1

2
log+

N(X)

N(Y )− σ2
Ze

2RX (D)
, (19)

for D satisfying σ2
Ze

2RX(D) < N(Y ).
Moreover, if the following inequality can be satisfied

min
g

E[d (X, g(X + Z +W ))] ≤ D, (20)

where W is an independent zero-mean Gaussian random variable with variance σ2
X/(e2r − 1)− σ2

Z , and the minimum is over

all real-valued, measurable functions g(·), then for 0 ≤ r ≤ 1
2 log(1 + σ2

X/σ2
Z), an upper bound is (see Appendix A)

RR
X(D) ≤ r +

1

2
log+

σ2
X

σ2
Y − σ2

Ze
2r
. (21)

When we restrict attention to the case of mean-squared error distortion, we can obtain the following more explicit form for

the lower bound, for D > N(X)σ2
Z/N(Y ),

RR
X(D) ≥ 1

2
log+

N(X)

D
+

1

2
log+

N(X)

N(Y )− N(X)
D

σ2
Z

, (22)

and for the upper bound, for D > σ2
Xσ2

Z/σ
2
Y ,

RR
X(D) ≤ 1

2
log+

σ2
X

D
+

1

2
log+

σ2
X

σ2
Y − σ2

X

D
σ2
Z

, (23)

Proofs of Inequalities (22)-(23) are provided in Appendix A. It is tempting to compare the lower bounds in Inequalities (17)

and (22), but there does not appear to be a simple relationship.
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IV. MAIN RESULTS

A. General Lower Bound

Our main result is the following lower bound:

Theorem 1. For the M -agent AWGN CEO problem with an arbitrary continuous underlying source X, constrained to having

finite differential entropy, subject to an arbitrary distortion measure d(·, ·), if a rate-distortion tuple (R1, R2, · · · , RM , D) is

achievable, i.e., if it satisfies (R1, R2, . . . , RM ) ∈ RCEO(D), then there must exist non-negative real numbers {r1, r2, . . . , rM}
such that for every (strict) subset A ⊂ {1, 2, . . . ,M}, we have

∑

i∈A

Ri ≥ RX(D)

− 1

2
log

(

N(Y (Ac))

σ2
Ac/|Ac| −N(X)

∑

i∈Ac

e−2ri

σ2
Zi

)

+
∑

i∈A

ri, (24)

and for the full set A = {1, 2, . . . ,M}, we have
∑

i∈A Ri ≥ RX(D) +
∑

i∈A ri, where Y (A) and σ2
A are defined in

Equations (7) and (9), respectively, and RX(D) denotes the (regular) rate-distortion function of the source X with respect to

the distortion measure d(·, ·).
The proof of this theorem is given in Appendix B-A.

Remark 1. Note that the argument inside the logarithm in Equation (24) is lower bounded by 1 for all non-negative choices

of ri, as explained in the proof in Appendix B-A, making the expression well-defined.

In the next corollary, we specialize Theorem 1 to the case of the mean-squared error distortion measure, a case for which

we have a closely matching upper bound.

Corollary 1. For the M -agent AWGN CEO problem with an arbitrary continuous underlying source X, constrained to having fi-

nite differential entropy, subject to the mean-squared error distortion measure, if a rate-distortion tuple (R1, R2, · · · , RM , D) is

achievable, i.e., if it satisfies (R1, R2, . . . , RM ) ∈ RCEO(D), then there must exist non-negative real numbers {r1, r2, . . . , rM}
such that for every (strict) subset A ⊂ {1, 2, . . . ,M}, we have

∑

i∈A

Ri ≥
1

2
log+

N(X)

D

− 1

2
log

(

N(Y (Ac))

σ2
Ac/|Ac| −N(X)

∑

i∈Ac

e−2ri

σ2
Zi

)

+
∑

i∈A

ri, (25)

and for the full set A = {1, 2, . . . ,M}, we have
∑

i∈A Ri ≥ 1
2 log

+ N(X)
D

+
∑

i∈A ri, where Y (A) and σ2
A are defined in

Equations (7) and (9), respectively.

For achievability, if there exist non-negative real numbers {r1, r2, . . . , rM} such that for every (strict) subset A ⊂ {1, 2, . . . ,M},
we have

∑

i∈A

Ri ≤
1

2
log+

σ2
X

D

− 1

2
log

(
σ2
Y (Ac)

σ2
Ac/|Ac| − σ2

X

∑

i∈Ac

e−2ri

σ2
Zi

)

+
∑

i∈A

ri, (26)

and for the full set A = {1, 2, . . . ,M}, we have
∑

i∈A Ri ≤ 1
2 log

+ σ2

X

D
+
∑

i∈A ri, then we have that (R1, R2, . . . , RM ) ∈
RCEO(D).

For the proof of this corollary, we note that Inequality (25) follows directly by combining Theorem 1 with the Shannon

lower bound, Inequality (13). The proof of the achievability part, Inequality (26), follows from the work of Oohama [5], [6].

We briefly comment on this in Appendix B-C.

Comparing Inequalities (25) and (26), we observe a pleasing duality of the source power and its entropy power: to go from

the lower bound to the upper bound, it suffices to replace all entropy powers by the corresponding power (variance) of the

same random variable. This fact directly implies tightness for the case where the underlying source is Gaussian, which of

course is well known [6]. The bounds also imply that for fixed source entropy power, the Gaussian is a best-case source, and

for fixed source power (variance), it is a worst-case source.

The same kind of duality can be observed in the Shannon lower bound in Inequalities (13)-(14). It also appears in the

extensions given in Inequality (15), in Inequalities (17)-(18), and again in Inequalities (22)-(23).



6

B. Sum-rate Lower Bound For Equal Noise Variances

From Theorem 1, we can obtain the following more explicit bound on the sum rate in the case when all observation noise

variances are equal:

Theorem 2. For the M -agent AWGN CEO problem with an arbitrary continuous underlying source X, constrained to having

finite differential entropy, with observation noise variance σ2
Zm

= σ2
Z , for m = 1, 2, . . . ,M, and subject to an arbitrary

distortion measure d(·, ·), the sum-rate distortion function is lower bounded by

RCEO
X (D) ≥ RX(D) +

M

2
log+

M N(X)

M N(Y (M))− σ2
Ze

2RX(D)
, (27)

for D satisfying σ2
Ze

2RX (D) < M N(Y (M)), where Y (M) is defined in Equation (11), and RX(D) denotes the (regular)

rate-distortion function of the source X with respect to the distortion measure d(·, ·).
The proof of this theorem is given in Appendix B-B.

When we further specialize to the case of the mean-squared error distortion measure, then our lower bound takes the same

shape as a well-known achievable coding strategy, except that the lower bound has entropy powers where the upper bound has

powers (variances). Specifically, we have the following result:

Corollary 2. For the M -agent AWGN CEO problem with an arbitrary continuous underlying source X, constrained to having

finite differential entropy, with observation noise variance σ2
Zm

= σ2
Z , for m = 1, 2, . . . ,M, and subject to mean-squared error

distortion, the CEO sum-rate distortion function is lower bounded by

RCEO
X (D) ≥ RCEO

X,lower(D)

=
1

2
log+

N(X)

D
+

M

2
log+

M N(X)

M N(Y (M))− N(X)
D

σ2
Z

(28)

for D > N(X)σ2
Z/(M N(Y (M))). Moreover, in this case, the CEO sum-rate distortion function is upper bounded by

RCEO
X (D) ≤ RCEO

X,upper(D)

=
1

2
log+

σ2
X

D
+

M

2
log+

Mσ2
X

Mσ2
Y (M) −

σ2

X

D
σ2
Z

, (29)

for D > σ2
Xσ2

Z/(Mσ2
Y (M)), where Y (M) is defined in Equation (11).

The proof of this corollary is given in Appendices B-B and B-C.

Remark 2. We point out that σ2
Y (M) = σ2

X + σ2
Z/M, but we prefer to leave it in the shape given in the above corollary in

order to emphasize the duality of the upper and the lower bound.

To illustrate the power of the presented bounds in a formal way, we will restrict attention to the class of source distributions

fX(x) for which κX < ∞, where

κX =
d

ds

(
N
(
X +

√
sG
))
∣
∣
∣
∣
s=0

, (30)

where G is a zero-mean unit-variance Gaussian random variable, independent of X. Note that in the special case where X itself

is Gaussian, we have κX = 1. For starters, let us suppose that the distortion D is a constant, independent of M. In this case,

it can be verified that both Equations (28) and (29) tend to constants as M becomes large, and we have (see Appendix B-D)

lim
M→∞

(
RCEO

X,upper(D)−RCEO
X,lower(D)

)

≤ 1

2
log

σ2
X

N(X)
+

(κXσ2
X −N(X))σ2

Z

2σ2
X N(X)

. (31)

Note that the right-hand side can also be expressed as D(fX‖gX) +
σ2

Z

2σ2

X

(κX exp(2D(fX‖gX))− 1), where gX is a Gaussian

probability density function with the same mean and variance as fX , and D(·‖·) denotes the Kullback-Leibler divergence.

This illustrates how the gap between the upper and the lower bound narrows as fX gets closer to a Gaussian distribution.

Arguably a more interesting regime in the CEO problem is when the distortion D decreases as a function of M : the more

observations we have, the lower a distortion we should ask for. A natural scaling is to require the distortion to decay inversely

proportional to M. Specifically, let us consider a distortion D = d/M, where d > σ2
Z is a constant independent of M. Then,

it is immediately clear that both the upper and the lower bound in Corollary 2 increase linearly with M. But how does their
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gap behave with M? This is a slightly more subtle question. We can show that for all M > d/σ2
X , the difference between

Equations (28) and (29) is upper bounded by (see Appendix B-D)

RCEO
X,upper(d/M)−RCEO

X,lower(d/M)

≤ 1

2
log

σ2
X

N(X)
+

(κXσ2
X −N(X))σ2

Z

2σ2
X N(X)(1− σ2

Z

d
)
, (32)

which does not depend on M. Hence, when interpreted as a function of the number of agents M, the bounds of Corollary 2

capture the behavior rather tightly.

C. Rate Loss for the quadratic AWGN CEO problem

In this section, we restrict attention to the case of the quadratic AWGN CEO problem. The rate loss is the difference in

coding rate needed in the distributed coding scenario of Figure 1 and the coding rate that would be required if the encoders

could fully cooperate. If the encoders fully cooperate, the resulting problem is precisely a remote rate-distortion problem as

defined in Section II-B, where the source is observed in zero-mean Gaussian noise of variance σ2
Z/M. This follows directly

from the observation that Y (M) as defined in Equation (11) is a sufficient statistic for the underlying source X, given all

the noisy observations. As before, we denote the remote rate-distortion function by RR
X(D), and hence, the rate loss is the

difference RCEO
X (D) − RR

X(D). It is known that the rate loss is maximal when the underlying source X is Gaussian [22,

Proposition 4.3]. For example, in the case where the distortion D is required to decrease inversely proportional to M, the rate

loss increases linearly as a function of the number of agents M, and is thus very substantial. If X is not Gaussian, may we

end up with a much more benign rate loss? Restricting again to sources of non-zero entropy power and for which κX < ∞
(see the definition given in Equation (30)), we can show that the answer to this question is no. This follows directly from the

bounds established in this paper. Specifically, we have the following statement:

Theorem 3. For the M -agent AWGN CEO problem with an arbitrary continuous underlying source X, constrained to having

finite differential entropy and κX < ∞, with observation noise variance σ2
Zm

= σ2
Z , for m = 1, 2, . . . ,M, and subject to

mean-squared error distortion, letting the distortion Dα be parameterized as

Dα = α
σ2
Xσ2

Z

Mσ2
X + σ2

Z

, (33)

where α satisfies

1 < α ≤ min

{

M
σ2
X

σ2
Z

+ 1,M
N(X)N(Y (M))

σ2
Zσ

2
X

}

(34)

and where Y (M) is defined in Equation (11), the rate loss of distributed coding versus centralized coding is at least

RCEO
X (Dα)−RR

X(Dα)

≥ M

2
log+

αγX

(αγX − 1)
(

1 +
κXσ2

Z

M N(X)

) − 1

2
log

γ2
Xα

α− 1
, (35)

where γX = σ2
X/N(X), where we note that γX ≥ 1.

The proof is given in Appendix C. Note that the rate loss has to be non-negative, hence our formula can be slightly improved

by only keeping the positive part. We prefer not to clutter our notation with this since it becomes immaterial as soon as M
gets large.

While the bound of Theorem 3 is valid for all choices of the parameters, it is arguably most interesting when interpreted as

a function of the number of agents M. When α is a constant independent of M and thus, the distortion decreases inversely

proportional to M, it is immediately clear that the rate loss increases linearly with M.

V. JOINT SOURCE-CHANNEL CODING

One important application of the new bound presented here is to network joint source-channel coding.

A. Problem Statement

The “sensor” network considered in this section is illustrated in Figure 2. The underlying source X and the source observation

process are exactly as in the AWGN CEO problem defined above, and we will only consider the simple symmetric case where

all observation noise variances are equal, that is, σ2
Zm

= σ2
Z , for m = 1, 2, . . . ,M. Additionally, in the present section, we

restrict attention to those source distributions fX(x) for which κX < ∞, where κX is as defined in Equation (30).
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✲
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♥✲
V n

DEC ✲
X̂n

Fig. 2. A network joint source–channel coding problem inspired by the CEO problem. X is an arbitrary source with variance (power) σ2
X

(not necessarily
Gaussian) and entropy power N(X). Each encoder can produce a codeword Un

i
of average power no more than P, which is then transmitted over a standard

symmetric additive white Gaussian noise multiple-access channel.

With reference to Figure 2, encoder m can apply an arbitrary sequence of real-valued coding functions fm,i(·), for i =
1, 2, . . . , n, to the observation sequence such as to generate a sequence of channel inputs,

Um[i] = fm,i(Ym[1], Ym[2], . . . , Ym[n]). (36)

The only constraint is that the functions fm,i(·) be chosen to ensure that

1

n

n∑

i=1

E

[
(Um[i])2

]
≤ P, (37)

for m = 1, 2, . . . ,M. For i = 1, 2, . . . , n, the channel outputs are given by

V [i] = Zchannel[i] +

M∑

m=1

Um[i], (38)

where {Zchannel[i]}ni=1 is an i.i.d. sequence of Gaussian random variables of mean zero and variance σ2
channel. Upon observing

the channel output sequence {V [i]}ni=1, the decoder (or fusion center) must produce a sequence X̂[i] = gi(V [1], V [2], . . . , V [n]).
A power-distortion pair (P,D) is said to be achievable if there exists a sequence of sets of mappings {fm,i(·)}ni=1, for

m = 1, 2, . . . ,M, and {gi}ni=1 (a sequence as a function of n) with

lim sup
n→∞

1

n

n∑

i=1

E

[

(X [i]− X̂ [i])2
]

≤ D. (39)

The power-distortion region for this network joint source-channel coding problem is the closure of the set of all achievable

power-distortion pairs.

B. Main Result

The main result of this section is an assessment of the performance of digital communication strategies for the communication

problem illustrated in Figure 2. To put this in context, it is important to recall the so-called source-channel separation theorem

due to Shannon, see e.g. [16, Sec. 7.13]. For stationary ergodic point-to-point communication, this theorem establishes that it

is without fundamental loss of optimality to compress the source to an index (that is, a bit stream) and then to communicate

this index in a reliable fashion across the channel using capacity-approaching codes. Such strategies are commonly known as

digital communication and are the underpinnings of most of the existing communication systems.

It is well-known that source-channel separation is suboptimal in network communication settings, see e.g. [16, p. 592]. This

suboptimality can be very substantial. Specifically, for the example scenario as in Figure 2, but where the underlying source X
is Gaussian, it was shown in [23, Sec. 5.4.6] that the suboptimality manifests itself as an exponential gap in scaling behavior

when viewed as a function of the number of nodes in the network.1 Could this gap be less dramatic for sources X that are

1In fact, for this special case, the optimal performance was characterized precisely in [24].



9

not Gaussian? The new bounds established in the present paper allow to answer this question in the negative. Specifically, we

have the following result:

Theorem 4. For the joint source-channel network considered in this section, if each encoder first compresses its noisy source

observations into an index using the optimal CEO source code, and this index is then communicated reliably over the multiple-

access channel, the resulting power-distortion region must satisfy

Dd ≥ N(X)σ2
Z

N(X) log
(

1 +M2 P
σ2

channel

)

+ κXσ2
Z

. (40)

By contrast, there exists an (analog) communication strategy that incurs a distortion of

Da =
σ2
Xσ2

Z

Mσ2
X + σ2

Z



1 +
M(σ2

Xσ2
channel/σ

2
Z)

Mσ2

X
+σ2

Z

σ2

X
+σ2

Z

MP + σ2
channel



 . (41)

A proof of this theorem is given in Appendix D.

The insight of Theorem 4 lies in the comparison of Inequality (40) with Equation (41). Namely, the dependence of the

attainable distortion on the number of agents M : As one can see, for digital architectures, characterized by Inequality (40),

the distortion decreases inversely proportional to the logarithm of M. By contrast, from Equation (41), there is a scheme for

which the decrease is inversely proportional to M. This represents an exponential gap in the scaling-law behavior. In other

words, in order to attain a certain fixed desired distortion level D, the number of agents needed in a digital architecture is

exponentially larger than the corresponding number for a simple analog scheme. Hence, the bounds presented here imply that

the exponential suboptimality of digital coding strategies observed in [24, Thm. 1 versus Thm. 2] continues to hold for a large

class of underlying sources X with non-zero entropy power.
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APPENDIX A

PROOFS FOR SECTION III

A. Proofs of Inequalities (15) and (16)

For Inequality (15), we start by considering the (remote) distortion-rate function, DR
X(R), that is, the dual version of the

minimization problem in Equation (5), which can be expressed as

DR
X(R)

= min
f(x̂|y):I(Y ;X̂)≤R

E[|X − X̂|2]

= min
f(x̂|y):I(Y ;X̂)≤R

E

[∣
∣
∣X − E[X |Y ] + E[X |Y ]− X̂

∣
∣
∣

2
]

= min
f(x̂|y):I(Y ;X̂)≤R

E

[

|X − E[X |Y ]|2
]

+ E

[∣
∣
∣E[X |Y ]− X̂

∣
∣
∣

2
]

by the properties of the conditional expectation. We thus obtain

DR
X(R)

= E

[

|X − E[X |Y ]|2
]

︸ ︷︷ ︸

=D0

+ min
f(x̂|y):I(Y ;X̂)≤R

E






∣
∣
∣
∣
∣
∣

E[X |Y ]
︸ ︷︷ ︸

=V

−X̂

∣
∣
∣
∣
∣
∣

2





= D0 + min
f(x̂|v):I(V ;X̂)≤R

E

[∣
∣
∣V − X̂

∣
∣
∣

2
]

︸ ︷︷ ︸

DV (R)

. (42)

where for the last step, the data processing inequality implies that I(Y ; X̂) ≥ I(V ; X̂), and hence, the second minimum cannot

evaluate to something larger than the first. Since V is a deterministic function of Y, we have that for the minimizing f(x̂|v)
in the second minimum, it holds that I(Y ; X̂) = I(V ; X̂). Hence, the two minima are equal. Conversely, we can thus write

RR
X(D) = RV (D −D0), (43)
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where RV (D) denotes the rate-distortion function (under mean-squared error) of the source V. The claimed lower and upper

bounds now follow from Equations (13) and (14), applied to RV (D).
For Inequality (16), the upper bound is simply the distortion incurred by the best linear estimator. For the lower bound,

observe that since by assumption, we can recover X to within distortion D0 from Y, we must have

I(X ;Y ) ≥ min
f(x̂|x):E[d(X,X̂)]≤D0

I(X ; X̂) = RX(D0). (44)

Under mean-squared error distortion, we know from Inequality (13) that RX(D0) ≥ 1
2 log

+ N(X)
D0

. Combining this with the

above, we obtain

I(X ;Y ) ≥ 1

2
log+

N(X)

D0
. (45)

First, let us restrict to the case where D0 ≤ N(X). In this case, we can further conclude that

e2I(X;Y ) ≥ N(X)

D0
. (46)

Observing that I(X ;Y ) = h(Y )− h(Z), we can rewrite this as

N(Y )

N(Z)
≥ N(X)

D0
, (47)

which is exactly the claimed bound. Conversely, suppose that D0 > N(X). By the entropy power inequality, we have that
N(Z)
N(Y ) ≤ 1, meaning that the left-hand side of Inequality (16) evaluates to something no larger than N(X). Since we assumed

that D0 > N(X), the claimed lower bound applies in this case, too.

B. Proofs of Inequalities (19)-(23)

Lower Bounds: Recall that here, we are assuming that the observation noise Z is Gaussian. Then, the lower bound in

Inequality (19) can be established e.g. as a consequence of [11, Thm.1], as follows.

RR
X(D) = min

f(x̂|y):E[d(X,X̂)]≤D

I(Y ; X̂) (48)

≥ min
f(x̂|y):E[d(X,X̂)]≤D

1

2
log

e2h(X)

e2(h(Y )−I(X;X̂)) − e2h(Z)
. (49)

where the inequality is due to [11, Thm. 1] and the fact that by construction, we have that the Markov chain X ↔ Y ↔ X̂ holds.

Next, we observe that by definition, RX(D) ≤ I(X ; X̂). As long as D is such that e2RX(D) ≤ N(Y )/σ2
Z , the denominator

stays non-negative. For such values of D, we thus have

RR
X(D) ≥ 1

2
log

N(X)

N(Y )e−2RX(D) − σ2
Z

(50)

= RX(D) +
1

2
log

N(X)

N(Y )− σ2
Ze

2RX(D)
. (51)

Finally, since for all values of D, we have RR
X(D) ≥ RX(D), we obtain

RR
X(D) ≥ RX(D) +

1

2
log+

N(X)

N(Y )− σ2
Ze

2RX (D)
. (52)

For the lower bound in Inequality (22), it suffices to lower bound RX(D) in Inequality (19) using Inequality (13).
Upper Bounds: For the upper bound in Inequality (21), let us consider U = Y + V = X + Z + V, where V is Gaussian

N (0, σ2
X/s− σ2

Z). Now, let us suppose that s can be chosen in such a way that

min
g

E[d (X, g(U))] ≤ D. (53)

Then, from the definition of the remote rate-distortion function (Equation (5)), we find

RR
X(D) ≤ I(Y ;U) (54)

= h(U)− h(V ) (55)

≤ 1

2
log

(

2πeσ2
X

1 + s

s

)

− h(V ) (56)

=
1

2
log

(

σ2
X

1 + s

σ2
X − sσ2

Z

)

(57)

=
1

2
log (1 + s) +

1

2
log

(
σ2
X

σ2
X − sσ2

Z

)

, (58)
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where the second inequality is a standard maximum-entropy argument. To bring out the similarity to the corresponding lower

bound, we reparameterize as s = e2r − 1. For the upper bound in Inequality (23), we now observe that under mean-squared

error distortion, as long as D < σ2
X , we may choose

r =
1

2
log

σ2
X

D
, (59)

or, equivalently, σ2
X/s =

σ2

X
D

σ2

X
−D

. To see that this is a valid choice satisfying the restriction of Equation (20), it suffices to

observe that

min
α∈R

E

[

(X − α(X + Z + V ))
2
]

= D, (60)

and thus we satisfy ming E[d (X, g(X + Z + V ))] ≤ D. Finally, for D ≥ σ2
X , the upper bound in Inequality (23) evaluates to

zero, which is trivially a correct bound, too.

APPENDIX B

PROOFS FOR SECTION IV

A. Proof of Theorem 1

The starting point for our lower bound is an outer bound introduced by Wagner and Anantharam [9], [10]. To state this

bound, we write the vector of noisy observations as Y = (Y1, Y2, . . . , YM ) and we collect the elements Yi with i in a subset

A of the set {1, 2, · · · ,M} into a vector

YA = (Yi)i∈A, (61)

and likewise, we introduce the auxiliary random vector U = (U1, U2, . . . , UM ) and again collect the elements Ui with i in a

subset A of the set {1, 2, · · · ,M} into a vector

UA = (Ui)i∈A. (62)

Then, the following statement applies.

Theorem 5. Let Ri denote the rate of the description provided by agent i. There must exist a set of random variables

(X,Y,U,W, T, X̂) ∈ WCEO
X (D) such that for all subsets A ⊆ {1, 2, . . . ,M},

∑

i∈A

Ri ≥ I(X ;U, T )− I(X ;UAc |T ) +
∑

i∈A

I(Yi;Ui|X,W, T ), (63)

where WCEO
X (D) is the set of sets of random variables (X,Y,U,W, T, X̂) satisfying E

[

d(X, X̂)
]

≤ D and

(i) (W,T ) is independent of (X,Y),
(ii) UB ↔ (YB,W, T ) ↔ (X,YBc ,UBc) for all B ⊆ {1, . . .M},

(iii) (X,W, T ) ↔ (U, T ) ↔ X̂ , and

(iv) the conditional distribution of Ui given W and T is discrete for each i.

For a proof of this theorem, see [9, p. 109] or [10, Theorem 1, Appendix D, and start of the proof of Proposition 6]. Strictly

speaking, in that proof, both the source and the observation noises are assumed to be Gaussian, but all arguments continue to

hold for sources of finite differential entropy observed in Gaussian noise.

From this theorem, the following corollary will be of specific interest to our development:

Corollary 3. There must exist a set of random variables (X,Y,U,W, T, X̂) ∈ WCEO
X (D) such that for all subsets A ⊆

{1, 2, . . . ,M},
∑

i∈A

Ri ≥ RX(D)− I(X ;UAc |W,T ) +
∑

i∈A

I(Yi;Ui|X,W, T ). (64)

Proof. Condition (iii) in Theorem 5 implies that I(X ;U, T ) ≥ I(X ; X̂) ≥ RX(D). Moreover, observe that

I(X ;UAc |T ) + I(X ;W |UAc , T )

= I(X ;W |T ) + I(X ;UAc |W,T ) (65)

and since I(X ;W |T ) = 0, we have I(X ;UAc |T ) ≤ I(X ;UAc |W,T ).

To establish our lower bound, we start by considering the following lemma. This is a generalization of the lemma proved

by Oohama [6] to the case of non-Gaussian sources.



12

Lemma 6. Let ri = I(Yi;Ui|X,W, T ) and A ⊆ {1, . . . ,M}. Then

e2I(X;UA|W,T ) ≤ N(Y (A))

σ2
A/|A| −N(X)

∑

i∈A

e−2ri

σ2
Zi

. (66)

Proof. Since (W,T ) is independent of (X,Y) when condition (i) in Theorem 5 holds, we know that we preserve the Markov

chain X → Y (A) → YA → UA when we condition on any realization of (W,T ). Therefore, we can again use Theorem 1

of [11] to infer

e2h(Y (A))e−2I(X;UA|W=w,T=t)

≥ e2h(X)e−2I(Y (A);UA|W=w,T=t) + e2h(Z(A))

=
e2h(X)

e2h(Y (A))
e2h(Y (A)|UA,W=w,T=t) + e2h(Z(A)). (67)

Now,

h(Y (A)|UA,W = w, T = t)

=h(Y (A)|UA, X,W = w, T = t)

+ I(X ;Y (A)|UA,W = w, T = t) (68)

=h(Y (A)|UA, X,W = w, T = t)

+ I(X ;Y (A),UA|W = w, T = t)

− I(X ;UA|W = w, T = t) (69)

=h(Y (A)|UA, X,W = w, T = t)

+ I(X ;Y (A)|W = w, T = t)

− I(X ;UA|W = w, T = t) (70)

=h(Y (A)|UA, X,W = w, T = t) + I(X ;Y (A))

− I(X ;UA|W = w, T = t), (71)

where (70) follows from the Markov chain X → Y (A) → YA → UA and (71) from Theorem 5, Item (i). The next step is

to bound h(Y (A)|UA, X,W = w, T = t). We note that we can write

e2h(Y (A)|UA,X,W=w,T=t)

= e
2h

(

1

|A|

∑

i∈A

σ
2

A
σ2

Zi

Yi

∣

∣

∣

∣

∣

UA,X,W=w,T=t

)

(72)

≥
∑

i∈A

(
σ2
A

σ2
Zi

)2
e2h(Yi|Ui,X,W=w,T=t)

|A|2 , (73)

where (73) follows by Item (ii) of Theorem 5 and the entropy power inequality. Moreover,

h(Yi|Ui, X,W = w, T = t)

= h(Yi|X,W = w, T = t)− I(Yi;Ui|X,W = w, T = t)

= h(Zi)− I(Yi;Ui|X,W = w, T = t). (74)

Combining (67), (71), (73), and (74) gives

e2h(Y (A))e−2I(X;UA|W=w,T=t)

≥ e2h(X)

e2h(Y (A))
· e2I(X;Y (A))

e2I(X;UA|W=w,T=t)

·
∑

i∈A

(
σ2
A

σ2
Zi

)2
e2h(Zi)−2I(Yi;Ui|X,W=w,T=t)

|A|2 + e2h(Z(A)). (75)
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Solving for e2I(X;UA|W=w,T=t) and noting that e2h(Zi)/σ2
Zi

= 2πe, we get that

e2I(X;UA|W=w,T=t)

≤ e−2h(Z(A))

·
[

e2h(Y (A)) − e2h(X)e2I(X;Y (A))

e2h(Y (A))

2πe

(
σ2
A

|A|

)2∑

i∈A

e−2I(Yi;Ui|X,W=w,T=t)

σ2
Zi

]

=
e2h(Y (A))

e2h(Z(A))

− e2h(X)

e4h(Z(A))
2πe

(
σ2
A

|A|

)2∑

i∈A

e−2I(Yi;Ui|X,W=w,T=t)

σ2
Zi

=
N(Y (A))

σ2
A/|A| −N(X)

∑

i∈A

e−2I(Yi;Ui|X,W=w,T=t)

σ2
Zi

, (76)

where we have used that e2h(Z(A)) = 2πe
σ2

A

|A| , a direct consequence of Equation (8). We complete the proof by taking the

expectation over W,T and applying Jensen’s inequality twice, once to the left-hand side and once to the right-hand side.

Proof of Theorem 1. Let ri = I(Yi;Ui|X,W, T ). First, if A = {1, 2, . . . ,M}, then Inequality (64) directly becomes the

claimed inequality. Additionally, for every (strict) subset A ⊂ {1, 2, . . . ,M}, substitute the bound (66) into (64) to obtain
∑

i∈A

Ri ≥ RX(D)

− 1

2
log

(

N(Y (Ac))

σ2
Ac/|Ac| −N(X)

∑

i∈Ac

e−2ri

σ2
Zi

)

+
∑

i∈A

ri. (77)

It is also important to observe that the argument inside the logarithm is guaranteed to be at least 1 for all non-negative choices

of ri. To see this, note that

N(Y (Ac))

σ2
Ac

− N(X)

|Ac|
∑

i∈Ac

e−2ri

σ2
Zi

≥ N(Y (Ac))

σ2
Ac

− N(X)

|Ac|
∑

i∈Ac

1

σ2
Zi

(78)

=
N(Y (Ac))

σ2
Ac

− N(X)

σ2
Ac

(79)

≥ (N(X) + σ2
Ac)−N(X)

σ2
Ac

= 1, (80)

where the last step is due to the entropy power inequality N(Y (Ac)) ≥ N(X)+N(Z(Ac)), and the fact that N(Z(Ac)) = σ2
Ac .

Hence, the expression inside the logarithm is lower bounded by |Ac|.
This has to hold simultaneously (that is, for a fixed ri = I(Yi;Ui|X,W, T )) for all subsets A. This implies that if

(R1, R2, . . . , RM ) ∈ RCEO(D), then there must exist non-negative numbers ri such that the above inequalities are satisfied

for all choices of A.

B. Proof of Theorem 2 and of the lower bound in Corollary 2

In this subsection, we leverage Theorem 1 to establish the bounds of Theorem 2 and Corollary 2, i.e., the case of equal

noise variances. For that case, we relax Theorem 1 to only include the empty set (that is, A = ∅) and the complete set (that

is, A = {1, 2, . . . ,M}). Specifically, for A = ∅, we find

0 ≥RX(D)− 1

2
log

(

M N(Y (M))

σ2
Z

− N(X)

σ2
Z

M∑

i=1

e−2ri

)

. (81)

Equivalently,

1
1
M

∑M

i=1 e
−2ri

≥ M N(X)

M N(Y (M))− σ2
Ze

2RX (D)
. (82)
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From Jensen’s inequality, we have

1

M

M∑

i=1

ri ≥
1

2
log

1
1
M

∑M

i=1 e
−2ri

. (83)

Restricting attention to those values of D for which M N(Y (M))−σ2
Ze

2RX (D) ≥ 0 ensures that the denominator on the right

hand side of (82) is non-negative. Thus, for such values of D, we find (for A = ∅) that

M∑

i=1

ri ≥
M

2
log+

M N(X)

M N(Y (M))− σ2
Ze

2RX(D)
. (84)

For A = {1, 2, . . . ,M}, we have

M∑

i=1

Ri ≥ RX(D) +
M∑

i=1

ri. (85)

Since, by Theorem 1, there must exist non-negative real numbers {r1, r2, . . . , rM} such that conditions (84) and (85) are

satisfied simultaneously, we conclude

M∑

i=1

Ri ≥ RX(D) +
M

2
log+

M N(X)

M N(Y (M))− σ2
Ze

2RX (D)
, (86)

which completes the proof of Theorem 2. The lower bound in Corollary 2 then follows directly by lower bounding the terms

RX(D) using the lower bound in Inequality (13).

C. Achievability results for the AWGN CEO Problem (Corollaries 1 and 2)

The achievability results mentioned in this paper all follow from the Berger-Tung region [25], [26]. While these results were

originally for discrete memoryless sources and bounded distortion measures, they have been extended to abstract alphabets and

suitably smooth distortion functions [27], including mean-squared error [28]. A detailed analysis for the case of the quadratic

Gaussian CEO problem is given in the work of Oohama [5], [6]. This analysis directly extends to the case of the AWGN CEO

problem with Gaussian auxiliaries, as we now briefly explain. Exactly as in [5], [6], we consider a random coding argument

where the codebooks are drawn via auxiliary random variables Ui, for i = 1, 2, . . . ,M, where

Ui = Yi + Vi, (87)

where Yi = X +Zi is the noisy observation of encoder i, and Vi is an independent zero-mean Gaussian of variance σ2
Vi
. The

centerpiece of the proof is the so-called Markov lemma [5, Lemma 5], whose proof only uses the fact that conditioned on

the underlying source sequence, the noisy observations and the auxiliary codebook random variables are Gaussian. Clearly,

this still applies in our case, even if X is not Gaussian. This leads to the rate region in [6, Equation (6)], which coincides

exactly with (26), establishing a proof sketch for the achievability part of Corollary 1. (As a side note, we point out that for

non-Gaussian sources X, in general, we can find tighter upper bounds by using auxiliaries Ui of a form different from (87),

but this is outside the scope of the present paper. Such arguments are developed for different settings, e.g., in [14], [15].)

In the remainder, we provide an explicit calculation for the achievability result in Corollary 2, that is, for the sum-rate in

the case of equal noise variances (see also the arguments in [29]). Specifically, we have

RCEO
X (D) ≤ I(Y;U), (88)

where U = (U1, U2, . . . , UM ), as above. If all noise variances are equal, it is intuitive that a good choice is to also set all the

variances σ2
Vi

= σ2
V to be equal. Then, following standard arguments (see e.g. [6, Section IV]), the corresponding distortion is

no larger than

min
g

E

[

(X − g(U))
2
]

≤ σ2
X(σ2

Z + σ2
V )

Mσ2
X + σ2

Z + σ2
V

, (89)

where the right hand side is the distortion incurred by the optimal linear estimator. Hence, choosing σ2
V such that the right

hand side of this equation equals D characterizes a valid distribution. It remains to upper bound the corresponding value of

I(Y;U).

I(Y;U) = h(U)− h(U|Y) (90)

= h(U)− M

2
log(2πe)σ2

V . (91)
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The proof is completed by a standard maximum entropy upper bound on the term h(U). Specifically, observe that the covariance

matrix of the vector h(U) is the M ×M matrix with entries σ2
X + σ2

Z + σ2
V on the diagonal and σ2

X everywhere else. From

a standard maximum entropy argument (subject to a fixed covariance matrix), we thus find

h(U) ≤ 1

2
log(2πe)M

((
Mσ2

X + σ2
Z + σ2

V

) (
σ2
Z + σ2

V

)M−1
)

. (92)

Thus,

I(Y;U) ≤ 1

2
log

((
Mσ2

X + σ2
Z + σ2

V

) (
σ2
Z + σ2

V

)M−1

σ2M
V

)

(93)

=
1

2
log

(

Mσ2
X + σ2

Z + σ2
V

σ2
Z + σ2

V

·
(
σ2
Z + σ2

V

)M

σ2M
V

)

. (94)

Recall that σ2
V is chosen such that we have D ≤ σ2

X(σ2
Z + σ2

V )/(Mσ2
X + σ2

Z + σ2
V ), thus,

I(Y;U) ≤ 1

2
log+

σ2
X

D
+

M

2
log

σ2
Z + σ2

V

σ2
V

, (95)

and finally, we note that the relation D ≤ σ2

X
(σ2

Z
+σ2

V
)

Mσ2

X
+σ2

Z
+σ2

V

can be rewritten equivalently as

σ2
Z + σ2

V

σ2
V

≤ Mσ2
X

Mσ2
X + σ2

Z − σ2

X

D
σ2
Z

, (96)

which completes the explicit proof of Inequality (29) in Corollary 2.

D. Proof of Equations (31) and (32)

Recall the definition of Y (M) from Equation (11), namely,

Y (M) = X + Z(M), (97)

and recall that Z(M) is a zero-mean Gaussian, independent of X , of variance σ2
Z/M. We can leverage [30] where it is proved

that N(X + Z(M)) is a concave function of the variance of Z(M), that is, of σ2
Z/M. Therefore, using the definition given in

Equation (30), we have

N(Y (M)) = N(X + Z(M)) ≤ N(X) + κX(σ2
Z/M). (98)

For both Equations (31) and (32), we use Equation (98) to lower bound RCEO
X,lower(D). Moreover, in the formula for RCEO

X,lower(D),

we change both log+ to log, which cannot increase their values. For RCEO
X,upper(D), we recall that σ2

Y (M) = σ2
X + σ2

Z/M.

Now, for Equation (31), we observe that if D < σ2
X and M is large enough, then the arguments of both logarithms in

RCEO
X,upper(D) are larger than one. Hence, for such M, we can upper bound the difference as

RCEO
X,upper(D)−RCEO

X,lower(D)

≤ 1

2
log

σ2
X

N(X)
+

M

2
log

Mσ2
X(M N(X) + κXσ2

Z − N(X)
D

σ2
Z)

M N(X)(Mσ2
X + σ2

Z − σ2

X

D
σ2
Z)

. (99)

Using the standard bound log(1 + x) ≤ x and letting M tend to infinity gives the claimed formula.

For Equation (32), we start by noting that since we assume M > d/σ2
X , we have that D = d/M < σ2

X . Hence, the arguments

of both logarithms in the formula for RCEO
X,upper(D = d/M) are larger than one. Therefore, we can bound the difference as

follows:

RCEO
X,upper(d/M)−RCEO

X,lower(d/M)

≤ 1

2
log

σ2
X

N(X)
+

M

2
log

σ2
X(N(X) + κXσ2

Z/M − N(X)
d

σ2
Z)

N(X)(σ2
X + σ2

Z/M − σ2

X

d
σ2
Z)

≤ 1

2
log

σ2
X

N(X)
+

M

2

(κXσ2
X −N(X))σ2

Z

Mσ2
X N(X)(1− σ2

Z/d) + σ2
Z

(100)

where we used the standard bound log(1 + x) ≤ x. Further upper bounding by dropping the trailing σ2
Z in the denominator

establishes Equation (32).
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APPENDIX C

PROOF OF THEOREM 3

For centralized encoding, we note that the scenario is precisely the CEO problem with M = 1 and with a reduced noise

variance of σ2
Z/M. Hence, we may use the upper bound in Inequality (23) to find

RR
X(D) ≤ 1

2
log+

σ2
X

D
+

1

2
log+

σ2
X

σ2
Y (M) −

σ2

X
σ2

Z

MD

. (101)

Parameterizing the distortion D as follows

D = Dα = α
σ2
Xσ2

Z

Mσ2
Y (M)

, (102)

we can express the upper bound as

RR
X(Dα) ≤

1

2
log+

Mσ2
Y (M)

ασ2
Z

+
1

2
log+

(

σ2
X

σ2
Y (M)(1 − 1

α
)

)

. (103)

As long as α < M
σ2

X

σ2

Z

+ 1, this can be combined into

RR
X(Dα) ≤

1

2
log

(
Mσ2

X

σ2
Z(α − 1)

)

, (104)

where we note that the argument inside the logarithm is lower bounded by one under the stated conditions on α. For distributed

(CEO) encoding, we evaluate the lower bound in Corollary 2. By analogy, we parameterize D̃β = βN(X)σ2
Z/(M N(Y (M))).

Specifically, we will choose β = ασ2
X/N(X), which ensures D̃β ≥ Dα (as well as β > 1). With such β, we get

RCEO
X (Dα) ≥ RCEO

X (D̃β)

≥ 1

2
log+

M N(Y (M))

βσ2
Z

+
M

2
log+

(

N(X)

N(Y (M))(1 − 1
β
)

)

. (105)

We further lower bound this by using N(Y (M)) ≥ N(X) in the first logarithm. In the second logarithm, we use the assumption

that κX < ∞, which implies via Equation (98) that2 N(Y (M)) ≤ N(X)+κX(σ2
Z/M). We plug in β = ασ2

X/N(X). Moreover,

we further lower bound the first logarithm by changing the log+ to log, which thus leads to

RCEO
X (Dα) ≥

1

2
log

M(N(X))2

ασ2
Xσ2

Z

+
M

2
log+

(
ασ2

X N(X)

(N(X) + κX

M
σ2
Z)(ασ

2
X −N(X))

)

. (106)

Subtracting Inequality (104) from this expression gives the claimed formula.

APPENDIX D

PROOF OF THEOREM 4

We start by proving Inequality (40). Let us loosen the lower bound in Corollary 2 (Inequality (28)) to

RCEO
X (D) ≥ M

2
log+

M N(X)

M N(Y (M))− N(X)
D

σ2
Z

. (107)

Next, we set this lower bound equal to R, the total communication (sum) rate available over the multiple-access channel. Then,

we find

D ≥ N(X)σ2
Z

M N(X)(1− exp(−2R/M)) +M(N(Y (M))−N(X))
. (108)

To simplify further, we observe that M(1− exp(−2R/M)) ≤ 2R, hence,

D ≥ N(X)σ2
Z

2N(X)R+M(N(Y (M))−N(X))
. (109)

To bound the total rate R available over the multiple-access channel is a somewhat subtle issue due to the fact that the messages

produced by the source code may be dependent. Here, we merely bound this total rate by the rate for a corresponding vector

2Alternatively, without the assumption that κX < ∞, we could upper bound as N(Y (M)) ≤ σ2
Y (M)

= σ2
X

+ 1
M

σ2
Z
. This leads to a weaker, but not

vacuous bound.
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(or “multiple-antenna”) channel, where the channel input is thus a vector of length M (and the channel output is a scalar,

equal to the sum of the M inputs plus noise). For such a system, it is well known that

R ≤ 1

2
log

(

1 +
M2P

σ2
channel

)

, (110)

where P is the transmit power per user on the multiple-access channel. Hence, for a digital strategy in the sense discussed

here, the resulting distortion is at least

Dd ≥ N(X)σ2
Z

N(X) log
(

1 + M2P
σ2

channel

)

+M(N(Y (M))−N(X))
. (111)

Finally, using the upper bound from Equation (98), we find that M(N(Y (M))−N(X)) ≤ κXσ2
Z , which completes the proof

of Inequality (40).

For Equation (41), we proceed as follows: At time i, encoder m sets Um[i] =
√

P
σ2

X
+σ2

Z

Ym[i]. Clearly, this satisfies the

constraint in Equation (37) and is thus a valid strategy. At the receiver, we set X̂ [i] equal to the linear mean-squared error

estimator of X [i] based on V [i], which is well known to be

X̂ [i] =

√
P

σ2

X
+σ2

Z

Mσ2
X

P
σ2

X
+σ2

Z

(M2σ2
X +Mσ2

Z) + σ2
channel

V [i]. (112)

A direct calculation reveals that for each i, we have

E

[

(X [i]− X̂ [i])2
]

=
σ2
Xσ2

N

Mσ2
X + σ2

N



1 +
M(σ2

Xσ2
channel/σ

2
N )

Mσ2

X
+σ2

N

σ2

X
+σ2

N

MP + σ2
channel



 , (113)

which thus establishes Equation (41).
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