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Abstract—We propose a geometric assumption on nonnegative
data matrices such that under this assumption, we are able to
provide upper bounds (both deterministic and probabilistic) on
the relative error of nonnegative matrix factorization (NMF).
The algorithm we propose first uses the geometric assumption to
obtain an exact clustering of the columns of the data matrix; sub-
sequently, it employs several rank-one NMFs to obtain the final
decomposition. When applied to data matrices generated from
our statistical model, we observe that our proposed algorithm
produces factor matrices with comparable relative errors vis-à-vis
classical NMF algorithms but with much faster speeds. On face
image and hyperspectral imaging datasets, we demonstrate that
our algorithm provides an excellent initialization for applying
other NMF algorithms at a low computational cost. Finally,
we show on face and text datasets that the combinations of
our algorithm and several classical NMF algorithms outperform
other algorithms in terms of clustering performance.

Index Terms—Nonnegative matrix factorization, Relative error
bound, Clusterability, Separability, Initialization, Model selection

I. INTRODUCTION

The nonnegative matrix factorization (NMF) problem can
be formulated as follows: Given a nonnegative data matrix
V ∈ RF×N+ and a positive integer K, we seek nonnegative
factor matrices W ∈ RF×K+ and H ∈ RK×N+ , such that the
distance (measured in some norm) between V and WH is
minimized. Due to its non-subtractive, parts-based property
which enhances interpretability, NMF has been widely used
in machine learning [1] and signal processing [2] among
others. In addition, there are many fundamental algorithms
to approximately solve the NMF problem, including the mul-
tiplicative update algorithms [3], the alternating (nonnegative)
least-squares-type algorithms [4]–[7], and the hierarchical al-
ternating least square algorithms [8] (also called the rank-
one residual iteration [9]). However, it is proved in [10]
that NMF problem is NP-hard and all the basic algorithms
simply either ensure that the sequence of objective functions
is non-increasing or that the algorithm converges to the set of
stationary points [9], [11], [12]. To the best of our knowledge,
none of these algorithms is suitable for analyzing a bound on
the approximation error of NMF.
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In an effort to find computationally tractable algorithms for
NMF and to provide theoretical guarantees on the errors of
these algorithms, researchers have revisited the so-called sepa-
rability assumption proposed by Donoho and Stodden [13]. An
exact nonnegative factorization V = WH is separable if for
any k ∈ {1, 2, . . . ,K}, there is an n(k) ∈ {1, 2, . . . , F} such
that W(n(k), j) = 0 for all j 6= k and W(n(k), k) > 0. That
is, an exact nonnegative factorization is separable if all the
features can be represented as nonnegative linear combinations
of K features. It is proved in [14] that under the separability
condition, there is an algorithm that runs in time polynomial in
F , N and K and outputs a separable nonnegative factorization
V = W∗H∗ with the number of columns of W∗ being at
most K. Furthermore, to handle noisy data, a perturbation
analysis of their algorithm is presented. The authors assumed
that V is normalized such that every row of it has unit `1 norm
and V has a separable nonnegative factorization V = WH.
In addition, each row of V is perturbed by adding a vector of
small `1 norm to obtain a new data matrix V′. With additional
assumptions on the noise and H, their algorithm leads to an
approximate nonnegative matrix factorization W′H′ of V′

with a provable error bound for the `1 norm of each row
of V′ −W′H′. To develop more efficient algorithms and to
extend the basic formulation to more general noise models, a
collection of elegant papers dealing with NMF under various
separability conditions has emerged [15]–[19].

A. Main Contributions

1) Theoretical Contributions: We introduce a geometric
assumption on the data matrix V that allows us to correctly
group columns of V into disjoint subsets. This naturally
suggests an algorithm that first clusters the columns and sub-
sequently uses a rank-one approximate NMF algorithm [20]
to obtain the final decomposition. We analyze the error perfor-
mance and provide a deterministic upper bound on the relative
error. We also consider a random data generation model and
provide a probabilistic relative error bound. Our geometric as-
sumption can be considered as a special case of the separability
(or, more precisely, the near-separability) assumption [13].
However, there are certain key differences: First, because our
assumption is based on a notion of clusterability [21], our
proof technique is different from those in the literature that
leverage the separability condition. Second, unlike most works
that assume separability [15]–[19], we exploit the `2 norm of
vectors instead of the `1 norm of vectors/matrices. Third, V
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does not need to be assumed to be normalized. As pointed out
in [17], normalization, especially in the `1-norm for the rows
of data matrices may deteriorate the clustering performance for
text datasets significantly. Fourth, we provide an upper bound
for relative error instead of the absolute error. Our work is the
first to provide theoretical analyses for the relative error for
near-separable-type NMF problems. Finally, we assume all the
samples can be approximately represented by certain special
samples (e.g., centroids) instead of using a small set of salient
features to represent all the features. Mathematically, these
two approximations may appear to be equivalent. However,
our assumption and analysis techniques enable us to provide an
efficient algorithm and tight probabilistic relative error bounds
for the NMF approximation (cf. Theorem 6).

2) Experimental Evaluations: Empirically, we show that
this algorithm performs well in practice. When applied to data
matrices generated from our statistical model, our algorithm
yields comparable relative errors vis-à-vis several classical
NMF algorithms including the multiplicative algorithm, the
alternating nonnegative least square algorithm with block piv-
oting, and the hierarchical alternating least square algorithm.
However, our algorithm is significantly faster as it simply
involves calculating rank-one SVDs. It is also well-known
that NMF is sensitive to initializations. The authors in [22],
[23] use spherical k-means and an SVD-based technique to
initialize NMF. We verify on several image and hyperspectral
datasets that our algorithm, when combined with several
classical NMF algorithms, achieves the best convergence rates
and/or the smallest final relative errors. We also provide
intuition for why our algorithm serves as an effective ini-
tializer for other NMF algorithms. Finally, combinations of
our algorithm and several NMF algorithms achieve the best
clustering performance for several face and text datasets. These
experimental results substantiate that our algorithm can be
used as a good initializer for standard NMF techniques.

B. Related Work

We now describe some works that are related to ours.
1) Near-Separable NMF: Arora et al. [14] provide an

algorithm that runs in time polynomial in F , N and K to find
the correct factor matrices under the separability condition.
Furthermore, the authors consider the near-separable case and
prove an approximation error bound when the original data
matrix V is slightly perturbed from being separable. The
algorithm and the theorem for near-separable case is also
presented in [16]. The main ideas behind the theorem are
as follows: first, V must be normalized such that every row
of it has unit `1 norm; this assumption simplifies the conical
hull for exact NMF to a convex hull. Second, the rows of H
need to be robustly simplicial, i.e., every row of H should
not be contained in the convex hull of all other rows and
the largest perturbation of the rows of V should be bounded
by a function of the smallest distance from a row of H to
the convex hull of all other rows. Later we will show in
Section II that our geometric assumption stated in inequality
(2) is similar to this key idea in [14]. Although we impose
a clustering-type generating assumption for data matrix, we

do not need the normalization assumption in [14], which is
stated in [17] that may lead to bad clustering performance
for text datasets. In addition, because we do not impose
this normalization assumption, instead of providing an upper
bound on the approximation error, we provide the upper bound
for relative error, which is arguably more natural.

2) Initialization Techniques for NMF: Similar to k-means,
NMF can easily be trapped at bad local optima and is sensitive
to initialization. We find that our algorithm is particularly
amenable to provide good initial factor matrices for subse-
quently applying standard NMF algorithms. Thus, here we
mention some works on initialization for NMF. Spherical k-
means (spkm) is a simple clustering method and it is shown
to be one of the most efficient algorithms for document
clustering [24]. The authors in [22] consider using spkm for
initializing the left factor matrix W and observe a better
convergence rate compared to random initialization. Other
clustering-based initialization approaches for NMF including
divergence-based k-means [25] and fuzzy clustering [26]. It
is also natural to consider using singular value decomposition
(SVD) to initialize NMF. In fact, if there is no nonnegativity
constraint, we can obtain the best rank-K approximation of
a given matrix directly using SVD, and there are strong
relations between NMF and SVD. For example, we can obtain
the best rank-one NMF from the best rank-one SVD (see
Lemma 3), and if the best rank-two approximation matrix of
a nonnegative data matrix is also nonnegative, then we can
also obtain best rank-two NMF [20]. Moreover, for a general
positive integer K, it is shown in [23] that nonnegative double
singular value decomposition (nndsvd), a deterministic SVD-
based approach, can be used to enhance the initialization
of NMF, leading to a faster reduction of the approximation
error of many NMF algorithms. The CUR decomposition-
based initialization method [27] is another factorization-based
initialization approach for NMF. We compare our algorithm to
widely-used algorithms for initializing NMF in Section VI-B3.

C. Notations
We use upper case boldface letters to denote matrices and

we use lower case boldface letters to denote vectors. We use
Matlab-style notation for indexing, e.g., V(i, j) denotes the
entry of V in the i-th row and j-th column, V(i, :) denotes
the i-th row of V, V(:, j) denotes the j-th column of V and
V(:,K ) denotes the columns of V indexed by K . ‖V‖F
represents the Frobenius norm of V and [N ] := {1, 2, . . . , N}
for any positive integer N . Inequalities v ≥ 0 or V ≥ 0
denote element-wise nonnegativity. Let V1 ∈ RF×N1 and
V2 ∈ RF×N2 , we denote by [V1,V2] the horizontal con-
catenation of the two matrices. Similarly, let V1 ∈ RF1×N

and V2 ∈ RF2×N . We denote by [V1; V2] the vertical
concatenation of the two matrices. We use R+ and R++

to represent the set of nonnegative and positive numbers
respectively. We denote the nonnegative orthant RF+ as P . We
use

p−→ to denote convergence in probability.

II. PROBLEM FORMULATION

In this section, we first present our geometric assumption
and prove that the exact clustering can be obtained for the
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Example of Two Disjoint 3D Circular Cones

 

Figure 1. Illustration of the geometric assumption in (2). Here α1 = α2 =
0.2 and β12 = 0.9 > 3α1 + α2.

normalized data points under the geometric assumption. Next,
we introduce several useful lemmas in preparation for the
proofs of the main theorems in subsequent sections.

A. Our Geometric Assumption on V

We assume the columns of V lie in K circular cones which
satisfy a geometric assumption presented in (2) to follow. We
define circular cones as follows:

Definition 1: Given u ∈ RF+ with unit `2 norm and an angle
α ∈ (0, π/2), the circular cone with respect to (w.r.t.) u and
α is defined as

C(u, α) :=
{

x ∈ RF \ {0} :
xTu

‖x‖2
≥ cosα

}
. (1)

In other words, C(u, α) contains all x ∈ RF \ {0} for which
the angle between u and x is not larger than α. We say that α
and u are respectively the size angle and basis vector of the
circular cone. In addition, the corresponding truncated circular
cone in nonnegative orthant is C(u, α) ∩ P .

We assume that there are K truncated circular cones
C1 ∩ P, . . . , CK ∩ P with corresponding basis vectors and
size angles, i.e., Ck := C (uk, αk) for k ∈ [K]. Let βij :=
arccos

(
uTi uj

)
. We make the geometric assumption that the

columns of our data matrix V lie in K truncated circular cones
which satisfy

min
i,j∈[K],i6=j

βij > max
i,j∈[K],i6=j

{max{αi + 3αj , 3αi +αj}}. (2)

If we sort α1, . . . , αK as α̂1, . . . , α̂K such that α̂1 ≥ α̂2 ≥
. . . ≥ α̂K , (2) is equivalent to

min
i,j∈[K],i6=j

βij > 3α̂1 + α̂2 (3)

The size angle αk is a measure of perturbation in k-th circular
cone and βij , i 6= j is a measure of distance between the i-
th basis vector and the j-th basis vector. Thus, (2) is similar
to the second idea in [14] (cf. Section I-B1), namely, that
the largest perturbation of the rows of V is bounded by a
function of the smallest distance from a row of H to the
convex hull of all other rows. This assumption is realistic for
datasets whose samples can be clustered into distinct types;
for example, image datasets in which images either contain a

distinct foreground (e.g., a face) embedded on a background,
or they only comprise a background. See Figure 1 for an
illustration of the geometric assumption in (2) and refer to
Figure 1 in [16] for an illustration of the separability condition.

Now we discuss the relation between our geometric as-
sumption and the separability and near-separability [14], [16]
conditions that have appeared in the literature (and discussed
in Section I). Consider a data matrix V generated under the
extreme case of our geometric assumption that all the size
angles of the K circular cones are zero. Then every column
of V is a nonnegative multiple of a basis vector of a circular
cone. This means that all the columns of V can be represented
as nonnegative linear combinations of K columns, i.e., the K
basis vectors u1, . . . ,uK . This can be considered as a special
case of separability assumption. When the size angles are not
all zero, our geometric assumption can be considered as a
special case of the near-separability assumption.

In Lemma 1, we show that Algorithm 1, which has time
complexity O(KFN), correctly clusters the columns of V
under the geometric assumption.

Lemma 1: Under the geometric assumption on V, if Algo-
rithm 1 is applied to V, then the columns of V are partitioned
into K subsets, such that the data points in the same subset
are generated from the same truncated circular cone.

Proof: We normalize V to obtain V′, such that all the
columns of V′ have unit `2 norm. From the definition, we
know if a data point is in a truncated circular cone, then
the normalized data point is also in the truncated circular
cone. Then for any two columns x, y of V′ that are in the
same truncated circular cone Ck ∩ P, k ∈ [K], the largest
possible angle between them is min{2αk, π/2}, and thus the
distance ‖x−y‖2 between these two data points is not larger
than

√
2 (1− cos (2αk)). On the other hand, for any two

columns x, y of V′ that are in two truncated circular cones
Ci ∩ P, Cj ∩ P, i 6= j, the smallest possible angle between
them is βij − αi − αj , thus the smallest possible distance
between them is

√
2 (1− cos (βij − αi − αj)). Then under

the geometric assumption (2), the distance between any two
unit data points in distinct truncated circular cones is larger
than the distance between any two unit data points in the same
truncated circular cone. Hence, Algorithm 1 returns the correct
clusters.

Now we present the following two useful lemmas. Lemma 2
provides an upper bound for perturbations of singular values.
Lemma 3 shows that we can directly obtain the best rank-one
nonnegative matrix factorization from the best rank-one SVD.

Lemma 2 (Perturbation of singular values [28]): If A and
A + E are in RF×N , then

P∑
p=1

(σp(A + E)− σp(A))
2 ≤ ‖E‖2F, (5)

where P = min{F,N} and σp(A) is the p-th largest singular
value of A. In addition, we have

|σp(A + E)− σp(A)| ≤ σ1(E) = ‖E‖2 (6)

for any p ∈ [P ].
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Algorithm 1 Greedy clustering method with geometric as-
sumption in (2)

Input: Data matrix V ∈ RF×N+ , K ∈ N
Output: A set of non-empty, pairwise disjoint index sets
I1,I2, . . . ,IK ⊆ [N ] such that their union is [N ]
1) Normalize V to obtain V′, such that all the columns of
V′ have unit `2 norm.
2) Arbitrarily pick a point z1 ∈ V′ (i.e., z1 is a column in
V′) as the first centroid.
3) for k = 1 to K − 1 do

zk+1 := argminz∈V′{max{zTi z, i ∈ [k]}} (4)

and set zk+1 be the (k + 1)-st centroid.
4) Ik := {n ∈ [N ] : k = arg maxj∈[K] z

T
j V′(:, n)} for all

k ∈ [K].

Lemma 3 (Rank-One Approximate NMF [20]): Let σuvT

be the rank-one singular value decomposition of a matrix V ∈
RF×N+ . Then u′ := σ|u|, v′ := |v| solves

min
x∈RF

+,y∈RN
+

‖V − xyT ‖F. (7)

III. NON-PROBABILISTIC THEOREMS

In this section, we first present a deterministic theorem
concerning an upper bound for the relative error of NMF.
Subsequently, we provide several extensions of this theorem.

Theorem 4: Suppose all the data points in data matrix
V ∈ RF×N+ are drawn from K truncated circular cones
C1 ∩ P, . . . , CK ∩ P , where Ck := C (uk, αk) for k ∈ [K].
Then there is a pair of factor matrices W∗ ∈ RF×K+ ,
H∗ ∈ RK×N+ , such that

‖V −W∗H∗‖F
‖V‖F

≤ max
k∈[K]

{sinαk}. (8)

Proof: Define Ik := {n ∈ [N ] : vn ∈ Ck ∩ P} (if a
data point vn is contained in more than one truncated circular
cones, we arbitrarily assign any one it is contained in). Then
I1,I2, . . . ,IK ⊆ [N ] are disjoint index sets and their union
is [N ]. Any two data points V (:, j1) and V (:, j2) are in the
same circular cones if j1 and j2 are in the same index set. Let
Vk = V (:,Ik) and without loss of generality, suppose that
Vk ∈ Ck for k ∈ [K]. For any k ∈ [K] and any column z of
Vk, suppose the angle between z and uk is β, we have β ≤ αk
and z = ‖z‖2(cosβ)uk + y, with ‖y‖2 = ‖z‖2(sinβ) ≤
‖z‖2(sinαk). Thus Vk can be written as the sum of a rank-
one matrix Ak and a perturbation matrix Ek. By Lemma 3,
we can find the best rank-one approximate NMF of Vk from
the singular value decomposition of Vk. Suppose w∗k ∈ RF+
and hk ∈ R|Ik|

+ solve the best rank-one approximate NMF.
Let Sk := w∗kh

T
k be the best rank-one approximation matrix

of Vk. Let Pk = min{F, |Ik|}, then by Lemma 2, we have

‖Vk − Sk‖2F =

Pk∑
p=2

σ2
p (Vk) =

Pk∑
p=2

σ2
p (Ak + Ek) ≤ ‖Ek‖2F.

(9)

From the previous result, we know that

‖Ek‖2F
‖Vk‖2F

=

∑
z∈Vk

‖z‖22 sin2 βz∑
z∈Vk

‖z‖22
≤ sin2 αk, (10)

where βz denotes the angle between z and uk, βz ≤ αk, and
z ∈ Vk runs over all columns of the matrix Vk.

Define h∗k ∈ RN+ as h∗k(n) = hk(n), if n ∈ Ik and
h∗k(n) = 0 if n /∈ Ik. Let W∗ :=

[
w∗1,w

∗
2, . . . ,w

∗
K

]
and

H∗ :=
[

(h∗1)
T

; (h∗2)
T
. . . ; (h∗K)

T ], then we have

‖V −W∗H∗‖2F
‖V‖2F

=

∑K
k=1 ‖Vk −w∗kh

T
k ‖2F

‖V‖2F
(11)

≤
∑K
k=1 ‖Vk‖2F sin2 αk∑K

k=1 ‖Vk‖2F
. (12)

Thus we have (8) as desired.
In practice, to obtain the tightest possible upper bound

for (8), we need to solve the following optimization problem:

min max
k∈[K]

α(Vk), (13)

where α(Vk) represents the smallest possible size angle
corresponding to Vk (defined in (18)) and the minimization
is taken over all possible clusterings of the columns of V. We
consider finding an optimal size angle and a corresponding
basis vector for any data matrix, which we hereby write as
X := [x1, . . . ,xM ] ∈ RF×M+ where M ∈ N+. This is solved
by the following optimization problem:

minimize α

subject to xTmu ≥ cosα, m ∈ [M ], (14)
u ≥ 0, ‖u‖2 = 1, α ≥ 0,

where the decision variables are (α,u). Alternatively, consider

maximize cosα

subject to xTmu ≥ cosα, m ∈ [M ], (15)
u ≥ 0, ‖u‖2 = 1.

Similar to the primal optimization problem for linearly sepa-
rable support vector machines [29], we can obtain the optimal
u and α for (15) by solving

minimize
1

2
‖u‖22

subject to xTmu ≥ 1, m ∈ [M ], u ≥ 0, (16)

where the decision variable here is only u. Note that (16) is
a quadratic programming problem and can be easily solved
by standard convex optimization software. Suppose û is the
optimal solution of (16), then u∗ := û/‖û‖2 and α∗ :=
arccos (1/‖û‖2) is the optimal basis vector and size angle.

We now state and prove a relative error bound of the
proposed approximate NMF algorithm detailed in Algorithm 2
under our geometric assumption. We see that if the size
angles of all circular cones are small compared to the angle
between the basis vectors of any two circular cones, then
exact clustering is possible, and thus the relative error of the
best approximate NMF of an arbitrary nonnegative matrix
generated from these circular cones can be appropriately
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Algorithm 2 Clustering and Rank One NMF (cr1-nmf)

Input: Data matrix V ∈ RF×N+ , K ∈ N
Output: Factor matrices W∗ ∈ RF×K+ , H∗ ∈ RK×N+

1) Use Algorithm 1 to find a set of non-empty, pairwise
disjoint index sets I1,I2, . . . ,IK ⊆ [N ].
2) for k = 1 to K do

Vk := V (:,Ik) ; (18)
[Uk,Σk,Xk] := svd (Vk) ; (19)
w∗k := |Uk(:, 1)|, hk := Σk(1, 1)|Xk(:, 1)|; (20)
h∗k := zeros(1, N),h∗k (Ik) = hk. (21)

3) W∗ :=
[
w∗1, . . . ,w

∗
K

]
, H∗ :=

[
(h∗1)

T
; . . . ; (h∗K)

T ].
controlled by these size angles. Note that rank-one SVD can
be implemented by the power method efficiently [28]. Recall
that as mentioned in Section II-A, Theorem 5 is similar to the
corresponding theorem for the near-separable case in [14] in
terms of the geometric condition imposed.

Theorem 5: Under the geometric assumption given in Sec-
tion II-A for generating V ∈ RF×N+ , Algorithm 2 outputs
W∗ ∈ RF×K+ , H∗ ∈ RK×N+ , such that

‖V −W∗H∗‖F
‖V‖F

≤ max
k∈[K]

{sinαk}. (17)

Proof: From Lemma 1, under the geometric assumption
in Section II-A, we can obtain a set of non-empty, pairwise
disjoint index sets I1,I2, . . . ,IK ⊆ [N ] such that their
union is [N ] and two data points V (:, j1) and V (:, j2) are
in the same circular cones if and only if j1 and j2 are in the
same index set. Then from Theorem 4, we can obtain W∗ and
H∗ with the same upper bound on the relative error.

IV. PROBABILISTIC THEOREMS

We now provide a tighter relative error bound by as-
suming a probabilistic model. For simplicity, we assume a
straightforward and easy-to-implement statistical model for the
sampling procedure. We first present the proof of the tighter
relative error bound corresponding to the probabilistic model
in Theorem 6 to follow, then we show that the upper bound
for relative error is tight if we assume all the circular cones
are contained in nonnegative orthant in Theorem 8.

We assume the following generating process for each col-
umn v of V in Theorem 6 to follow.

1) sample k ∈ [K] with equal probability 1/K;
2) sample the squared length l from the exponential distri-

bution1 Exp(λk) with parameter (inverse of the expec-
tation) λk;

3) uniformly sample a unit vector z ∈ Ck w.r.t. the angle
between z and uk;2

4) if z /∈ RF+, set all negative entries of z to zero, and
rescale z to be a unit vector;

1Exp(λ) is the function x 7→ λ exp(−λx)1{x ≥ 0}.
2This means we first uniformly sample an angle β ∈ [0, αk] and

subsequently uniformly sample a vector z from the set {x ∈ RF : ‖x‖2 =
1,xTuk = cosβ}

5) let v =
√
lz;

Theorem 6: Suppose the K truncated circular cones Ck∩P
with Ck := C(uk, αk) ∈ RF for k ∈ [K] satisfy the geometric
assumption given by (2). Let λ := (λ1;λ2; . . . ;λK) ∈ RK++.
We generate the columns of a data matrix V ∈ RF×N+ from
the above generative process. Let f(α) := 1

2 −
sin 2α

4α , then for
a small ε > 0, with probability at least 1 − 8 exp(−ξNε2),
one has

‖V −W∗H∗‖F
‖V‖F

≤

√√√√∑K
k=1 f(αk)/λk∑K
k=1 1/λk

+ ε, (22)

where the constant ξ > 0 depends only on λk and f(αk) for
all k ∈ [K].

Remark 1: The assumption in Step 1 in the generating pro-
cess that the data points are generated from K circular cones
with equal probability can be easily generalized to unequal
probabilities. The assumption in Step 2 that the square of the
length of a data point is sampled from an exponential distribu-
tion can be easily extended any nonnegative sub-exponential
distribution (cf. Definition 2 below), or equivalently, the length
of a data point is sampled from a nonnegative sub-gaussian
distribution (cf. Definition 3 in Appendix A).

The relative error bound produced by Theorem 6 is better
than that of Theorem 5, i.e., the former is more conservative.
This can be seen from (26) to follow, or from the inequality
α ≤ tanα for α ∈ [0, π/2). We also observe this in the
experiments in Section VI-A1.

Before proving Theorem 6, we define sub-exponential ran-
dom variables and present a useful lemma.

Definition 2: A sub-exponential random variable X is one
that satisfies one of the following equivalent properties
1. Tails: P(|X| > t) ≤ exp(1− t/K1) for all t ≥ 0;
2. Moments: (E|X|p)1/p ≤ K2p for all p ≥ 1;
3. E [exp(X/K3)] ≤ e;
where Ki, i = 1, 2, 3 are positive constants. The sub-
exponential norm of X , denoted ‖X‖Ψ1 , is defined to be

‖X‖Ψ1 := sup
p≥1

p−1 (E|X|p)1/p
. (23)

Lemma 7: (Bernstein-type inequality) [30] Let X1, . . . , XN

be independent sub-exponential random variables with zero
expectations, and M = maxi ‖Xi‖Ψ1 . Then for every ε ≥ 0,
we have

P
(∣∣∣ N∑

i=1

Xi

∣∣∣≥εN)≤2 exp

[
−c ·min

(
ε2

M2
,
ε

M

)
N

]
, (24)

where c > 0 is an absolute constant.
Theorem 6 is proved by combining the large deviation

bound in Lemma 7 with the deterministic bound on the relative
error in Theorem 5.

Proof of Theorem 6: From (9) and (10) in the proof of
Theorem 5, to obtain an upper bound for the square of the
relative error, we consider the following random variable

DN :=

∑N
n=1 L

2
n sin2Bn∑N

n=1 L
2
n

, (25)
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where Ln is the random variable corresponding to the length
of the n-th point, and Bn is the random variable corresponding
to the angle between the n-th point and uk for some k ∈ [K]
such that the point is in Ck ∩ P . We first consider estimating
the above random variable with the assumption that all the
data points are generated from a single truncated circular cone
C ∩ P with C := C(u, α) (i.e., assume K = 1), and the
square of lengths are generated according to the exponential
distribution Exp(λ). Because we assume each angle βn for
n ∈ [N ] is sampled from a uniform distribution on [0, α], the
expectation of sin2Bn is

E
[
sin2Bn

]
=

∫ α

0

1

α
sin2 β dβ =

1

2
− sin 2α

4α
= f(α). (26)

Here we only need to consider vectors z ∈ RF+ whose angles
with u are not larger than α. Otherwise, we have E[sin2Bn] ≤
f(α). Our probabilistic upper bound also holds in this case.

Since the length and the angle are independent, we have

E [DN ] = E [E [DN |L1, . . . , LN ]] = f(α), (27)

and we also have

E
[
L2
n sin2Bn

]
= E

[
L2
n

]
E
[
sin2Bn

]
=
f(α)

λ
. (28)

Define Xn := L2
n for all n ∈ [N ]. Let

HN :=

∑N
n=1Xn

N
, and GN :=

∑N
n=1Xn sin2Bn

N
. (29)

We have for all n ∈ [N ],

E[Xp
n] = λ−pΓ(p+ 1) ≤ λ−ppp, ∀ p ≥ 1, (30)

where Γ(·) is the gamma function. Thus ‖Xn‖Ψ1
≤ λ−1, and

Xn is sub-exponential. By the triangle inequality, we have
‖Xn−EXn‖Ψ1 ≤ ‖Xn‖Ψ1 + ‖EXn‖Ψ1 ≤ 2‖Xn‖Ψ1 . Hence,
by Lemma 7, for all ε > 0, we have (24) where M can be
taken as M = 2/λ. Because(

E
[(
Xn sin2Bn

)p ])1/p ≤ λ−1p sin2 α ≤ λ−1p, (31)

we have a similar large deviation result for GN .
On the other hand, for all ε > 0

P (|DN − f(α)| ≥ ε) = P
(∣∣∣GN
HN
− f(α)

∣∣∣ ≥ ε) (32)

≤ P
(
|λGN−f(α)|≥ ε

2

)
+P

(∣∣∣GN
HN
−λGN

∣∣∣≥ ε
2

)
. (33)

For the second term, by fixing small constants δ1, δ2 > 0, we
have

P
(∣∣∣GN
HN
− λGN

∣∣∣ ≥ ε

2

)
= P

(
|1− λHN |GN

HN
≥ ε

2

)
(34)

≤ P
(
|1−λHN |GN

HN
≥ ε

2
, HN ≥

1

λ
− δ1, GN ≤

f(α)

λ
+δ2

)
+ P

(
HN <

1

λ
− δ1

)
+ P

(
GN >

f(α)

λ
+ δ2

)
. (35)

Combining the large deviation bounds for HN and GN in (24)
with the above inequalities, if we set δ1 = δ2 = ε and take ε
sufficiently small,

P (|DN − f(α)| ≥ ε) ≤ 8 exp
(
−ξNε2

)
, (36)

where ξ is a positive constant depending on λ and f(α).
Now we turn to the general case in which K ∈ N. We have

E [Xn] =

∑K
k=1 1/λk
K

, and (37)

E
[
Xn sin2Bn

]
=

∑K
k=1 f(αk)/λk

K
, (38)

and for all p ≥ 1,

(E[Xp
n])

1/p
=

(∑K
k=1 λ

−p
k Γ(p+ 1)

K

)1/p

≤ p

mink λk
. (39)

Similar to (36), we have

P

(∣∣∣∣DN−
∑K
k=1 f(αk/λk)∑K
k=1 1/λk

∣∣∣∣≥ε
)
≤ 8 exp

(
−ξNε2

)
, (40)

and thus, if we let ∆ :=

√∑K
k=1 f(αk)/λk∑K

k=1 1/λk
, we have

P
(∣∣√DN −∆

∣∣ ≤ ε) ≥ P
(∣∣DN −∆2

∣∣ ≤ ∆ε
)

(41)

≥ 1− 8 exp
(
−ξN∆2ε2

)
. (42)

This completes the proof of (22).
Furthermore, if the K circular cones C1, . . . , CK are con-

tained in the nonnegative orthant P , we do not need to project
the data points not in P onto P . Then we can prove that the
upper bound in Theorem 6 is asymptotically tight, i.e.,

‖V−W∗H∗‖F
‖V‖F

p−→

√√√√∑K
k=1 f(αk)/λk∑K
k=1 1/λk

, as N →∞. (43)

Theorem 8: Suppose the data points of V ∈ RF×N+ are
generated as given in Theorem 6 with all the circular cones
being contained in the nonnegtive orthant, then Algorithm 2
produces W∗ ∈ RF×K+ and H∗ ∈ RK×N+ with the property
that for any ε ∈ (0, 1) and t ≥ 1, if N ≥ c(t/ε)2F , then with
probability at least 1− 6K exp(−t2F ) one has∣∣∣∣∣∣‖V −W∗H∗‖F

‖V‖F
−

√√√√∑K
k=1 f(αk)/λk∑K
k=1 1/λk

∣∣∣∣∣∣ ≤ cε (44)

where c is a constant depending on K and αk, λk for k ∈ [K].
Proof: Since the proof of Theorem 8 is somewhat similar

to that of Theorem 6, we defer it to Appendix A.

V. AUTOMATICALLY DETERMINING K

Automatically determining the latent dimensionality K is
an important problem in NMF. Unfortunately, the usual and
popular approach for determining the latent dimensionality
of nonnegative data matrices based on Bayesian automatic
relevance determination by Tan and Févotte [31] does not
work well for data matrices generated under the geometric
assumption given in Section II-A. This is because in [31],
W and H are assumed to be generated from the same
distribution. Under the geometric assumption, V has well
clustered columns and the corresponding coefficient matrix H
can be approximated by a clustering membership indicator
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matrix with columns that are 1-sparse (i.e., only contains
one non-zero entry). Thus, W and H have very different
statistics. While there are many approaches [32]–[34] to learn
the number of clusters in clustering problems, most methods
lack strong theoretical guarantees.

By assuming the generative procedure for V proposed in
Theorem 6, we consider a simple approach for determining K
based on the maximum of the ratios between adjacent singular
values. We provide a theoretical result for the correctness of
this approach. Our method consists in estimating the correct
number of circular cones K̂ as follows:

K̂ := arg max
k∈{Kmin,...,Kmax}

σk(V)

σk+1(V)
. (45)

Here Kmin > 1 and Kmax < rank(V) are selected based on
domain knowledge. The main ideas that underpin (45) are (i)
the approximation error for the best rank-k approximation of a
data matrix in the Frobenius norm and (ii) the so-called elbow
method [35] for determining the number of clusters. More
precisely, let Vk be the best rank-k approximation of V. Then
‖V−Vk‖2F =

∑r
j=k+1 σ

2
j (V), where r is the rank of V. If we

increase k to k+1, the square of the best approximation error
decreases by σ2

k+1(V). The elbow method chooses a number
of clusters k so that the decrease in the objective function
value from k clusters to k + 1 clusters is small compared
to the decrease in the objective function value from k − 1
clusters to k clusters. Although this approach seems to be
simplistic, interestingly, the following theorem tells that under
appropriate assumptions, we can correctly find the number of
circular cones with high probability.

Theorem 9: Suppose that the data matrix V ∈ RF×N+

is generated according to the generative process given in
Theorem 6 where K is the true number of circular cones.
Further assume that the size angles for K circular cones are
all equal to α, the angles between distinct basis vectors of the
circular cones are all equal to β, and the parameters (inverse
expectations) for the exponential distributions are all equal to
λ. In addition, we assume all the circular cones are contained
in the nonnegative orthant P (cf. Theorem 8) and K ∈
{Kmin, . . . ,Kmax} with Kmin > 1 and Kmax < rank(V).
Then, for any t ≥ 1, and sufficiently small ε satisfying (92)
in Appendix B, if N ≥ c(t/ε)2F (for a constant c > 0
depending only on λ, α and β), with probability at least
1− 2 (Kmax −Kmin + 1) exp

(
−t2F

)
,

σK(V)

σK+1(V)
= max
j∈{Kmin,...,Kmax}

σj(V)

σj+1(V)
. (46)

Proof: Please refer to Appendix B for the proof.
In Section VI-A2, we show numerically that the proposed
method in (45) works well even when the geometric assump-
tion is only approximately satisfied (see Section VI-A2 for a
formal definition) assuming that N is sufficiently large. This
shows that the determination of the correct number of clusters
is robust to noise.

Remark 2: The conditions of Theorem 9 may appear to be
rather restrictive. However, we make them only for the sake of
convenience in presentation. We do not need to assume that the
parameters of the exponential distribution are equal if, instead

of σj(V), we consider the singular values of a normalized
version of V. The assumptions that all the size angles are
the same and the angles between distinct basis vectors are the
same can also be relaxed. The theorem continues to hold even
when the geometric assumption in (2) is not satisfied, i.e., β ≤
4α. However, we empirically observe in Section VI-A2 that
if V satisfies the geometric assumption (even approximately),
the results are superior compared to the scenario when the
assumption is significantly violated.

Remark 3: We may replace the assumption that the circular
cones are contained in the nonnegative orthant by removing
Step 4 in the generating process (projection onto P) in the
generative procedure in Theorem 6. Because we are concerned
with finding the number of clusters (or circular cones) rather
than determining the true latent dimensionality of an NMF
problem (cf. [31]), we can discard the nonnegativity constraint.
The number of clusters serves as a proxy for the latent
dimensionality of NMF.

VI. NUMERICAL EXPERIMENTS

A. Experiments on Synthetic Data

To verify the correctness of our bounds, to observe the
computational efficiency of the proposed algorithm, and to
check if the procedure for estimating K is effective, we
first perform numerical simulations on synthetic datasets.
All the experiments were executed on a Windows machine
whose processor is an Intel(R) Core(TM) i5-3570, the CPU
speed is 3.40 GHz, and the installed memory (RAM) is
8.00 GB. The Matlab version is 7.11.0.584 (R2010b). The
Matlab codes for running the experiments can be found at
https://github.com/zhaoqiangliu/cr1-nmf.

1) Comparison of Relative Errors and Running Times:
To generate the columns of V, given an integer k ∈ [K]
and an angle β ∈ [0, αk], we uniformly sample a vector
z from {x : xTuk = cosβ}, i.e., z is a unit vector such
that the angle between z and uk is β. To achieve this, note
that if uk = ef , f ∈ [F ] (ef is the vector with only the
f -th entry being 1), this uniform sampling can easily be
achieved. For example, we can take x = (cosβ)ef +(sinβ)y,
where y(f) = 0, y(i) = s(i)/

√∑
j 6=f s(j)

2, i 6= f , and
s(i) ∼ N (0, 1), i 6= f . We can then use a Householder
transformation [36] to map the unit vector generated from the
circular cone with basis vector ef to the unit vector generated
from the circular cone with basis vector uk. The corresponding
Householder transformation matrix is (if uk = ef , Pk is set
to be the identity matrix I)

Pk = I− 2zkz
T
k , where zk =

ef − uk
‖ef − uk‖2

. (47)

In this set of experiments, we set the size angles α to be the
same for all the circular cones. The angle between any two
basis vectors is set to be 4α + ∆α where ∆α := 0.01. The
parameter for the exponential distribution λ := 1./(1 : K).
We increase N from 102 to 104 logarithmically. We fix the
parameters F = 1600, K = 40 and α = 0.2 or 0.3. The
results shown in Figure 2. In the left plot of Figure 2, we
compare the relative errors of Algorithm 2 (cr1-nmf) with

https://github.com/zhaoqiangliu/cr1-nmf
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Table I
RUNNING TIMES IN SECONDS OF VARIOUS ALGORITHMS (α = 0.2)

N cr1-nmf mult nnlsb hals
102 0.03±0.03 1.56±0.76 5.82± 1.15 0.46±0.20
103 0.26±0.10 9.54±5.91 6.44± 2.70 3.01±1.85
104 1.85±0.22 85.92±54.51 27.84± 8.62 17.39±5.77

the derived relative error bounds. In the right plot, we compare
the relative errors of our algorithm with the relative errors
of three classical algorithms: (i) the multiplicative update
algorithm [3] (mult); (ii) the alternating nonnegative least-
squares algorithm with block-pivoting (nnlsb), which is
reported to be one of the best alternating nonnegative least-
squares-type algorithm for NMF in terms of both running
time and approximation error [6]; (iii) and the hierarchical
alternating least squares algorithm [8] (hals). In contrast
to these three algorithms, our algorithm is not iterative. The
iteration numbers for mult and hals are set to 100, while the
iteration number for nnlsb is set to 20, which is sufficient (in
our experiments) for approximate convergence. For statistical
soundness of the results of the plots on the left, 50 data
matrices V ∈ RF×10000

+ are independently generated and for
each data matrix V, we run our algorithm for 20 runs. For
the plots on the right, 10 data matrices V are independently
generated and all the algorithms are run for 10 times for each
V. We also compare the running time for these algorithms
when they first achieve the approximation error smaller than
or equal the approximation error of Algorithm 2. The running
times are shown in Table I. Because the running times for
α = 0.2 and α = 0.3 are similar, we only present the running
times for the former.

From Figure 2, we observe that the relative errors obtained
from Algorithm 2 are smaller than the theoretical relative error
bounds. When α = 0.2, the relative error of Algorithm 2
appears to converge to the probabilistic relative error bound as
N becomes large, but when α = 0.3, there is a gap between
the relative error and the probabilistic relative error bound.
From Theorems 6 and 8, we know that this difference is due to
the projection of the cones to the nonnegative orthant. If there
is no projection (this may violate the nonnegative constraint),
the probabilistic relative error bound is tight as N tends to
infinity. We conclude that when the size angle α is large,
the projection step causes a larger gap between the relative
error and the probabilistic relative error bound. We observe
from Figure 2 that there are large oscillations for mult. Other
algorithms achieve similar approximation errors. Table I shows
that classical NMF algorithms require significantly more time
(at least an order of magnitude for large N ) to achieve the
same relative error compared to our algorithm.

2) Automatically Determining K: We now verify the ef-
ficacy and the robustness of the proposed method in (45)
for automatically determining the correct number of circular
cones. We generated the data matrix V̂ := [V + δE]+, where
each entry of E is sampled i.i.d. from the standard normal
distribution, δ > 0 corresponds to the noise magnitude, and
[·]+ represents the projection to nonnegative orthant operator.
We generated the nominal/noiseless data matrix V by setting
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Figure 2. Errors and performances of various algorithms. On the left plot,
we compare the empirical performance to the theoretical non-probabilistic and
probabilistic bounds given by Theorems 5 and 6 respectively. On the right
plot, we compare the empirical performance to other NMF algorithms.
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Figure 3. Estimated number of circular cones K with different noise levels.
The error bars denote one standard deviation away from the mean.

α = 0.3, the true number of circular cones K = 40, and other
parameters similarly to the procedure in Section VI-A1. The
noise magnitude δ is set to be either 0.1 or 0.5; the former
simulates a relatively clean setting in which the geometric
assumption is approximately satisfied, while in the latter, V̂
is far from a matrix that satisfies the geometric assumption,
i.e., a very noisy scenario. We generated 1000 perturbed data
matrices V̂ independently. From Figure 3 in which the true
K = 40, we observe that, as expected, the method in (45)
works well if the noise level is small. Somewhat surprisingly,
it also works well even when the noise level is relatively
high (e.g., δ = 0.5) if the number of data points N is also
commensurately large (e.g., N ≥ 5× 103).

B. Experiments on Real Datasets

1) Initialization Performance in Terms of the Relative Er-
ror: Because real datasets do not, in general, strictly satisfy
the geometric assumption, our algorithm cr1-nmf, does
not achieve as low a relative error compared to other NMF
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Table II
INFORMATION FOR REAL DATASETS USED

Dataset Name F N K Description
CK3 49×64 8795 97 face dataset

faces944 200×180 3040 152 face dataset
Georgia Tech5 480×640 750 50 face dataset

PaviaU6 207400 103 9 hyperspectral

Table III
RUNNING TIMES FOR INITIALIZATION

Dataset Name cr1-nmf spkm nndsvd
CK 3.30± 0.10 6.68± 0.71 9.45± 0.12

faces94 14.50± 0.20 32.23± 2.28 32.81± 0.29
Georgia Tech 18.90± 1.13 24.77± 3.58 21.28± 0.35

PaviaU 0.73± 0.11 2.47± 0.48 0.84± 0.12

algorithms. However, similar to the popular spherical k-
means (spkm; we use 10 iterations to produce its initial
left factor matrix W) algorithm [22], our algorithm may be
used as initialization method for NMF. In this section, we
compare cr1-nmf to other classical and popular initialization
approaches for NMF. These include random initialization
(rand), spkm, and the nndsvd initialization method [23]
(nndsvd). We empirically show that our algorithm, when
used as an initializer, achieves the best performance when
combined with classical NMF algorithms. The specifications
of the real datasets and the running times for the initialization
methods are presented in Tables II and III respectively.

We use mult, nnlsb, and hals as the classical NMF al-
gorithms that are combined with the initialization approaches.
Note that for nnlsb, we only need to initialize the left factor
matrix W. This is because the initial H can be obtained from
initial W using [6, Algorithm 2]. Also note that the pair
(W∗,H∗) produced by Algorithm 2 is a fixed point for mult
(see Lemma 15 in Appendix C), so we use a small perturbation
of H∗ as an initialization for the right factor matrix. For
spkm, similarly to [22], [23], we initialize the right factor
matrix randomly. In addition, to ensure a fair comparison
between these initialization approaches, we need to shift the
iteration numbers appropriately, i.e., the initialization method
that takes a longer time should start with a commensurately
smaller iteration number when combined one of the three
classical NMF algorithms. Table IV reports the number of
shifts. Note that unlike mult and hals, the running times for
different iterations of nnlsb can be significantly different. We
observe that for most datasets, when run for the same number
of iterations, random initialization and nndsvd initialization
not only result in larger relative errors, but they also take a
much longer time than spkm and our initialization approach.
Because initialization methods can also affect the running
time of each iteration of nnlsb significantly, we do not
report shifts for initialization approaches when combined with
nnlsb. Table V reports running times that various algorithms

3http://www.consortium.ri.cmu.edu/ckagree/
4http://cswww.essex.ac.uk/mv/allfaces/faces94.html
5http://www.anefian.com/research/face reco.htm
6http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote

Sensing Scenes

Table IV
SHIFT NUMBER FOR INITIALIZATION APPROACHES

CK faces94 Georgia Tech PaviaU
cr1-nmf+mult 3 2 3 2
spkm+mult 6 5 4 7
nndsvd+mult 8 5 3 2
cr1-nmf+hals 2 2 2 1
spkm+hals 5 4 3 5
nndsvd+hals 7 4 2 1

Table V
RUNNING TIMES WHEN ALGORITHM FIRST ACHIEVE RELATIVE ERROR ε

FOR INITIALIZATION METHODS COMBINED WITH NNLSB

CK ε = 0.105 ε = 0.100 ε = 0.095
rand 727.53±23.93 1389.32±61.32 –

cr1-nmf 40.27±1.96 71.77±2.83 129.62±5.98
spkm 79.37±2.52 91.23±2.69 240.12±5.32
nndsvd 309.25±6.24 557.34±7.59 1309.51±21.97
faces94 ε = 0.140 ε = 0.135 ε = 0.131
rand 2451.8±26.6 7385.8±49.6 –

cr1-nmf 338.8±11.1 706.3±13.3 3585.2±49.4
spkm 465.3±13.5 1231.1±28.5 5501.4±134.4
nndsvd 1531.5±6.4 3235.8±12.1 10588.6±35.9

Georgia Tech ε = 0.185 ε = 0.18 ε = 0.175
rand 3766.7±92.8 5003.7±126.8 7657.4±285.9

cr1-nmf 147.3±2.8 308.2±7.8 1565.0±59.5
spkm 253.2±20.1 537.4±43.4 2139.2±142.9
nndsvd 2027.0±7.0 2819.4±9.5 4676.4±15.3
PaviaU ε = 0.0230 ε = 0.0225 ε = 0.0220
rand 192.51±16.11 224.65±16.17 289.48±16.74

cr1-nmf 13.30±0.40 16.93±0.61 30.06±0.94
spkm 32.00±3.16 40.27±4.39 52.40±6.29
nndsvd 79.92±0.84 106.29±0.91 160.10±0.92

first achieve a fixed relative error ε > 0 for various initial-
ization methods when combined with nnlsb. Our proposed
algorithm is clearly superior.

We observe from Figure 4 that our algorithm almost always
outperforms all other initialization approaches in terms of con-
vergence speed and/or the final relative error when combined
with classical NMF algorithms for the selected real datasets
(except that nndsvd+hals performs the best for PaviaU). In
addition, we present the results from the Georgia Tech image
dataset. For ease of illustration, we only display the results
for 3 individuals (there are images for 50 individuals in total)
for the various initialization methods combined with mult.
Several images of these 3 individuals are presented in Figure 5.
The basis images produced at the 20th iteration are presented
in Figure 6 (more basis images obtained at other iteration
numbers are presented in the supplementary material). We
observe from the basis images in Figure 6 that our initialization
method is clearly superior to rand and nndsvd. In the
supplementary material, we additionally present an illustration
of Table V as a figure where the horizontal and vertical axes
are the running times (instead of number of iterations) and the
relative errors respectively. These additional plots substantiate
our conclusion that Algorithm 2 serves as a good initializer
for various other NMF algorithms.

2) Intuition for the Advantages of cr1-nmf over spkm as
an Initializer for NMF Algorithms: From Figure 4, we see
that the difference between the results obtained from using
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Figure 4. The first to fourth rows are the numerical results for CK, faces94,
Georgia Tech, and PaviaU datasets respectively.

spkm as initialization method and the corresponding results
obtained from using our initialization approach appears to be
rather insignificant. However, from Table V, which reports the
running time to first achieve specified relative errors ε > 0 for
the initialization methods combined with nnlsb (note that
nnlsb only needs to use the initial left factor matrix, and thus
we can compare the initial estimated basis vectors obtained by
spkm and cr1-nmf directly), we see that our initialization
approach is clearly faster than spkm.

In addition, consider the scenario where there are duplicate
or near-duplicate samples. Concretely, assume the data matrix

V :=

[
1 1 0
0 0 1

]
∈ R2×3

+ and K = 1. Then the left factor

matrix produced by rank-one NMF is w = [1; 0] and the
normalized mean vector (centroid for spkm) is ū := [ 2√

5
; 1√

5
].

The approximation error w.r.t. w is ‖V−wwTV‖F = 1, while
the approximation error w.r.t. ū is ‖V − ūūTV‖F ≈ 1.0954.
Note that spkm is more constrained since it implicitly outputs

Figure 5. Images of 3 individuals in Georgia Tech dataset.

a binary right factor matrix H ∈ {0, 1}K×N while rank-
one NMF (cf. Lemma 3) does not impose this stringent
requirement. Hence cr1-nmf generally leads to a smaller
relative error compared to spkm.

3) Initialization Performance in Terms of Clustering: We
now compare clustering performances using various initial-
ization methods. To obtain a comprehensive evaluation, we
use three widely-used evaluation metrics, namely, the normal-
ized mutual information [37] (nmi), the Dice coefficient [38]
(Dice) and the purity [39], [40]. The clustering results for
the CK and tr117 datasets are shown in Tables VI and VII
respectively. Clustering results for other datasets are shown
in the supplementary material (for space considerations). We
run the standard k-means and spkm clustering algorithms
for at most 1000 iterations and terminate the algorithm if the
cluster memberships do not change. All the classical NMF
algorithms are terminated if the variation of the product of
factor matrices is small over 10 iterations. Note that nndsvd
is a deterministic initialization method, so its clustering results
are the same across different runs. We observe from Tables VI
and VII and those in the supplementary material that our
initialization approach almost always outperforms all others
(under all the three evaluation metrics).

VII. CONCLUSION AND FUTURE WORK

A. Summary of Contributions

We proposed a new geometric assumption for the purpose of
performing NMF. In contrast to the separability condition [13],
[14], [16], under our geometric assumption, we are able
to prove several novel deterministic and probabilistic results
concerning the relative errors of learning the factor matrices.
We are also able to provide a theoretically-grounded method of

7The tr11 dataset can be found at http://glaros.dtc.umn.edu/gkhome/fetch/
sw/cluto/datasets.tar.gz. It is a canonical example of a text dataset and contains
6429 terms and 414 documents. The number of clusters/topics is K = 9.

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
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Figure 6. Basis images of 3 individuals in Georgia Tech dataset obtained
at the 20th iteration. The first to fourth rows pertain to rand, cr1-nmf,
spkm, and nndsvd initializations respectively.

choosing the number of clusters (i.e., the number of circular
cones) K. We showed experimentally on synthetic datasets
that satisfy the geometric assumption that our algorithm per-
forms exceedingly well in terms of accuracy and speed. Our
method also serves a fast and effective initializer for running
NMF on real datasets. Finally, it outperforms other competing
methods on various clustering tasks.

B. Future Work and Open Problems

We plan to explore the following extensions.

1) First, we hope to prove theoretical guarantees for the
scenario when V only satisfies an approximate version
of the geometric assumption, i.e., we only have access
to V̂ := [V + δE]+ (cf. Section VI-A2) where δ ≈ 0.

2) Second, here we focused on upper bounds on the relative
error. To assess the tightness of these bounds, we hope
to prove minimax lower bounds on the relative error
similarly to Jung et al. [41].

3) Third, as mentioned in Section I-A1, our geometric as-
sumption in (2) can be considered as a special case of the
near-separability assumption for NMF [13]. To the best
of our knowledge, there is no theoretical guarantee for
the relative error under the near-separability assumption.

Table VI
CLUSTERING PERFORMANCES FOR INITIALIZATION METHODS COMBINED

WITH CLASSICAL NMF ALGORITHMS FOR THE CK DATASET

nmi Dice purity
k-means 0.941±0.008 0.773±0.030 0.821±0.023
spkm 0.940±0.010 0.765±0.036 0.815±0.031

rand+mult 0.919±0.009 0.722±0.026 0.753±0.025
cr1-nmf+mult 0.987±0.002 0.944±0.006 0.961±0.006
spkm+mult 0.969±0.005 0.875±0.020 0.911±0.018
nndsvd+mult 0.870±0.000 0.614±0.000 0.619±0.000
rand+nnlsb 0.918±0.011 0.727±0.026 0.756±0.027

cr1-nmf+nnlsb 0.986±0.003 0.940±0.011 0.959±0.010
spkm+nnlsb 0.984±0.004 0.929±0.014 0.956±0.012
nndsvd+nnlsb 0.899±0.000 0.688±0.000 0.724±0.000
rand+hals 0.956±0.007 0.826±0.017 0.859±0.022

cr1-nmf+hals 0.974±0.006 0.889±0.015 0.925±0.016
spkm+hals 0.964±0.005 0.854±0.015 0.885±0.020
nndsvd+hals 0.942±0.000 0.786±0.000 0.830±0.000

Table VII
CLUSTERING PERFORMANCES FOR INITIALIZATION METHODS COMBINED

WITH CLASSICAL NMF ALGORITHMS FOR THE TR11 DATASET

nmi Dice purity
k-means 0.520±0.061 0.470±0.042 0.673±0.059
spkm 0.504±0.103 0.454±0.085 0.664±0.091

rand+mult 0.595±0.040 0.540±0.050 0.764±0.025
cr1-nmf+mult 0.649±0.049 0.610±0.052 0.791±0.023
spkm+mult 0.608±0.052 0.550±0.061 0.773±0.031
nndsvd+mult 0.580±0.000 0.515±0.000 0.761±0.000
rand+nnlsb 0.597±0.030 0.537±0.040 0.765±0.018

cr1-nmf+nnlsb 0.655±0.046 0.615±0.050 0.794±0.023
spkm+nnlsb 0.618±0.052 0.563±0.065 0.776±0.027
nndsvd+nnlsb 0.585±0.000 0.512±0.000 0.766±0.000
rand+hals 0.609±0.044 0.555±0.056 0.772±0.024

cr1-nmf+hals 0.621±0.052 0.580±0.062 0.778±0.026
spkm+hals 0.619±0.052 0.567±0.061 0.776±0.027
nndsvd+hals 0.583±0.000 0.511±0.000 0.768±0.000

4) For large-scale data, it is often desirable to perform NMF
in an online fashion [42], [43], i.e., each data point vn
arrives in a sequential manner. We would like to develop
online versions of the algorithm herein.

5) It would be fruitful to leverage the theoretical results for
k-means++ [44] to provide guarantees for a probabilis-
tic version of our initialization method. Note that our
method is deterministic while k-means++ is probabilis-
tic, so a probabilistic variant of Algorithm 2 may have
to be developed for fair comparisons with k-means++.

6) We may also extend our Theorem 9 to near-separable
data matrices, possibly with additional assumptions.

APPENDIX A
PROOF OF THEOREM 8

To prove Theorem 8, we first provide a few definitions and
lemmas. Consider the following condition that ensures that the
circular cone C(u, α) is entirely contained in the non-negative
orthant P .

Lemma 10: If u = (u(1), u(2), . . . , u(F )) is a positive unit
vector and α > 0 satisfies

α ≤ arccos
√

1− u2
min, (48)
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where umin := minf u(f), then C(u, α) ⊆ P .
Proof of Lemma 10: Because any nonnegative vector x

is spanned by basis vectors e1, e2, . . . , eF , given a positive
unit vector u, to find the largest size angle, we only need
to consider the angle between u and ef , f ∈ [F ]. Take any
f ∈ [F ], if the angle β between u and ef is not larger than
π/4, we can obtain the unit vector symmetric to ef w.r.t. u
in the plane spanned by u and ef is also nonnegative. In
fact, the vector is 2(cosβ)u− ef . Because u(f) = cosβ and
β ≤ π/4, we have 2 cos2 β ≥ 1 and the vector is nonnegative.
If β > π/4, i.e., u(f) < 1/

√
2, we can take the extreme

nonnegative unit vector z in the span of u and ef , i.e.,

z =
u− u(f)ef
‖u− u(f)ef‖2

, (49)

and it is easy to see uT z =
√

1− u(f)2. Hence the angle
between z and u is π/2 − β < π/4. Therefore, the largest
size angle αef

w.r.t. ef is

αef
:=

{
arccosu(f), if u(f) ≥ 1/

√
2

arccos
√

1− u(f)2, if u(f) < 1/
√

2
(50)

or equivalently, αef
= min{arccosu(f), arccos

√
1− u(f)2}.

Thus, the largest size angle corresponding to u is

min
f

{
min{arccosu(f), arccos

√
1− u(f)2}

}
(51)

Let umax := maxf u(f) and umin := minf u(f). Then the
largest size angle corresponding to u is

min
{

arccosumax, arccos
√

1− u2
min

}
. (52)

Because u2
max + u2

min ≤ 1 for F > 1, the expression in (52)
equals arccos

√
1− u2

min and this completes the proof.
Lemma 11: Define f(β) := 1

2 −
sin(2β)

4β and g(β) := 1
2 +

sin(2β)
4β for β ∈

(
0, π2

]
. Let ef , f ∈ [F ] be the unit vector

with only the f -th entry being 1, and C be the circular cone
with basis vector u = ef , size angle being α, and the inverse
expectation parameter for the exponential distribution being
λ. Then if the columns of the data matrix V ∈ RF×N are
generated as in Theorem 6 from C (K = 1) and with no
projection to the nonnegative orthant (Step 4 in the generating
process), we have

E
(

VVT

N

)
=

Df

λ
(53)

where Df is a diagonal matrix with the f -th diagonal entry
being g(α) and other diagonal entries being f(α)/(F − 1).

Proof of Lemma 11: Each column vn, n ∈ [N ] can be
generated as follows: First, uniformly sample a βn ∈ [0, α] and
sample a positive scalar ln from the exponential distribution
Exp(λ), then we can write vn =

√
ln [cosβnef + sinβnyn],

where yn can be generated from sampling yn(1), . . . , yn(f −
1), yn(f+1), . . . , yn(F ) from the standard normal distribution

N (0, 1), and setting yn(j) = yn(j)/
√∑

i 6=f yn(i)2, j 6= f ,
yn(f) = 0. Then

E [vn(f1)vn(f2)]

= E
[
ln((cos2 β)ef (f1)ef (f2)+(sin2 β)yn(f1)yn(f2))

]
(54)

=

 0, f1 6= f2,
g(α)/λ, f1 = f2 = f,

f(α)/ ((F − 1)λ) , f1 = f2 6= f.
, (55)

where ef (f1) = 1{f = f1} is the f1-th entry of the vector
ef . Thus E

(
VVT /N

)
= E

(
vnvTn

)
= Df/λ.

Definition 3: A sub-gaussian random variable X is one that
satisfies one of the following equivalent properties
1. Tails: P(|X| > t) ≤ exp

(
1− t2/K2

1

)
for all t ≥ 0;

2. Moments: (E|X|p)1/p ≤ K2
√
p for all p ≥ 1;

3. E
[
exp

(
X2/K2

3

)]
≤ e;

where Ki, i = 1, 2, 3 are positive constants. The sub-gaussian
norm of X , denoted ‖X‖Ψ2

, is defined to be

‖X‖Ψ2
:= sup

p≥1
p−1/2 (E|X|p)1/p

. (56)

A random vector X ∈ RF is called sub-gaussian if XTx is a
sub-gaussian random variable for any constant vector x ∈ RF .
The sub-gaussian norm of X is defined as

‖X‖Ψ2
= sup
‖x‖2=1

‖XTx‖Ψ2
. (57)

Lemma 12: A random variable X is sub-gaussian if and
only if X2 is sub-exponential. Moreover, it holds that

‖X‖2Ψ2
≤ ‖X‖Ψ1

≤ 2‖X‖2Ψ2
. (58)

See Vershynin [30] for the proof.
Lemma 13 (Covariance estimation of sub-gaussian distri-

butions [30]): Consider a sub-gaussian distribution P in RF
with covariance matrix Σ. Let ε ∈ (0, 1) and t ≥ 1. If
N ≥ c(t/ε)2F , then with probability at least 1−2 exp(−t2F ),

‖ΣN − Σ‖2 ≤ ε, (59)

where ‖ · ‖2 = σ1(·) is the spectral norm, ΣN :=∑N
n=1XnX

T
n /N is the empirical covariance matrix, and

Xn, n ∈ [N ] are independent samples from P. The constant
c = cg depends only on the sub-gaussian norm g = ‖X‖Ψ2

of the random vector X sampled from this distribution.
Proof of Theorem 8: Similar to Theorem 5, we have

‖V −W∗H∗‖2F
‖V‖2F

=

∑K
k=1 ‖Vk −w∗kh

T
k ‖2F∑K

k=1 ‖Vk‖2F
(60)

=

∑K
k=1

(
‖Vk‖2F − σ2

1 (Vk)
)∑K

k=1 ‖Vk‖2F
(61)

= 1−
∑K
k=1 σ

2
1 (Vk)∑K

k=1 ‖Vk‖2F
. (62)

Take any k ∈ [K] and consider σ2
1 (Vk). Define the index

fk := argminf∈[F ]uk and the orthogonal matrix Pk as
in (47). The columns of Vk can be considered as Householder
transformations of the data points generated from the circular
cone C0

fk
:= C (efk , αk) (the circular cone with basis vector

efk and size angle αk), i.e., Vk = PkXk, where Xk contains
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the corresponding data points in C0
fk

. In addition, denoting Nk
as the number of data points in Vk, we have

σ2
1 (Vk)

Nk
=
σ2

1

(
VT
k

)
Nk

= λmax

(
VkV

T
k

Nk

)
(63)

where λmax

(
VkV

T
k /Nk

)
represents the largest eigenvalue of

VkV
T
k /Nk. Take any v ∈ Vk. Note that v can be written as

v = Pkx with x being generated from C0
fk

. Now, for all unit
vectors z ∈ RF , we have

‖v‖Ψ2
= ‖Pkx‖Ψ2

= ‖x‖Ψ2
(64)

= sup
‖z‖2=1

sup
p≥1

p−1/2
(
E
(
|xT z|p

))1/p
(65)

≤ sup
p≥1

p−1/2E (‖x‖p2)
1/p (66)

= ‖‖x‖2‖Ψ2
≤
√
‖‖x‖22‖Ψ1 ≤ 1/

√
λk. (67)

That is, all columns are sampled from a sub-gaussian distri-
bution. By Lemma 11,

E
(
vvT

)
= E

(
PkxxTPT

k

)
= PkDfkPT

k /λk. (68)

By Lemma 13, we have for ε ∈ (0, 1), t ≥ 1 and if Nk ≥
ξk(t/ε)2F (ξk is a positive constant depending on λk), with
probability at least 1− 2 exp(−t2F ),∣∣λmax

(
VkV

T
k /Nk

)
− λmax

(
E
(
vvT

))∣∣
≤ ‖VkV

T
k /Nk − E

(
vvT

)
‖2 ≤ ε, (69)

where the first inequality follows from Lemma 2. Because
λmax

(
E
(
vvT

))
= g(αk)/λk, we can obtain that with prob-

ability at least 1− 4K exp(−t2F ),∣∣∣∣∣
K∑
k=1

σ2
1 (Vk)

N
−

K∑
k=1

g(αk)

Kλk

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

λmax

(
VkV

T
k

Nk

)
Nk
N
−

K∑
k=1

g(αk)

Kλk

∣∣∣∣∣ (70)

≤ 2Kε, (71)

where the final inequality follows from the triangle inequality
and (69). From the proof of Theorem 6, we know that with
probability at least 1− 2 exp(−c1Nε2),∣∣∣∣∣‖V‖2FN

−
∑K
k=1 1/λk
K

∣∣∣∣∣ ≤ ε. (72)

Taking N to be sufficiently large such that t2F ≤ c1Nε2, we
have with probability at least 1− 6K exp(−t2F ),∑K

k=1 g(αk)/λk∑K
k=1 1/λk

− c2ε ≤
∑K
k=1 σ

2
1 (Vk)∑K

k=1 ‖Vk‖2F
(73)

≤
∑K
k=1 g(αk)/λk∑K
k=1 1/λk

+ c3ε. (74)

Note that g(αk) + f(αk) = 1. As a result, we have∑K
k=1 f(αk)/λk∑K
k=1 1/λk

− c3ε ≤
‖V −W∗H∗‖2F

‖V‖2F
(75)

≤
∑K
k=1 f(αk)/λk∑K
k=1 1/λk

+ c2ε. (76)

Thus, with probability at least 1− 6K exp(−t2F ), we have∣∣∣∣∣∣‖V −W∗H∗‖F
‖V‖F

−

√√√√∑K
k=1 f(αk)/λk∑K
k=1 1/λk

∣∣∣∣∣∣ ≤ c4ε, (77)

where c4 depends on K and {(αk, λk) : k ∈ [K]}.

APPENDIX B
PROOF OF THEOREM 9

We first state and prove the following lemma.
Lemma 14: Suppose data matrix V is generated as in

Theorem 6 with all the circular cones being contained in P ,
then the expectation of the covariance matrix v1v

T
1 is

E
[
v1v

T
1

]
=

∑K
k=1 f(αk)/λk
K(F − 1)

I

+
1

K

K∑
k=1

g(αk)− f(αk)/(F − 1)

λk
uku

T
k , (78)

where v1 denotes the first column of V.
Proof: From the proof in Lemma 11, we know if we

always take e1 to be the original vector for the Householder
transformation, the corresponding Householder matrix for the
k-th circular cone Ck is given by (47) and we have

E
[
v1v

T
1

]
=

1

K

K∑
k=1

PkDkP
T
k

λk
, (79)

where Dk is a diagonal matrix with the first diagonal entry
being g(αk) := 1

2 + sin(2αk)
4αk

and other diagonal entries are

f(αk)

F − 1
=

1
2 −

sin(2αk)
4αk

F − 1
. (80)

We simplify PkDkP
T
k using the property that all the F − 1

diagonal entries of Dk are the same. Namely, we can write

Pk = I− 2zkz
T
k = I− (e1 − uk)(e1 − uk)T

1− uk(1)
(81)

=


uk(1) uk(2) · · · uk(F )

uk(2) 1− uk(2)2

1−uk(1) · · · −uk(2)uk(F )
1−uk(1)

...
...

. . .
...

uk(F ) −uk(F )uk(2)
1−uk(1) · · · 1− uk(F )2

1−uk(1)

 . (82)

Note that Pk =
[
pk1 ,p

k
2 , . . . ,p

k
F

]
is symmetric and the first

column of Pk is uk. Let Dk be the diagonal matrix with
diagonal entries being d1, d2, . . . , dF . Then we have

PkDkP
T
k =

K∑
j=1

djp
k
j (pkj )T (83)

= d1uku
T
k + d2

K∑
j=2

pkj (pkj )T (84)

= g (αk) uku
T
k +

f(αk)

F − 1

(
I− uku

T
k

)
(85)

=
f(αk)

F − 1
I +

(
g(αk)− f(αk)

F − 1

)
uku

T
k . (86)
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Thus, we obtain (78) as desired.
We are now ready to prove Theorem 9.

Proof of Theorem 9: Define

a :=

∑K
k=1 f(α)/λ

K(F − 1)
=
f(α)/λ

F − 1
, and (87)

b :=
g(α)− f(α)/(F − 1)

Kλ
. (88)

By exploiting the assumption that all the αk’s and λk’s are
the same, we find that

E
[
v1v

T
1

]
= aI + b

K∑
k=1

uku
T
k . (89)

Let U = [u1,u2, . . . ,uK ]. We only need to consider the
eigenvalues of

∑K
k=1 uku

T
k = UUT . The matrix UTU has

same non-zero eigenvalues as that of UUT . Furthermore,

UTU =


1 cosβ · · · cosβ

cosβ 1 · · · cosβ
...

...
. . .

...
cosβ cosβ · · · 1

 (90)

= (cosβ)eeT + (1− cosβ)I (91)

where e ∈ RK is the vector with all entries being 1.
Therefore, the eigenvalues of UTU are 1+(K−1) cosβ, 1−
cosβ, . . . , 1 − cosβ. Thus, the vector of eigenvalues of
E
[
v1v

T
1

]
is [a+b(1+(K−1) cosβ), a+b(1−cosβ), . . . , a+

b(1− cosβ), a, a, . . . , a].
By Lemmas 2 and 13, we deduce that for any t ≥ 1 and a

sufficiently small ε > 0, such that

a+ ε

a− ε
<
a+ b(1− cosβ)− ε

a+ ε
, (92)

then if N ≥ c(t/ε)2F (where c > 0 depends only
on λ, α, and β), then with probability at least 1 −
2 (Kmax −Kmin + 1) exp

(
−t2F

)
, Eqn. (46) holds.

APPENDIX C
INVARIANCE OF (W∗,H∗)

Lemma 15: The (W∗,H∗) pair generated by Algorithm 2
remains unchanged in the iterations of standard multiplicative
update algorithm [3] for NMF.

Proof: There is at most one non-zero entry in each column
of H∗. When updating H∗, the zero entries remain zero. For
the non-zero entries of H∗, we consider partitioning V into K
submatrices corresponding to the K circular cones. Clearly,

‖V −W∗H∗‖2F =

K∑
k=1

‖Vk −wkh
T
k ‖2F, (93)

where Vk ∈ RF×|Ik| and hk ∈ R|Ik|+ . Because of the property
of rank-one NMF (Lemma 3), for any k, when wk is fixed,
hk ∈ R|Ik|+ minimizes ‖Vk−wkh

T ‖2F. Also, for the standard
multiplicative update algorithm, the objective function is non-
increasing for each update [3]. Thus hk for each k ∈ [K]
(i.e., H∗) will remain unchanged. A completely symmetric
argument holds for W∗.
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