
On the information in spike timing: neural codes
derived from polychronous groups

Zhinus Marzi, João Hespanha and Upamanyu Madhow
Department of Electrical and Computer Engineering

University of California, Santa Barbara
Email: {zh_marzi, hespanha, madhow}@ece.ucsb.edu

Abstract—There is growing evidence regarding the importance
of spike timing in neural information processing, with even a
small number of spikes carrying information, but computational
models lag significantly behind those for rate coding. Exper-
imental evidence on neuronal behavior is consistent with the
dynamical and state dependent behavior provided by recurrent
connections. This motivates the minimalistic abstraction investi-
gated in this paper, aimed at providing insight into information
encoding in spike timing via recurrent connections. We employ
information-theoretic techniques for a simple reservoir model
which encodes input spatiotemporal patterns into a sparse neural
code, translating the polychronous groups introduced by Izhike-
vich into codewords on which we can perform standard vector
operations. We show that the distance properties of the code are
similar to those for (optimal) random codes. In particular, the
code meets benchmarks associated with both linear classification
and capacity, with the latter scaling exponentially with reservoir
size.

I. INTRODUCTION

Classical models in computational neuroscience are based
on rate coding. The existing state of the art in machine learning
(ranging from perceptrons to CNNs and RNNs) also implicitly
models rate coding, with the real value at the input or output
of a neuron serving as an abstraction of a firing rate. While
there is significant experimental evidence and considerable
speculation on the importance of spike timing, computational
models are far less established. In this paper, we propose and
investigate an idealized model in order to derive insight into
the neural codes that can be constructed from spike timing
information.

Sensory information (e.g., in visual and auditory stimuli) are
inherently embedded into spatiotemporal patterns. Experimental
evidence in [1], [2] suggests that neurons show dynamical
behavior even when the stimulus is fixed: [1] shows that the
cat primary visual cortex acts like a fading memory whose
current activity contain as much information from previous
frame’s content as the current frame, while [2] shows that the
network responds differently to odor B when it is proceeded
by odor A. This is consistent with the dynamical and state
dependent behavior provided by recurrent connections. Thus,
recurrent connections, which are the key aspect of the model
considered here, are strongly neuro-plausible candidates for
cortical modeling, since they bring about temporal context by
providing state-dependent dynamics.

Our starting point is a key observation by Izhikevich more
than a decade ago [3]. He observed that experiments show

a great deal of variability in axonal delays, which results in
an interesting phenomenon that he terms polychronization.
Figure 1 illustrates the effect of axonal delays: Neurons A and
B provide inputs to Neuron C through axons with delays 3
ms and 5 ms, respectively. Suppose that Neuron C acts as a
coincidence detector, firing when spikes from Neurons A and
B arrive at the same time (within the same 1 ms bin, in our
discrete time model). Given the difference in axonal delays,
this happens when the spike from Neuron A is launched 2
ms after the spike from Neuron B. When we have a network
of neurons connected via variable delay axons, interesting
patterns of firings in space (i.e., across neurons) and time, which
Izhikevich terms polychronous groups, result from individual
spikes initiated at a small number of neurons.

A

B

C

A

B

C

time (ms)
1 3 6

Fig. 1: Polychronization

In this paper, we ask whether polychronization can provide
the basis for a concrete computational framework. In the
tradition of information theory, we consider the simplest
possible model that captures the basic features of the problem.
We consider a set of K input neurons connected to a reservoir
of N neurons, where N " K, as depicted in Figure 2(a) (the
model is discussed in more detail in Section II). The axonal
delays from input neurons to reservoir neurons, and those
between reservoir neurons, are randomly chosen from one of
T consecutive values. Each reservoir neuron is a coincidence
detector, firing when at least m spikes from pre-synaptic
neurons fall in the same time bin. For each input spike pattern,
there is a corresponding space-time pattern in the reservoir,
which we may interpret as an encoding of the input pattern.
Figure 2(b) shows an example reservoir response to a particular
input pattern.

Thus, we have encoded an input space-time pattern into
an output space-time pattern in a higher-dimensional space.
The dimension increase from input to output spaces should
separate out the patterns from each other more than at the
input, and hence provides a “channel code.” The information
embedded in the reservoir’s space-time pattern can be read

ar
X

iv
:1

80
3.

03
69

2v
1

 [
q-

bi
o.

N
C

]
 9

 M
ar

 2
01

8

.

.

.

dir

drr

Input layer Reservoir

(a)

0 10 20 30 40 50 60 70 80

Time

0

20

40

60

80

100

N
e

u
ro

n
 i
n

d
e

x

K=8, N=100, T=20

Input spikes

Reservoir spikes

(b)

Fig. 2: (a) System model, (b) Spatiotemporal code

out with various degrees of sophistication. In this paper, we
show that even the simplest approach in which we integrate the
number of spikes for each neuron over a relatively large time
horizon (effectively converting the rich dynamics within the
reservoir into a rate code) provides a powerful neural code that
scales “well” with reservoir size N . This readout mechanism
maps the space-time input patterns to spatial output patterns by
integrating the outputs of the reservoir neurons over predefined
intervals. The resulting spatial codeword is a real-valued vector
of dimension N . We discuss the properties of these spatial
codes in this paper. We are interested in how these codes scale
with reservoir size N , and our main results are summarized as
follows:
‚ Our analysis reveals that to achieve good properties in terms
of linear separability and memorization capacity, the output
degree of the input neurons dir, should scale linearly with
N
?
T {K, while the output degree of the reservoir neurons

drr, can remain constant as we scale the reservoir size.
‚ We have verified the above scaling laws in terms of the ability
of the neural network to encode spatio-temporal patterns to
facilitate classification using a linear classifier. Specifically, we
have shown that the network placement of codewords enable
it to achieve fundamental benchmarks of linear separability
established by Cover [4].
‚ We have also verified that, under the above scaling law, the
weight and distance properties of the spatial codes scale with
N in a manner similar to that of random codes. This enable
us to argue that the number of patterns that can be reliably
distinguished scales exponentially with N .

We observe that, for our simple readout model, small
perturbations in the input pattern (e.g., the change in the timing
of a single spike in one of the neurons) lead to large changes
in the output. Thus, the system is well-matched to one-shot
learning and memorization (i.e., training and testing using the
same patterns).

II. SYSTEM MODEL AND PROPERTIES

We now describe the system model depicted in Figure 2(a)
in more detail, and discuss some basic properties and parameter
choices. As a minimal idealization of spike timing information,
we consider K input neurons, each emitting a single spike at a
time chosen from t1, ..., T u. Thus, there are TK possible input
patterns, corresponding to K log2 T bits of information. The
input can therefore be represented as a K ˆ T binary array U

with the pk, tqth entry ukt “ 1 if input neuron k spikes at time
t and ukt “ 0 otherwise, where k “ 1, ...,K, t “ 1, ..., T .

We are interested in encoding each input spatiotemporal
pattern into the responses of N reservoir neurons. Each input
neuron is connected to dir reservoir neurons, chosen at random.
The reservoir neurons are internally connected to each other,
with each reservoir neuron providing input to drr other reservoir
neurons, chosen at random. Thus, the average in-degree of a
reservoir neuron is K

N dir`drr. For simplicity, all synapses are
taken to be excitatory, but the role of inhibitory synapses in
shaping neural codes in our setting is certainly of great interest
for future work.

A reservoir neuron fires if and only if at least m incoming
spikes arrive in a given time slot. We set m “ 2 for all of our
numerical results.

We also make a drastic abstraction of spike timing dependent
plasticity (STDP) in our model. Specifically, we assume that,
in the learning phase, all synapses are of equal strength, so
that m incoming spikes that line up in time suffice to make a
neuron fire; this enables “instant learning” of input patterns.
After the learning phase is over, we may set “unused” incoming
synapses (i.e., those for which the output neuron has never fired
in the slot directly after the arrival of a spike on the synapse)
to zero. Incorporating more sophisticated STDP mechanisms
compatible with continual learning and forgetting into our
model are a subject of future work.

A. Neural coding

While the input patterns span times 1 through T , the recurrent
connections in the reservoir imply that the response to an
input may last for more than T time units. In principle, due
to reverberant effects, the duration of spikes from reservoir
neurons could be indefinitely long, but in practice, we can
capture most of the relevant information within a finite horizon
that we denote as Thz. In our simulations, we employ Thz “
4T .

The reservoir “space-time” response is a N ˆ Thz array S
with pj, tqth entry sjt “ 1 if reservoir neuron j spikes at time
t, and sjt “ 0 otherwise, where j “ 1, ..., N , t “ 1, ..., Thz. In
order to translate the reservoir spatiotemporal information to
a purely spatial domain, we count the firings of the reservoir
neurons for the duration of the horizon Thz, which results in
an N -dimensional codeword vector X with its jth entry given
by

xj “
Thz
ÿ

t“1

sjt , j “ 1, ..., N

From a computational viewpoint, the mapping from input
pattern U to X is a “hash” from temporal coding to rate coding,
resulting in a neural code in a familiar vector space which we
can study with conventional techniques. Since this opens the
path for efficient classical computation and learning, most of our
discussion in this paper is devoted to spatial coding. From the
standpoint of neuro-plausibility, there is intriguing experimental
evidence regarding the tuning of synaptic integration within
cortex [5].

B. Network Parameters

In order for the neural code to properly utilize the avail-
able dimensions as we scale N , and to have the desirable
characteristics discussed in Section III, we must ensure that a
large fraction of the reservoir neurons are stimulated by each
input pattern. Firings in reservoir neurons occur due to direct
stimulation from the input, as well as due to the recurrent
internal connections, but an excessive number of firings due to
internal connections lead, we have found, to less discrimination
across the neural codewords. We therefore do not scale the
internal degrees in the reservoir with N , and scale the degrees
of the input nodes to ensure sufficient stimulation.

The firing probability of a reservoir neuron in direct response
to the input spikes is equivalent to the coincidence probability of
spike arrival times denoted as tarrival “ ti`δi, i P t1, 2, ..., Iu
(Figure 1), where I is the number of input synapses. In our
model, input spikes (ti) and axonal delays (δi) are independent
random variables with distribution Ur1, T s. Hence, tarrival has
a symmetric triangular distribution over the range r2, 2T s.
The coincidence probability for uniform random variables is
described by the well known birthday (collision) problem [6]:
the probability of having at least one coincidence among n
realizations of a random varible distributed as Ur1, ds. This
probability can be approximated by [7]

ppn; dq “ 1´ e
´npn´1q

2d (1)

The distribution of interest to us is triangular rather than
uniform, but the coincidence probability for any finite range
distribution is bounded below by that of a uniform distribution
over the same range [8]. Thus, the coincidence probability of
random variable tarrival „ ∆r2, 2T s for spikes coming through
I input synapses is lower bounded by

ppI; 2T ´ 1q “ 1´ e
´IpI´1q
2p2T´1q (2)

Using this expression leads to the rule of thumb that the
reservoir in-degree should scale as Ωp

?
T q 1, in order to

maintain a constant firing probability. Since synapses coming
from input layer are uniformly connected to reservoir neurons,
I is the sum of K Bernoulli random variables, with mean
EpIq “ K

N dir. Hence, dir should scale as ΩpNK
?
T q in order

to let the input spikes propagate through the reservoir.
We consider two regimes for scaling of K and N . In the

first regime (Section III-A), we fix K and let N get large, so
that dir scales as ΩpNq. In the second regime (Section III-B),
we increase K and N with K.N fixed, so that dir scales as
Ωp1q.

C. Chaotic Mapping

Figure 3 indicates that the mapping from input patterns to
both the space-time and spatial codes is chaotic, in that the
output Hamming distances and Euclidean distances can be
large even when the input Hamming distance is small (while
the distances for input Hamming distance 2 are smaller than the

1We say that f “ Ωpgq if there exist constant C ą 0 such that C ă |f{g|

rest, but there is a substantial fraction of large distances even
there). This sensitivity may be a drawback for generalization,
but it is a positive feature for one-shot learning or pattern
memorization. Of course, if we think of our discrete time
model as approximating a continuous-time system with a given
time resolution, the response will not change abruptly under
timing perturbations that are smaller than the resolution.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180
Hamming distance for space time code

Input Hamming distance =2

Input Hamming distance =4

Input Hamming distance =6

Input Hamming distance =8

(a)

0 5 10 15 20
0

50

100

150

200

250
Euclidean distance for spatial code

Input Hamming distance =2

Input Hamming distance =4

Input Hamming distance =6

Input Hamming distance =8

(b)

Fig. 3: Histogram of (a) Hamming distance of space-time
codes (b) Euclidean distance of spatial codes, for different
input hamming distances.

III. CODE CHARACTERISTICS

A. Linear Separability

From a computational perspective, one can view the reservoir
neurons as mapping the spatio-temporal stimuli applied to the
input neurons into spatial output codewords. In the context of
our model, this means that the neural network is a (nonlinear)
map φ from an input space of K-dimensional vectors (each
entry representing a firing time for the corresponding input
neuron) into an output space of N -dimensional vectors (each
entry representing the number of firing for the corresponding
reservoir neuron).

The problem of constructing optimal maps from a finite set
of input patterns to an N -dimensional output “feature” space
is addressed in a classic paper by Cover [4]. Cover considers
a classification problem where a set of P patterns represented
by features in Rd are given binary labels and shows that the
fraction ρ of the total set of 2P possible labels can be classified
with a linear classifier is given by

ρ ď ρmaxpP, dq –

řd
k“0

`

P´1
k

˘

2P´1
, (3)

with equality achieved when the P patterns are in “general
positions in Rd”. By this, we mean that every subset of d
patterns correspond to linearly independent vectors in Rd. Note
that Cover’s result in [4] only considers equality in (3), but his
proof can easily be adapted to show that points not in general
positions do not increase the fraction of linearly classifiable
labels.

An important feature of the function ρmaxpP, dq in (3) is that
it exhibits a steep change from values close to 1 for P ă 1.5d
to values close to 0 for P ą 2.5d, as can be seen in Figure 4,
where ρmaxpP, dq is ploted as a function of P {d (for d “ N).

Since ρmaxpP, dq is a monotonically increasing function of
d, the preceding result shows that one can perform a richer

class of classification tasks by increasing the dimension d
of the feature space. In fact, one can classify essentially any
labeling of P patterns represented by features in Rd, provided
that d ą P {1.5. However, this is only true if we can map our
original P patterns into the high dimensional space Rd, while
keeping the high-dimensional features in general positions.
This excludes, for example, any linear transformation, which
would necessarily introduce non-general positions when the
original patterns lie in RK with K ě d.

Figure 4 shows that our neural network provides an essen-
tially optimal nonlinear mapping of the input spatiotemporal
patterns to spatial output patterns in RN , in that it maps the
input patterns to general positions in RN . This enables linear
classification in the output space RN for the largest possible
fraction ρmaxpP,Nq of possible labels. In order to obtain this
figure, P “ 100 input patterns are randomly generated and
labeled into two classes. These patterns are propagated through
the spiking network, and we then determine whether or not
the patterns can be accurately classified by a SVM classifier.
Figures 4a and 4b compare the fraction of patterns/labels that
can be linearly classified with the upper bound provided by
ρmaxpP,Nq (black lines) for several values of the parameters
T and K, respectively. For comparison, we also include the
fraction of patterns/labels that can be linearly classified for a
set of random feature vectors in RN with iid Gaussian entries
(green lines), which are in general positions in RN .

Figure 4c contains a plot similar to that in Figure 4a, but
instead of presenting curves for several values of T , we fix
T and consider several values of the input-to-reservoir degree
dir. This second figure shows that there is a threshold for dir
below which the mapping is not effective. Specifically, we see
that when each input neuron is connected to at least 50% of
the reservoir neurons, the neural network essentially achieves
optimal separability and can linearly classify essentially any
labeling of P patterns, provided that N ą P {1.5. When each
input neuron is connected to only 30% of the reservoir neurons,
we see some degradation on performance, but the network
can still classify most labelings, provided that N ą P {1.25.
However, when the connectivity is down to 20%, the fraction
of patterns that can be linearly classified becomes exceedingly
small.

Thus, while our neural network produces a good code
with sufficient connectivity, there is a threshold below which
it is no longer effective. This is well predicted with the
approximation for reservoir neuron firing probability (due to
the input alone) given by (2): the approximations are 0.01, 0.04
and 0.14 for 20%, 30% and 50% connectivity, respectively.
The corresponding numbers via simulations are 0.03, 0.08 and
0.2, respectively, which yield similar qualitative conclusions.
A detailed analysis of the specific threshold required to trigger
“enough” activity within the reservoir (which should depend
on the reservoir’s internal connectivity) is an interesting topic
for future work.

The discussion above shows that, under an appropriate input-
to-reservoir connectivity, the neural network is almost optimal
in terms of maximizing the probability of linear classification.

Perhaps not surprisingly, we can show that it also performs
well in terms of achieving a small classification error rate
for the patterns that are not linearly separable in the output
space RN . To demonstrate this, we present in Figure 5 the
classification error rates obtained for the same experiments
used to construct Figure 4. We can see that in all the cases
for which we obtained optimality in terms of the probability
of linear classification, the error rates match those that would
be obtained by a set of random feature vectors in RN with iid
Gaussian entries.

B. Capacity

The linear separability results of the preceding section show
that the proposed system produces neural codewords in “general
position,” similar to those produced by random codes. Of
course, the number of linearly separable codewords scales
linearly with N . We now remove the constraint of linear
separability, and ask whether the number of patterns we can
reliably distinguish scales exponentially with N , formulating
it as a communication problem as follows:
‚ There are TK possible input patterns, or messages, corre-
sponding to K log2 T bits of information.
‚ Each pattern is encoded into a vector of dimension N
using our spatial code, hence our code rate is α “ K log2 T

N
bits/dimension.
‚ If we increase code dimension N while keeping code rate α
fixed, we have 2αN codewords, corresponding to exponential
scaling of the memory. Can we do this while keeping the
codewords “well separated”?

In information-theoretic terms, “well separated” means that,
when a codeword is perturbed by noise or other impairments
(determined by a channel model), and we use maximum
likelihood decoding, then the probability of error (i.e., decoding
into the wrong codeword) tends to zero as N gets large. For
any given input pattern, and corresponding codeword X, the
probability of maximum likelihood decoding to a different
codeword Y can be bounded by e´β||X´Y||2 for standard noise
models such as Gaussian and Poisson. As we show shortly, the
pairwise distance squared between codewords grows linearly
with N , concentrating around its mean (Figure 6(a)). Thus,
a union bound on the error probability, conditioned on the
correct codeword being X, is given by

Pe ď
ÿ

Y‰X

e´β||X´Y||2 „ 2αNe´βγN (4)

assuming that ||X´Y||2 concentrates around γN . Thus, the
error probability decays to zero if α ln 2 ă βγ.

Figure 6(a) gives simulation results showing both the mean
and variance of squared distances scale linearly with N . We
can now apply Chebyshev’s inequality to infer that the squared
distances indeed concentrate around their mean, which implies
that, for an appropriate choice of parameters, we can make
error probability tend to zero.

Beyond the basic concentration result, it is also worth check-
ing how much our neural codes “look like” random codes with
i.i.d. components. Suppose that we have two N -dimensional

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr{linear separability}

P/N

NN sims, T=10
NN sims, T=20
NN sims, T=30
Gaussian
Cover prediction

(a)

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr{linear separability}

P/N

Spatial code, K=8
Spatial code, K=16
Spatial code, K=24
Gaussian
Cover prediction

(b)

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr{linear separability}

P/N

Spatial code, d

ir
=0.2N

Spatial code, d
ir
=0.3N

Spatial code, d
ir
=0.4N

Spatial code, d
ir
=0.5N

Spatial code, d
ir
=0.8N

Gaussian

Cover prediction

(c)

Fig. 4: Spatial coding attains optimum separability over a wide range of network parameters. Default network settings are
T “ 20, K “ 8, dir “ 0.8N and drr “ 4.

1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Error rate

P/N

NN sims, T=10

NN sims, T=20

NN sims, T=30

Gaussian

(a)

1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Error rate

P/N

Spatial code, K=8
Spatial code, K=16

Spatial code, K=24
Gaussian

(b)

1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Error rate

P/N

Spatial code, d
ir
=0.2N

Spatial code, d
ir
=0.3N

Spatial code, d
ir
=0.4N

Spatial code, d
ir
=0.5N

Spatial code, d
ir
=0.8N

Gaussian

(c)

Fig. 5: Spatial coding’s error rate matches with random coding. Default network settings are T “ 20, K “ 8, dir “ 0.8N and
drr “ 4.

codewords X “ pX1, ..., XN q and Y “ pY1, ..., YN q from a
random code. If the components are i.i.d. and independent
across codewords, the mean and variance of the distance
squared will clearly scale linearly with N . In addition, however,

p||X´Y||2´Er||X´Y||2sq{

b

Nstd pX1 ´ Y1q
2 tends to a

standard Gaussian by the central limit theorem. Our neural code
also appears to exhibit this property: Figure 6(b) shows that
the histograms of distance-squared exhibit small Gaussian-like
deviations around the mean.

We note from figure 6(a) that the normalized distance of
the codewords, which can be interpreted as robustness of the
code against noise, is not a monotonic function of code rate.
To explain this behavior, first note that in our simulations,
EpIq “ Kdir{N 9α, which implies that the firing probability
of the reservoir neurons is increasing with code rate α. For very
small α (α “ 0.5), not enough neurons fire and for very large
α (α “ 8), most of the neurons fire most of the time. Both of
these scenarios lead to less discrimination among codewords.
Thus, there exists a sweet spot for code rate (e.g., α “ 4) that
provides the most discrimination by adjusting input-to-reservoir
connectivity.

IV. RELATED WORK

Other prior models trying to utilize spike timing include the
tempotron [9], which attempts binary classification of different
spike timing patterns using a perceptron-like structure, the

300 400 500 600 700 800 900

N

0

5

10

15

 = 1

 = 2

 = 4

 = 8

300 400 500 600 700 800 900

N

0

500

1000

1500

 = 1

 = 2

 = 4

 = 8

(a)

0 5 10 15

0

5

10

15

20

25

30

N
=

9
0
0

 = 1

 = 2

 = 4

 = 8

(b)

Fig. 6: (a) Mean and variance of distance squared scale linearly
with N , (b) Distance squared concentrates around its mean,
and exhibits Gaussian-like deviations from it (consistent with
the central limit theorem). Default network settings are dir “?
T log T , T “ 20 and drr “ 4.

chronotron [10], which attempts to train towards a desired
output spike timing pattern. Possible mechanisms for realizing
such machines are discussed in [11]. There is a rich history
and continued research in experimental neuroscience showing
the importance of spike timing; see [12], [13], [14], as well as
references in [3], [9], [10]. The chaotic nature of the mappings
induced by spike timing has been pointed out in [15], where
these observations are interpreted to cast doubt on whether
spike timing provides robust enough signals. Our model, which
is an abstraction of well-accepted spiking neural network

models [16], embraces the chaotic mappings resulting from
spike timing, and shows that these can produce good “channel
codes” which could provide the basis for a robust memory.
Note that Izhikevich also makes an interesting case for the
role of polychronous groups in working memory [17]. Our
abstraction is rich enough to produce polychronous groups as in
[3], without requiring the detailed models for continuous-time
neural dynamics used there.

Prior attempts at abstraction include Howard et al [18], who
consider a network of coincidence detectors similar to ours,
but detailed insight into the neural codes generated by such
networks is not provided. In terms of computational models
based on polychronous groups, prior work has focused on
having at least some synapses with adaptive delays. Paugham-
Moisy et al [19] consider supervised learning with a reservoir
computing model similar to ours, but with a crucial difference:
they allow adjustment of the delays from the reservoir neurons
to the readout. This can, in principle, compensate for the
chaotic nature of the map from the input to the reservoir,
but adapting delays has drawbacks from the point of view of
both computational neuroscience (questionable neuroplausibil-
ity) and neuromorphic design (difficulty of implementation).
Izhikevich and Hoppenstead [20] propose a “polychronous
wavefront computation” model in which transponders fire under
a suitable coincidence between wavefronts initiated by spikes at
other transponders, but in order to implement specific function,
the location of the transponders (or, in effect, the delays of
synapses connecting them) must be programmed. To the best
of our knowledge, ours is the first work to conduct a detailed
examination of the neural codes obtained from polychronous
groups.

Our model falls within the general framework of reservoir
computing, since it has a reservoir with fixed properties,
followed by a readout mechanism that has design flexibility.
However, it differs fundamentally from existing reservoir
computing models such as liquid state machines and echo
state networks [21], [22]. These are, in essence, fixed nonlinear
filters that map the input state to an internal state that is read
out after an adaptive linear transformation (adapted to track
a target output). However, the nonlinear mappings in such
systems are smooth, unlike the chaotic maps associated with
coincidence detection and variable delays in our system.

V. CONCLUSIONS

The new reservoir computing model proposed here enables
translation of information from spike timing into “good”,
”random like” neural codes in standard vector space. It is worth
exploring architectural variants such as layered reservoirs, or
reservoirs with geometric connectivity constraints. The specific
readout mechanism we propose is simple, but there could be
a number of other ways of going from the binary space-time
code defined by the firing patterns of the reservoir neurons
to a vector spatial code. The role of inhibitory connections
in shaping the code is also an interesting topic. While we
provide a basic analysis of the neural code, it is of interest to
explore its robustness under noise models specifically related to

timing: for example, random Poisson spikes at input or within
the reservoir can produce reverberations that are nonlinearly
coupled to the input pattern.

It is interesting to note that spike timing plays a critical
role in a number of neuromorphic hardware designs, in
the form of the address event representation (AER): analog
operations and thresholding encode information in spikes, and
the spatiotemporal locations of the spikes are fed to processing
and control units via a digital bus. First proposed in the early
1990s [23], [24], AER has been used to build “silicon retinas”
by a number of research groups [25], [26], [27]. Our work
raises the question of whether it might be possible to replace
explicit digital encoding of the space-time location of spikes,
and subsequent digital processing, by more power-efficient
analog embeddings and processing.

ACKNOWLEDGMENT

The authors would like to thank Professor Bruno Olshausen
for his helpful advice and comments. This work was supported
in part by the National Science Foundation under grants
CNS-1518812 and ECCS-1608880, the Systems on Nanoscale
Information fabriCs (SONIC), one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA, and by the
Institute for Collaborative Biotechnologies through grant
W911NF-09-0001 from the U.S. Army Research Office.

REFERENCES

[1] D. Nikolić, S. Haeusler, W. Singer, and W. Maass, “Temporal dynamics
of information content carried by neurons in the primary visual cortex,” in
Advances in neural information processing systems, 2007, pp. 1041–1048.

[2] B. M. Broome, V. Jayaraman, and G. Laurent, “Encoding and decoding
of overlapping odor sequences,” Neuron, vol. 51, no. 4, pp. 467–482,
2006.

[3] E. M. Izhikevich, “Polychronization: computation with spikes,” Neural
Computation, vol. 18, no. 2, pp. 245–282, 2006.

[4] T. M. Cover, “Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition,” IEEE transactions
on electronic computers, no. 3, pp. 326–334, 1965.

[5] D. L. F. Garden et al., “Tuning of synaptic integration in the medial
entorhinal cortex to the organization of grid cell firing fields,” Neuron,
vol. 60, pp. 875–889, 2008.

[6] M. Gardner, “Mathematical games,” Scientific American, vol. 222, no. 6,
pp. 132–140, 1970.

[7] M. Arnold and W. Glaß, “Simple approximation formulas for the birthday
problem,” American Mathematical Monthly, vol. 120, no. 7, pp. 645–648,
2013.

[8] M. L. Clevenson and W. Watkins, “Majorization and the birthday
inequality,” Mathematics Magazine, vol. 64, no. 3, pp. 183–188, 1991.

[9] R. Gutig and H. Sompolinsky, “The tempotron: a neuron that learns
spike timing-based decisions,” Nature Neuroscience, vol. 9, no. 3, March
2006.

[10] R. V. Florian, “The chronotron: A neuron that learns to fire temporally
precise spike patterns,” PLoS ONE, vol. 7, no. 8, 2012.

[11] C. Albers, M. Westkott, and K. Pawelzik, “Perfect associative learning
with spike-timing dependent plasticity,” in Advances in Neural Informa-
tion Processing Systems. MIT Press, 2013.

[12] R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make sense,”
Trends in Neurosciences, vol. 28, no. 1, January 2005.

[13] J. D. Rolston, D. A. Wagenaar, and S. M. Potter, “Precisely timed
spatiotemporal patterns of neural activity in dissociated cortical cultures,”
Neuroscience, vol. 148, pp. 294–303, 2007.

[14] I. Birznieks and R. M. Vickery, “Spike timing matters in novel neuronal
code involved in vibrotactile frequency perception,” Current Biology,
2017.

[15] A. Banerjee and A. Pouget, “Dynamical constraints on computing with
spike timing in the cortex,” in Advances in Neural Information Processing
Systems. MIT Press, 2003.

[16] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[17] B. Szatmary and E. M. Izhikevich, “Spike-timing theory of working
memory,” PLoS Computational Biology, vol. 6, no. 8, 2010.

[18] M. Howard et al., “Further explorations of a minimal polychronous
memory,” in ICAI 2010, 2010.

[19] H. Paugam-Moisy, R. Martinez, and S. Bengio, “Delay learning and
polychronization for reservoir computing,” Neurocomputing, vol. 71, pp.
1143–1158, 2008.

[20] E. M. Izhikevich and F. C. Hoppenstead, “Polychronous wavefront
computations,” International Journal of Bifurcation and Chaos, vol. 19,
no. 5, pp. 1733–1739, 2009.

[21] W. Maass, T. Natschlager, and H. Markram, “Real-time computing
without stable states: a new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[22] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks,” German National Research Center for Information
Technology, Tech. Rep. GMD report 148, 2001.

[23] M. Sivilotti, “Wiring considerations in analog vlsi systems, with appli-
cation to field-programmable networks,” Ph.D. dissertation, California
Institute of Technology, Pasadena, CA, 1991.

[24] M. Mahowald, “Vlsi analogs of neuronal visual processing: A synthesis of
form and function,” Ph.D. dissertation, California Institute of Technology,
Pasadena, CA, 1992.

[25] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 47, no. 5, pp. 416–434, May
2000.

[26] R. Serrano-Gotarredona et al., “Aer building blocks for multi-layer multi-
chip neuromorphic vision systems,” in Advances in Neural Information
Processing Systems. MIT Press, 2005.

[27] J. A. L. nero Bardallo, T. Serrano-Gotarredona, and B. Linares-
Barranco, “A five-decade dynamic-range ambient-light-independent
calibrated signed-spatial-contrast aer retina with 0.1-ms latency and
optional time-to-first-spike mode,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 57, no. 10, pp. 2632–2643, Oct 2010.

	I Introduction
	II System model and properties
	II-A Neural coding
	II-B Network Parameters
	II-C Chaotic Mapping

	III Code characteristics
	III-A Linear Separability
	III-B Capacity

	IV Related work
	V Conclusions
	References

