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Abstract—Orthogonal time frequency space (OTFS) modula-
tion is a 2-dimensional (2D) modulation scheme designed in the
delay-Doppler domain, unlike traditional modulation schemes
which are designed in the time-frequency domain. Through a
series of 2D transformations, OTFS converts a doubly-dispersive
channel into an almost non-fading channel in the delay-Doppler
domain. In this domain, each symbol in a frame experiences
an almost constant fade, thus achieving significant performance
gains over existing modulation schemes such as OFDM. The
sparse delay-Doppler impulse response which reflects the actual
physical geometry of the wireless channel enables efficient chan-
nel estimation, especially in high-Doppler fading channels. This
paper investigates OTFS from a signal detection and channel
estimation perspective, and proposes a Markov chain Monte-
Carlo sampling based detection scheme and a pseudo-random
noise (PN) pilot based channel estimation scheme in the delay-
Doppler domain.

keywords: OTFS modulation, 2D modulation, delay-Doppler domain,
OTFS signal detection, Markov chain Monte Carlo sampling, delay-Doppler

channel estimation.

I. INTRODUCTION

Mobile radio channels are doubly-dispersive channels,
where multipath propagation effects cause time dispersion and
Doppler shifts cause frequency dispersion [1]. Multicarrier sig-
naling schemes such as OFDM are often employed to alleviate
the effect of inter-symbol interference (ISI) caused by time
dispersion [2]. Doppler shifts result in inter-carrier interference
(ICI) in OFDM which degrades performance [3]. An approach
to combat ISI and ICI in OFDM is pulse shaping. Pulse
shaped OFDM systems use general time-frequency lattices and
optimized pulse shapes in the time-frequency domain [4]-[6].
The resilience against time-frequency dispersions in an OFDM
system depends on the time-frequency localization of the pulse
(due to Heisenberg’s uncertainty principle) and the distance
between lattice points in the time-frequency (TF) plane [4].
Using results from sphere packing theory, [4] shows how to
optimally design lattice and pulse shape for lattice-OFDM
(LOFDM) systems in doubly-dispersive channels to jointly
minimize the ISI/ICI. A transmission scheme employing over-
complete Weyl-Heisenberg (W-H) frames as modulation pulses
is proposed in [5]. In [6], the lattice parameters and pulse
shape of the modulation waveform are jointly optimized to
adapt to the channel scattering function from the viewpoint
of minimum symbol energy perturbation. While the LOFDM
system in [4] confines the transmission pulses to a set of
orthogonal basis functions, the pulse design in [5],[6] relaxed
this orthogonality constraint in order to improve the TF con-
centration of the initial pulses, and in the process making the
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system more susceptible to ISI. However, these and other such
systems that employ the pulse shaping approach are inadequate
to efficiently address the need to support high Doppler shifts
expected in future wireless systems including 5G systems,
where operation in high mobility scenarios (e.g., high-speed
trains) and operation in millimeter wave (mmWave) bands are
envisioned [7]. Orthogonal time frequency space (OTFS) mod-
ulation, a recently proposed modulation scheme [7]-[9], has
attractive signaling attributes that can meet the high-Doppler
signaling need through a different approach, namely, signaling
in the delay-Doppler domain (instead of the conventional
approach of signaling in the time-frequency domain). In this
paper, we investigate OTFS with emphasis on low-complexity
OTES signal detection and channel estimation in the delay-
Doppler domain.

OTFS waveform, having its origin from representation the-
ory, is a waveform resilient to delay-Doppler shifts in the
wireless channel [7]-[9]. The idea is to transform the time-
varying multipath channel into a 2D channel in the delay-
Doppler domain and to carry out modulation and demodulation
in this domain. Due to Heisenberg’s uncertainty principle,
a signal cannot be localized both in time and frequency
simultaneously. But OTFS waveform is localized in the delay-
Doppler domain, and TDMA and OFDM become limiting
cases of OTFS when viewed in this domain. In OTFS, 2D basis
functions that are delocalized in the time-frequency plane but
are localized in the delay-Doppler plane are used. Information
symbols are mapped onto these 2D basis functions that span
the bandwidth and time duration of the transmission frame.
This transformation along with equalization in this domain
makes all the symbols over a transmission frame experience
the same channel gain, leading to good performance in high-
Doppler channels. OTFS specializes to CDMA and OFDM if
1D basis functions (spreading codes and subcarriers, respec-
tively) are used in place of 2D basis functions. Thus OTFS
has all the advantages of TDMA, OFDM, and CDMA, and
it can be viewed as the mother waveform of the above three.
Another interesting aspect of OTFS from an implementation
view-point is that it can be realized by adding pre- and post-
processing blocks to filtered OFDM systems.

OTFS has been shown to exhibit significantly lower block
error rates compared to OFDM over a wide range of Doppler
shifts (for vehicle speeds ranging from 30 km/h to 500 km/h in
4 GHz band), and that the robustness to high-Doppler channels
(500 km/h vehicle speeds) is especially notable, as OFDM
performance breaks down in such high-Doppler scenarios [8].
Also, OTFS has been shown to offer bit error rate (BER) per-
formance advantage compared to OFDM in mmWave systems
(28 GHz band) which encounter high frequency dispersion due
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Fig. 1.
domain, (b) time-delay domain, and (c) Doppler-delay domain.

to phase noise and high Dopplers [9]. An equivalent channel
matrix representation and a two-stage equalizer for OTFS
are presented in [10]. Vectorized formulations of the input-
output relation describing OTFS modulation and demodulation
are presented in [11],[12]. A message passing based OTFS
signal detection scheme based on the vectorized formulation
is presented in [11]. MIMO OFDM-based OTFS and its
vectorized formulation that can enable MIMO OTFS analysis
and implementation are presented in [13]. Recognizing that
the description of the OTFS waveform design framework can
admit multiple waveforms with differences in performance
depending on the delay spread and Doppler spread of the
channel, [14] presents another modulation scheme which is ro-
bust in high-Doppler and low-delay spread channels, termed as
frequency-domain multiplexing with frequency-domain cyclic
prefix (FDM-FDCP).

Our contribution in this paper adds to the OTFS literature
that has been building up recently. Our contributions are
two-fold. First, leveraging the vectorized formulations and
assuming perfect knowledge of the equivalent channel matrix,
we propose a Markov chain Monte Carlo (MCMC) sampling
based low-complexity OTFS signal detection scheme. Second,
we relax the perfect knowledge of the equivalent channel
matrix and present a pseudo-random noise (PN) sequence pilot
based channel estimation scheme in the delay-Doppler domain.
In this context, we note that the detection performance of
OTFS reported in the literature (e.g., [7],[11]) assume perfect
channel knowledge.

The rest of this paper is organized as follows. The delay-
Doppler channel representation and characteristics are pre-
sented in Sec. II. The OTFS modulation and the linear vector
system model are introduced in Sec. III. OTES signal detection
using MCMC sampling techniques and the resulting bit error
performance in high-Doppler scenarios are presented in Sec.
IV. Channel estimation in the delay-Doppler domain and
OTFS performance with estimated channel are presented in
Sec. V. Conclusions are presented in Sec. VI.

II. WIRELESS CHANNEL IN DELAY-DOPPLER DOMAIN

When a waveform is transmitted, the wireless channel
delays it in time (delay shift) and shifts its frequency contents
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Squared magnitude of the impulse response of a 300 Hz Jakes Doppler channel model with 25 uniform power delay profile taps in (a) time-frequency

(Doppler shift), and a delay-Doppler shifted waveform is re-
ceived. A linear time-varying multipath channel can be repre-
sented in different ways, depending upon the parameters used
for modeling the impulse response, namely, time-frequency,
time-delay, Doppler-delay. Usually, time-delay representation
h(t,T) or, equivalently, time-frequency representation H (¢, f)
are used, where ¢, 7, and f denote time, delay, and frequency,
respectively. These representations have a finite support char-
acterized by the maximum delay and Doppler spreads. The rate
at which the channel coefficients vary (oc 1/coherence time)
in these representations depends on the mobility and operating
frequency. High mobility or high operating frequency would
cause the channel to vary rapidly, making channel estimation
and the associated time-frequency adaptation difficult.

An equivalent compact way of representing the channel is
to use delay-Doppler impulse response h(7,v), where 7 and
v denote the delay and Doppler, respectively [7],[8]. The taps
in this domain correspond to the group of reflectors having
a particular delay (depends on reflectors’ relative distance)
and Doppler value (depends on reflectors’ relative velocity).
Thus, this representation reflects the actual geometry of the
wireless channel [7]. Since there are only a small number of
group of reflectors with different delay and Doppler values [8],
the parameters that need to be estimated are also fewer, and
the representation in this domain is more compact and sparse.
Also, the velocity and distance remain roughly the same for
at least few milliseconds, and thus the delay-Doppler taps are
time invariant for a larger observation time as compared to
that in time-frequency representation [7]. This makes channel
estimation easy in the delay-Doppler domain.

As an illustration, we have plotted the squared magnitude of
the impulse response of a 300 Hz (maximum Doppler) Jakes
channel model [1] with 25 delay taps and uniform power delay
profile in Fig. 1; (a) in time-frequency domain, (b) in time-
delay domain which has a Fourier transform relation with the
time-frequency domain along the delay axis, and (c) in delay-
Doppler domain which is related to the time-frequency domain
by a transform called 2D symplectic Fourier transform [7]. As
we can see from Fig. 1, the impulse response is not localized
in the time-frequency and time-delay representations, whereas
it is peaky (localized) in a few delay-Doppler bins in the delay-
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Doppler representation, i.e., the impulse response is sparse in
the delay-Doppler representation. This characteristic can be
exploited for efficient channel estimation, as we will see in
Sec. V.

In the delay-Doppler representation, the received signal y(¢)
is the sum of reflected copies of the transmitted signal z(¢)
which are delayed in time (7) and shifted in frequency (v) by
the reflectors [7]. Thus, the coupling between an input signal
and the channel in this domain is given by the following double
integral:

y(t) = / / h(r,v)z(t — 1)e?™ = drdy. (1)

While channel representation is one use of the delay-Doppler
domain, information carrying symbols themselves can reside
in this domain. OTFS modulation is based on this [7],[8].

III. OTFS MODULATION

OTFS modulation, when implemented using pre- and post-
processing to existing multicarrier modulation schemes, can
be viewed as a series of transformations at the transmitter
and receiver. The block diagram of the OTFS modulation
scheme is shown in Fig. 2, where the inner box is the familiar
multicarrier (TF) modulation, and the outer box with a pre-
and post-processor implements the OTFS modulation scheme
in the delay-Doppler domain.

The information symbols z[k, ] (e.g., QAM symbols) resid-
ing in the delay-Doppler domain are first mapped to the famil-
iar time-frequency domain symbols X [n,m] through a trans-
form called the 2D inverse symplectic finite Fourier transform
(ISFFT) and windowing, together called the OTFS transform.
Each z[k,l] modulates a 2D basis function that completely
spans the transmission time and bandwidth in the TF domain.
The Heisenberg transform, which is a generalization of the
OFDM transform, is then applied to the time-frequency trans-
formed symbols X [n,m] to convert to the time domain signal
z(t) for transmission. At the receiver, the received signal
y(t) is transformed back to a time-frequency domain signal
Y'[n, m] through Wigner transform (inverse of the Heisenberg
transform), which is a generalization of the inverse OFDM
transform. Subsequently, Y [n, m] is transformed to the delay-
Doppler domain signal y[k,!] through the symplectic finite
Fourier transform (SFFT) for demodulation. As we can see,
OTFS modulation can be viewed as a scheme with additional

Block diagram of OTFS modulation scheme.

pre- and post-processing to a multicarrier system that uses
TF modulation. In the following subsections, we describe the
signal models in TF modulation and OTFS modulation, and
present a discrete linear vector channel model of the received
OTEFS signal.

A. Time-frequency modulation and the TF lattice

o Definitions/notation:

— A lattice in the TF plane is a sampling of the time
axis at an interval 7' and the frequency axis at an
interval A f denoted by

L={(nT,mAf),n=0,--- ,N—1,m=0,--- ,M—1}.

— A packet burst occupies NT' seconds in time and
MAf Hz in bandwidth.

- Information symbols X[n,m], n = 0,--- ,N — 1,
m =0,---, M —1 are transmitted in a given packet
burst.

— Transmit and receive pulses ¢y, (t) and @, (), re-
spectively, which are bi-orthogonal with respect to
time and frequency translations are used for mod-
ulation and demodulation, which eliminates cross
symbol interference.

In TF modulation, the symbols X[n,m] in TF lattice are
transmitted using the translations and modulations of the
transmit pulse ¢y, (t) as the basis functions as follows:

N—-1M-1
z(t) = Z Z X[n, m)p(t — nT)ed?mmAIE=nT) — (2)

n=0 m=0

This can be interpreted as a linear operator called the Heisen-
berg operator parametrized by X[n,m] and operating on
¢t (t) . The transmitted signal z(t) is received as y(t) given
by (1), which can also be viewed as another Heisenberg
operator parametrized by h(7, ) and operating on z(t). Thus,
the cascaded Heisenberg operator property can be used in the
derivation of input-output relationship as in [8].

In TF demodulation, the channel distorted signal y(t) is
matched filtered with the receive pulse ¢, (t) to obtain the
sufficient statistic for detection. This is done in 2 steps. First,
the cross ambiguity function is calculated as follows:

Ap,y(T,v) = / pr(t — Ty()e 2™ E="d. (3)
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This is then sampled at an interval 7 = nT and v = mAf to
get the matched filter output, given by

Yn,m]= Ay, o(T,V)|r=nTp=may, 4

where (4) is called the Wigner transform.

Suppose the noise is additive white Gaussian, denoted by
v(t), and the impulse response h(r,v) has finite support
bounded by (Tmaw,Vmaz)- If Ay, 4(T,v) = 0 for 7 €
(nT = Tmaz, N1 + Tm(m)a S (mAf ~ Vinaz, MAf + Vmaw)7
then the relation between Y [n, m] and X[n, m] can be derived
as [8]

Y[n,m] = H[n,m]X[n,m] + V[n,m], ®)

where Vn,m] = Ag,,, (T, V)lr=nTv=mays and H[n,m] is
given by

H[n,m] ://h(T, )2t o= i2nAmANT gy dr (6)

Clearly, each symbol X[n,m] in a frame (packet burst) gets
multiplied by a different fade H[n,m] in TF modulation.
However, each symbol in the delay-Doppler domain will be
multiplied by an almost constant fade in the OTFS modulation
presented in the following subsection.

B. OTFS modulation and the delay-Doppler lattice

The delay-Doppler signal representation is a quasi periodic
representation, with a delay period, 7, = Aif and a Doppler
period, v, = %, such that 7,.v,. = 1. Thus, the delay-Doppler
lattice given below can be considered as the sampling of delay
and Doppler axes within a rectangle of unit area (7,7, = 1) in
the delay-Doppler domain. The delay-Doppler representation
is non-unique because 7, and v, can take any value, such
that 7.v, = 1. In the limit 7, tending to infinity and v,
tending to zero, the delay-Doppler representation becomes
the familiar temporal representation. Similarly, in the limit
v, tending to infinity and 7, tending to zero, the delay-
Doppler representation becomes the familiar frequency domain
representation of the signal.

 Definitions/notation:

— A lattice in the delay-Doppler plane is a sampling of
the delay axis at an 1nterva1 i A 7 and the Doppler
NT’

axis at an interval denoted by
k l
LdD:{(ﬁ’zwAf)’k:O’”"N ’M_l}'
— Let X,[n,m] be the periodized version of X[n,m|
with period (N, M). The SFFT of X,[n,m] is then

—1,1=0,---

given by
N-1M-1
DIk, 1] = X, [n, m]e 27 CR 5,
n=0 m=0
and the ISFFT is X,[n,m] = SFFT ' (z[k,1]),
given by
1 == :
Xp[n,m] Mi Z Z [k lejZTr( N _mﬁ)
k=0 1=0

In OTFS modulation, the information symbols in the delay-
Doppler domain z[k,!] are mapped to TF domain symbols
X[n,m] as

X[n,m]

= th’[nam]SFFTil(w[kvl]): (7N

where Wy, [n, m] is the transmit windowing square summable
function. X[n, m] thus obtained is in the TF domain and it is
TF modulated as described in III-A, and Y[n,m] is obtained
by (3) and (4).

In OTFS demodulation, a receive window W,,[n,m] is
applied to Y[n,m] and periodized to obtain Y, [n,m] which
has the period (N, M), as

Yw[n,m] = Wyzn,m]Y[n,m],
Yolnom] = Y Ywln—kN,m—IM]. (8
kl=—

The symplectic Fourier transform is then applied to Y} [n, m]
to convert it from TF domain back to delay-Doppler domain
z[k, 1], as

&[k,1]

Therefore, the input-output relation in OTFS modulation can
be derived as [8]

1 N m
ik, 1] = M—gg z[n, m)hy, (NT MAf),(IO)

where

= SFFT (Yp[n,m]). 9

k—=n l—-m)\ .
by (NT’]VMAf) = w(VaT)|V’:k1\;;7T’:;/;A”}7 1D

where h,,(v',7') is the circular convolution of the channel
response with a windowing function w(7,v), given by

he(W',1') = / / Mr,)w' —v, 7" —r)drdv.  (12)

The windowing function w(7,v) is the symplectic discrete
Fourier transform (SDFT) of the time frequency window
Win,m] = We[n, m|W,.[n,m], ie.,

M—-1N-1

I/) _ Z Z W[n,m]efj%r(uanrmAf).

m=0 n=0

13)

From (10), we see that each demodulated symbol Z[k,]
for a given value of k and [ experiences the same fade
hy(0,0) on the transmitted symbol xz[k,!] and the cross
symbol interference vanishes if

k—m l—m

— —— | R0V k l. 14
o (S Sray ) o A AL a4)
This condition depends on the delay and Doppler spreads of
the channel and the windows used in the modulation. Thus,
each symbol in a given frame experiences an almost constant

fade h,,(0,0).
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C. Vectorized formulation of the input-output relation

Assume that there are P taps (signal propagation paths).
The parameter P is also called the sparsity of the channel.
Let the path ¢ be associated with a delay 7;, Doppler v;, and a
fade coefficient h;. The impulse response in the delay-Doppler
domain can be written as

P
v) =Y hid(r —7)d(v — ). (15)
i=1
Assuming the windows used in modulation (W;;[n,m]) and
demodulation (W,.,[n,m]) to be rectangular, the input-output
relation in (10) for the above channel can be derived as [11]
P
hy (', V') = Z hie P2™iTiy (V' — v, T — 1)

i=1

P N-1 M—1
_ hle—jQﬂ'l/iTi e—jQF(VI—Vi)CT 6j27r(7"—7'i)dAf
= E i § §
=1 c=0 d=0

P
=Y WG, v)F(r'7), (16)
1=1
where h; = hie_jQﬂ'l/iTi, f(TI,Ti) — il\/l 1€j271'(7' —rl)dAf
and G(v',v;) = Zi\;}l e=i27('=vi)eT Define 7; = MAf
and v; = %, where a; and ; are integers denoting the

indices of the delay tap (with delay 7;) and Doppler tap (with

Doppler value v;), and 0 < ; < 1, where -y; is called the

fractional Doppler which is needed because Doppler shifts are

not exactly at the sampling points in the delay-Doppler plane.

Now, for calculating (11), F (7', 7;) is evaluated at 7' = U-m)
Z ej 2 (l—m—ay)d

MAFf
as
l—m
#(5aym) -
6]271'(! m—a;) -1

= gFemay_yp 47

—a;) mod M =0 and to 0

which evaluates to M if (I —m
otherwise . Also,

—j2m(k—n—pi—v) _
) =£ (18)

G k—n
NT V1) T e im ) _q
When £ ((k—n— ;) —~;) is small, we need to consider only
(2E;+1) significant values of G (52, v;) for n = (k—B;+q)
mod N and —FE; < q< FE;, E; < N.

Using the above equations, the OTFS input-output relation
in (10) for the channel in (15) can be derived as [11]

e—J2m(—a—vi) _ 1
Z Z ( (e JN(Q'Yi)_]_)>

i=1 g=—FE;
xa[((k = Bi+ q)n, (I = @) ] + 0k, 1], (19)

where ((.))ny denotes modulo N operation and v[k,l] ~
CN(0,0?) is the additive Gaussian noise (AWGN). The frac-
tional Doppler +; affects the neighboring Doppler taps (—FE;
to E;) in (19). This interference is called the inter-Doppler

interference (IDI). When the Doppler taps are assumed to be
integer multiples (y; = 0), (19) simplifies to

Zh’ (k= B:)n, (1

We use (19) for OTFS signal detection in Sec. IV and (20)
for channel estimation in the delay-Doppler domain in Sec. V.
The equations (19) and (20) can be represented in vectorized
form as [11]

— ai))m)] + o[k, 1. (20)

y=Hx+v, 2n
where x,y,v € CNM*1 ' H ¢ CNMXNM ' the (k 4+ Nl)th
element of x, xp4ny = z[k,0), &k = 0,--- ,N — 1,1 =
0,---,M — 1, and the same relation holds for y and z as
well. In this representation, there are only P(2E; + 1) non-
zero elements in each row and column of H due to modulo
operations.

IV. OTFS SIGNAL DETECTION

In this section, we present OTFS signal detection algorithms
using MCMC sampling based techniques.

A. OTFS signal detection using MCMC sampling

MCMC techniques are computational techniques commonly
used for calculating complex integrals by expressing the
integral as an expectation of some probability distribution and
then estimating this expectation from the generated samples
of that distribution. In this technique, a new sample value
is generated randomly from the most recent sample. The
transition probabilities between samples are only a function
of the previous sample, and hence the name MCMC. MCMC
techniques have been used for signal detection in multiuser and
MIMO systems [15]-[18]. Gibbs sampling is a well known
MCMC technique. Here, we present low-complexity Gibbs
sampling based algorithms for OTFS signal detection using
the vectorized formulation of the OTFS signal in (21).

1) Gibbs sampling based OTFS detection: Let A denote the
modulation alphabet used (e.g., BPSK, QAM). Assuming that
the input symbols are equally likely, the maximum likelihood
(ML) decision rule for the signal model in (21) is given by

X, = argmin ||y — Hx||?,
XGANM

(22)

which has an exponential complexity in NM. However,
approximate solutions to (22) can be obtained efficiently
using Gibbs sampling based MCMC techniques. The joint
probability distribution of interest for detection is

— Hx||?
p(m17w27"' ,.’L'NM|y,H) X exp <_||yo_2||> - (23)

Let ¢ denote the iteration index and k£ denote the coordinate
index of x. A random initial vector, denoted by x(=9) is cho-
sen for the algorithm to begin. In every iteration, all the N M
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coordinates are updated and the update in the (¢+1)th iteration
is obtained by sampling from the following distributions:

‘,I"gt+1) ~ p($1|m;t)vxl(’>t)a ot angl)jwa Yy, H)

x;tJrl) - p(m2|x§t+1),x§t), . ,x%)M,y,H)

x:())t+1) - p($3|$§t+1),xgt+1),xit), . ,xg\t,)M,y,H)
‘rg\tf}:}) ~ p(wNM|‘T§_t+1)amét+1)a e 733%;11),17 Yy, H)

The solution vector thus obtained in the tth iteration is passed
to the (¢4 1)th iteration for the next set of coordinate updates.
After a certain number of iterations called the burn-in period,
the distribution tends to converge to the stationary distribution
(23), which is the distribution to simulate for drawing samples.
The detected symbol vector in a given iteration is chosen to
be that vector which has the least ML cost fi,.(x) = ||y —
Hx]||? in all the iterations. However, Gibbs sampling algorithm
suffers from a problem called stalling, which degrades the
BER performance at high SNRs [15]. To alleviate the stalling
problem and to reduce the number of iterations, a slightly
different distribution can be used for sampling as described in
the following subsection.

2) Gibbs sampling with temperature parameter «: The
expected number of iterations for finding the solution can be
reduced by using a temperature parameter « in the distribution
as follows:

2
arsen s oy, 1) scenp (-1 2EXE) g
However, the value of a to be used is dependent on the
operating SNR [17]. Another possible modification of the
Gibbs sampling to alleviate the stalling problem is to combine
distributions with & = 1 (conventional) and o = oo (uniform)
using a randomized update rule as given in the next subsection.
3) Randomized Gibbs sampling based detection: Random-
ized Gibbs sampling algorithm involves a randomization in the
update rule. Instead of using the update rule as in conventional
Gibbs sampling with probability 1, a randomized rule using
a parameter r = ﬁ is used as follows: with probability
(1—r), use conventional Gibbs sampling, and with probability
r, take samples from a uniform distribution. That is, generate
|A| probability values from a uniform distribution given by

p(a = i) ~ U[0,1], Vi € A, (25)

such that Zﬁll p(xl(-tﬂ) = 4) = 1, and sample ngﬂ) from
this pmf. A listing of the randomized Gibbs sampling based

detection algorithm is given in Algorithm 1.

B. Performance results

In this subsection, we present the BER performance of
OTFS using the randomized Gibbs sampling algorithm based
signal detection. Perfect channel knowledge is assumed at the
receiver. The number of signal propagation paths (taps) P is
taken to be 5. The Doppler model used is given by [11]

(26)

Vi = Vmag COS 0;,

Algorithm 1 Randomized Gibbs sampling based detection
algorithm

1: Inputs: y, H, x#=9 ¢ ANM: random initial vector,
Njter: maximum no. of iterations

2. Initialize: ¢ = 0; z = x1=9; index set S =
{1727"' 7NM}

3. Calculate § = f,, (x(*=9)): initial ML cost

4: while (£ < Njer) do

5: fork=1to NM do

6: choose an index ¢ randomly from the set S

7 if Ek # 1) then

8 xkt+1) ~ p(xk|$§t+1), ..,x,(fj_ll),x,(:ll, ..,x%)M,y, H)

9 else

10: generate the pmf p(m,(:"_l) =j) ~UJ[0,1], Vj € A

11: From this pmf, sample xSfH)

12: end if

13:  end for

14 (= fu(xtD)

15:  if (¢ < ) then

16: z=xUY and B =¢

17:  end if

18: t=t+1

19: end while

20: Output z, the solution vector.

where v; is the Doppler shift due to the ith path and 6; is
uniformly distributed, i.e., 8; ~ U(0,7). The 5-tap delay
model in Table I with Ty = 2.1us spacing with a uniform
power delay profile is used.

Path index (4) 1 2 3 4 5
Excess Delay (7;) | Ops | 2.1us | 4.2us | 6.3us | 8.4us
TABLE I

5-TAP DELAY MODEL WITH UNIFORM DELAY PROFILE.

The received signal model in (19) is used for the simulation
with the parameter E; = 4. Three different user equipment
(UE) speeds, viz., 27 kmph, 100 kmph, and 500 kmph are
considered. At a carrier frequency of 4 GHz, these speeds
correspond to Doppler frequencies 100 Hz, 444.44 Hz, and
1851 Hz, respectively. Other simulation parameters used are
given in Table II.

Figure 3 shows the BER performance of OTFS with M =
128, N = 32, BPSK, Af = 3.75 kHz subcarrier spacing, and
a frame length of M NT, = 128 x32x2.1x 10—% = 8.6 msec,
using randomized Gibbs sampling based detection algorithm.
The number of iterations used is 3. From Fig. 3, we observe
that a BER of 102 is achieved at an SNR value of about 13
dB for all the three Doppler frequencies considered. Note that
the Doppler spread for 500 kmph UE speed at 4 GHz carrier
frequency is 1.851 kHz, which in conventional systems like
OFDM would cause severe ICI and performance degradation
for the considered subcarrier spacing of 3.75 kHz. In fact,
OFDM is known to breakdown completely at these high
Dopplers. Whereas, the the signal localization achieved by
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Parameter Value
Carrier frequency (GHz) 4

Subcarrier spacing (kHz) 3.75

Frame size (M, N) (128, 32)
Modulation scheme BPSK

UE speed (kmph) 217, 120, 500
Channel knowledge Perfect

TABLE II
SIMULATION PARAMETERS.

10°
—#—OTFS, 100 Hz (27 kmph)
—%—OTFS, 444.44 Hz (120 kmph)
107 —8— OTFS, 1851 Hz (500 kmph)
]
Y
£ 10?2 E
[0}
=
103 7
M =128, N =32 BPSK, T, = 2.1 us, Af = 3.75 kHz,
frame duration = 8.6 ms
10.4 | | | | | |
0 2 4 6 8 10 12 14
SNR (dB)
Fig. 3. BER performance of OTFS using randomized Gibbs sampling

detection for 3 different Dopplers 100 Hz, 444.44 Hz, and 1851 Hz.

OTES in the delay-Doppler domain renders good BER perfor-
mance which is almost invariant to Doppler. The BER plots in
Fig. 3, therefore, give a clear illustration of the performance
robustness of OTFS in high Doppler fading channels.

V. DELAY-DOPPLER CHANNEL ESTIMATION

In the previous section, we assumed perfect channel knowl-
edge, i.e., H is assumed to be perfectly known at the receiver.
Here, we relax this assumption and present a method for esti-
mating the channel in the delay-Doppler domain. The method
uses a PN sequence as pilot for channel estimation. The
estimation approach is as follows. The estimation is done in
the discrete domain, where three quantities of interest, namely,
delay shift (d;), Doppler shift (v;), and fade coefficient («;)
for the ith path, for all = 1,--- , P, need to be estimated.
The estimation of §; and v; is first done by solving a time-
frequency shift problem which involves the computation of a
matched filter matrix (described later in Sec. V-B1) for each
i, and the estimates of «;s are obtained to be the values of P
highest peaks in the matched filter matrix.

Consider the delay-Doppler channel impulse response
h(r,v) in (15). The coupling between the input signal and
the channel can be written as

P
= hg(t — 7;)el ™ L oy(t),

i=1

27)

Let H denote the vector space of complex valued functions on
the set of finite integers Zy, = {0,1,--- , N, — 1} equipped

with addition and multiplication modulo N,,. The inner product

in H is defined as
f17f2 Z fl n]f2 7
n€Zn,

f17f267‘[- (28)

j2n

Also, define e(t) = e~ .

A. Channel parameters and the discrete channel model

Here, we present the discrete channel model for (27), which
simplifies the problem of channel estimation (since waveforms
becomes sequences). The model in (27) can be written in a
slightly modified form as

2 :hl j2my;t

where h, = hie 32™iTi y, € R, T; € R,. The parame-
ters (h},v;, ;) for i = 1,2,--- P, are called the channel
parameters and we have to estimate them. They, in turn, give
the estimate of H in (21). The process for converting the
continuous time channel model to a discrete channel model
is described as follows [19]. Start with a sequence .S € H and
transmit the following analog signal

x(t — ;) + v(t), (29)

M—1
Sa(t) = Z Sn mod Np|sinc(Wt — n),

n=0

where M > N,. Let T, = max(7;) denote the time spread

of the channel and define K = [WT,,.,]. Let M = N, + K.

Transmit the analog signal S4(t) from time ¢t =0 to ¢t = L.

The received signal R4(t) is related to Sa(t) through (27).

R(t) is sampled at an interval T, = 3, from time &, and
the sequence R[n] = RA((K+”)) for n = O 1,---,Np,—1is

obtained. The following proposition in [19] gives the discrete
channel model.

Proposition 1. Let 7, € +Z, and v; € X7 for i =
1,2,---, P. Then R[n] given above satisfies

E a;e(w;n

where o; = h;e(ﬂ””iK/W), 0; = 7;W, and w; = Ny

S[K +n — ;] +v[n], n€ Zn,,

I/Z/W

B. PN pilot based channel estimation
Let S, R € H, where R[n] is given by

P
= Z ae(wn)S|

where a; € C, 6;,w; € Zy,, and v[n] € H. Once ay, 0,
and w; are estimated, we can compute h}, 7;, and v; for
i1 =1,2,---, P using Proposition 1, which solves the channel
estimation problem. We estimate ;, w;, and «; using a PN
pilot based scheme described as follows.

n—0;] +v[n], n€Zn,, (30
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(a) Auto-correlation function of the PN sequence with N, = 127. (b), (c) Magnitude of the entries of the matched filter matrix at SNR = 0 dB and

Np = 127 for the time-frequency shift problem with (do,wo) = (40,90) and (dp,wo) = (80,60), respectively.

1) Solving for (§;,w;, a;): Consider the following simpler
variant of (30):

R[n] = e(won)S[n — do] + v[n], (31)

where n € Zy, and (do,wo) € Zn, X Zy;, . The problem of
estimating (Jg,wp) is called the time-frequency shift problem,
which is solved as follows. Define the matched filter matrix
of R and S as

M(R, S)[d,w] = (R[n], e(wn)S[n—4]), (0,w) € Zn, X L,
(32)
Suppose R and S satisfy (31) and S € H is a PN sequence of
norm one and length NV,,. Then, we can obtain the following
expression for M(R, S)[d,w] by the law of iterated logarithm,
with probability going to one, as N, goes to infinity [19]:

M(R,S)[6,w] = 1+ ey, if (§,w) = (do,wo) 33)
= €N, if ((5,&)) 7é (50,&)0),
where |ely | < —— and [en,| < (szl) for some constant

C > 0. Hence, the solution to the ptime—frequency shift
problem is to compute M (R, S) and choose (g, wg) for which
M(R, S)[do,wo] = 1. Once (d;,w;)’s are obtained as above,
the identity (33) along with the bi-linearity of the inner product
gives

a; =~ M(R,S)[0;,w;], i =1,2,--- , P. (34)

This solves the problem of estimating (a;, d;,w;).

Example 1: For illustration, we present plots of the PN
sequence ACF and the magnitudes of the entries of the
matched filter matrix in Fig. 4. Figure 4(a) shows the ACF of
the PN sequence with N, = 127, and Figs. 4(b) and 4(c) show
the magnitudes of the entries of the matched filter matrix for
the time-frequency shift problem with ap = 1 at SNR = 0 dB
for (dg,wo) = (40,90) and (do,wo) = (80, 60), respectively.
From these figures, we see that the magnitude of the matched
filter matrix is close to one when (J,w) = (o, wp) and is close
to zero when (6,w) # (6, wo), as indicated by (33).

Example 2: The magnitude plots of the entries of the
matched filter matrix for a channel with P = 5 and (d1,w) =

(10, 60), ((52,&)2) = (20, 110), ((53, CU3) = (30, 30), ((54, CU4) =
(80,40), (d5,ws) = (110,90) at SNR = 20 dB are shown in
Fig. 5. Two values of IV, are considered. Figure 5(a) is for
N, = 127 and Fig. 5(b) is for IN,, = 1023. We can observe that
there are five strong peaks at (§,w) = (;,w;), ¢ = 1,2,3,4,5.
The entries in the matched filter matrix corresponding to these
five peaks give the corresponding «; values. The values of
the magnitudes are small when (0,w) # (0;,w;). Also, the
magnitudes for (d,w) # (0;,w;) for N, = 1023 are low
compared to those for N, = 127. That is, the estimate can
be more accurate for larger values of N,, which can be seen
from (33) and the fact that |ep, [, [ely | o 1/y/Np.

C. Performance results

In this subsection, we present the BER performance of
OTFS with estimated channel, where the channel parameters
(and hence H) are estimated using the method described in
the previous subsection. The worst case delay and Doppler
spread are assumed to be known, so that the parameter K
can be chosen a priori in the process of continuous time
to discrete time conversion. The channel model in (20) is
used, where the delay and Doppler values are assumed to be
integer multiples. A carrier frequency of 4 GHz and a channel
model with P = 5 are considered. The delay-Doppler profile
considered in the simulation is shown in Table III. A frame
size of (M, N) = (32,32), subcarrier spacing of Af = 15
kHz, uniform power delay profile, and BPSK are considered.

Path index (4) 1 2 3 4 5
Delay (7;), ps 2.1 4.2 6.3 8.4 10.4
Doppler (v;), Hz | 0 [ 470 | 940 | 1410 | 1880
TABLE III

DELAY-DOPPLER PROFILE FOR THE CHANNEL MODEL WITH P = 5.

In Fig. 6, we illustrate the accuracy of the proposed channel
estimation in terms of the estimation error given by the
Frobenius norm of the difference between the channel matrix
(H) and the estimated channel matrix (H,), i.e., ||[H — H||p.
Figure 6(a) shows the variation of |H—H.|| ¢ as a function of
pilot SNR for three different values of IV, (= 31,127,1023).
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Fig. 6. Frobenius norm of the difference between the channel matrix (H) and the estimated channel matrix (H¢) as a function of (a) pilot SNR for various

Np values, and (b) r, where N, = 2" — 1, for various pilot SNR values.

Figure 6(b) shows the variation of |H — H.||r as a function
of r, where N, = 2" — 1, for three different values of SNR
(=0,5,10 dB). From these figures, we see that the estimation
error decreases as SNR increases, which is expected. Also,
larger PN sequence lengths (V) reduce the estimation error
because of the 1/,/N,, relation between N, and the estimation
error, as indicated by (33).

In Fig. 7, we present the BER performance of OTES with
the estimated channel matrix. Detection using Gibbs sampling
algorithm with different temperature parameters are consid-
ered. Figures 7(a) and 7(b) show the BER versus SNR plots for
the cases of perfect channel knowledge and estimated channel
knowledge. In Fig. 7(a), BER performance when N, = 1023
and a = 1.5, 2 are shown. In Fig. 7(b), BER performance for
N, = 15,127,1023 when « = 2 are shown. It is observed
that the the performance degradation with estimated channel
knowledge (relative to the performance with perfect channel
knowledge) is not significant when NN, = 1023, because

of the small estimation errors achieved with such large N,,.
The degradation, however, becomes significant when N, is
reduced. For example, the performance degradation is about
1 dB at 102 BER when N, = 127, and the degradation
gets severe when N, = 15. While the estimates become more
accurate when N, is increased, the estimation complexity
also increases with increasing Np,. Thus, there is a trade-off
between the estimation accuracy and complexity in the choice
of N,,.

VI. CONCLUSIONS

We investigated OTFS modulation, which is a recently pro-
posed modulation suited for communication in high-Doppler
fading channels, from a signal detection and channel estima-
tion perspective. In particular, we proposed a low-complexity
detection scheme based on MCMC sampling techniques and
a PN pilot sequence based channel estimation scheme in
the delay-Doppler domain. Our results showed that the BER
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performance of OTFS is robust even at high Doppler fre-
quencies (e.g., 100 Hz, 444 Hz, and 1851 Hz Dopplers). The
proposed channel estimation scheme was shown to achieve
small estimation errors and BER degradation for large pilot
PN sequence lengths. The feasibility of such simple channel
estimation schemes that exploit the fade invariance in the
delay-Doppler domain and the robust detection performance
even at high Dopplers (a feature that current multicarrier
modulation schemes such as OFDM do not offer) suggest
that OTFS is a promising next generation modulation scheme
suited for 5G and future wireless systems.
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