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Abstract
We study implicit regularization when optimizing an underdetermined quadratic objective over a matrix X with
gradient descent on a factorization of X . We conjecture and provide empirical and theoretical evidence that
with small enough step sizes and initialization close enough to the origin, gradient descent on a full dimensional
factorization converges to the minimum nuclear norm solution.

1. Introduction
When optimizing underdetermined problems with multiple global minima, the choice of optimization algorithm
can play a crucial role in biasing us toward a specific global minima, even though this bias is not explicitly
specified in the objective or problem formulation. For example, using gradient descent to optimize an
unregularized, underdetermined least squares problem would yield the minimum Euclidean norm solution,
while using coordinate descent or preconditioned gradient descent might yield a different solution. Such
implicit bias, which can also be viewed as a form of regularization, can play an important role in learning.

In particular, implicit regularization has been shown to play a crucial role in training deep models
(Neyshabur et al., 2015, 2017; Zhang et al., 2017; Keskar et al., 2017): deep models often generalize well
even when trained purely by minimizing the training error without any explicit regularization, and when
there are more parameters than samples and the optimization problem is underdetermined. Consequently,
there are many zero training error solutions, all global minima of the training objective, some of which my
generalize horribly. Nevertheless, our choice of optimization algorithm, typically a variant of gradient descent,
seems to prefer solutions that do generalize well. This generalization ability cannot be explained by the
capacity of the explicitly specified model class (namely, the functions representable in the chosen architecture).
Instead, it seems that the optimization algorithm biases us toward a “simple" model, minimizing some implicit
“regularization measure”, and that generalization is linked to this measure. But what are the regularization
measures that are implicitly minimized by different optimization procedures?

As a first step toward understanding implicit regularization in complex models, in this paper we carefully
analyze implicit regularization in matrix factorization models, which can be viewed as two-layer networks
with linear transfer. We consider gradient descent on the entries of the factor matrices, which is analogous
to gradient descent on the weights of a multilayer network. We show how such an optimization approach
can indeed yield good generalization properties even when the problem is underdetermined. We identify the
implicit regularizer as the nuclear norm, and show that even when we use a full dimensional factorization,
imposing no constraints on the factored matrix, optimization by gradient descent on the factorization biases us
toward the minimum nuclear norm solution. Our empirical study leads us to conjecture that with small step
sizes and initialization close to zero, gradient descent converges to the minimum nuclear norm solution, and
we provide empirical and theoretical evidence for this conjecture, proving it in certain restricted settings.
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2. Factorized Gradient Descent for Matrix Regression
We consider least squares objectives over matrices X ∈ Rn×n of the form:

min
X�0

F (X) = ‖A(X)− y‖22. (1)

where A : Rn×n → R
¯
m is a linear operator specified by A(X)i = 〈Ai, X〉, Ai ∈ Rn×n, and y ∈ Rm.

Without loss of generality, we consider only symmetric positive semidefinite (p.s.d.) X and symmetric linearly
independentAi (otherwise, consider optimization over a larger matrix

[
W X
X> Z

]
withA operating symmetrically

on the off-diagonal blocks). In particular, this setting covers problems including matrix completion (where
Ai are indicators, Candès and Recht (2009)), matrix reconstruction from linear measurements (Recht et al.,
2010) and multi-task training (where each column of X is a predictor for a deferent task and Ai have a single
non-zero column, Argyriou et al. (2007); Amit et al. (2007)).

We are particularly interested in the regime wherem� n2, in which case (1) is an underdetermined system
with many global minima satisfying A(X) = y. For such underdetermined problems, merely minimizing (1)
cannot ensure recovery (in matrix completion or recovery problems) or generalization (in prediction problems).
For example, in a matrix completion problem (without diagonal observations), we can minimize (1) by setting
all non-diagonal unobserved entries to zero, or to any other arbitrary value.

Instead of working on X directly, we will study a factorization X = UU>. We can write (1) equivalently
as optimization over U as,

min
U∈Rn×d

f(U) =
∥∥A(UU>)− y

∥∥2
2
. (2)

When d < n, this imposes a constraint on the rank of X , but we will be mostly interested in the case d = n,
under which no additional constraint is imposed on X (beyond being p.s.d.) and (2) is equivalent to (1).
Thus, if m� n2, then (2) with d = n is similarly underdetermined and can be optimized in many ways —
estimating a global optima cannot ensure generalization (e.g. imputing zeros in a matrix completion objective).
Let us investigate what happens when we optimize (2) by gradient descent on U .

To simulate such a matrix reconstruction problem, we generated m� n2 random measurement matrices
and set y = A(X∗) according to some planted X∗ � 0. We minimized (2) by performing gradient descent
on U to convergence, and then measured the relative reconstruction error ‖X −X∗‖F . Figure 1 shows the
normalized training objective and reconstruction error as a function of the dimensionality d of the factorization,
for different initialization and step-size policies, and three different planted X∗.
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Figure 1: Reconstruction error of the solutions for the planted 50× 50 matrix reconstruction problem. In (a) X∗ is of rank r = 2 and
m = 3nr, in (b) X∗ has a spectrum decaying as O(1/k1.5) normalized to have ‖X∗‖∗ =

√
r‖X∗‖F for r = 2 and m = 3nr, and

in (c) we look at a non-reconstructable setting where the number of measurements m = nr/4 is much smaller than the requirement to
reconstruct a rank r = 2 matrix. The plots compare the reconstruction error of gradient descent on U for different choices initialization
U0 and step size η, including fixed step-size and exact line search clipped for stability (ηELS ). Additonally, the orange dashed reference
line represents the performance of Xgd — a rank unconstrained global optima obtained by projected gradient descent on X space for (1),
and ‘SVD-Initialization’ is an example of an alternate rank d global optima, where initialization U0 is picked based on SVD of Xgd

and gradient descent with small stepsize is run on factor space. The results are averaged across 3 random initialization and (nearly zero)
errorbars indicate the standard deviation.
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First, we see that (for sufficiently large d) gradient descent indeed finds a global optimum, as evidenced
by the training error (the optimization objective) being zero. This is not surprising since with large enough d
this non-convex problem has no spurious local minima (Burer and Monteiro, 2003; Journée et al., 2010) and
gradient descent converges almost surely to a global optima (Lee et al., 2016); there has also been recent work
establishing conditions for global convergence for low d (Bhojanapalli et al., 2016; Ge et al., 2016).

The more surprising observation is that in panels (a) and (b), even when d > m/n, indeed even for d = n,
we still get good reconstructions from the solution of gradient descent with initialization U0 close to zero and
small step size. In this regime, (2) is underdetermined and minimizing it does not ensure generalization. To
emphasize this, we plot the reference behavior of a rank unconstrained global minimizer Xgd obtained via
projected gradient descent for (1) on the X space. For d < n we also plot an example of an alternate “bad"
rank d global optima obtained with an initialization based on SVD of Xgd (‘SVD Initialization’).

When d < m/n, we understand how the low-rank structure can guarantee generalization (Srebro et al.,
2005) and reconstruction (Keshavan, 2012; Bhojanapalli et al., 2016; Ge et al., 2016). What ensures general-
ization when d� m/n? Is there a strong implicit regularization at play for the case of gradient descent on
factor space and initialization close to zero?
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Figure 2: Nuclear norm of the solutions from Figure 1. In addition to the reference of Xgd from Figure 1, the magenta dashed line
(almost overlapped by the plot of ‖U‖F = 10−4, η = 10−3) is added as a reference for the (rank unconstrained) minimum nuclear
norm global optima. The error bars indicate the standard deviation across 3 random initializations. We have dropped the plot for
‖U‖F = 1, η = 10−3 to reduce clutter.

Observing the nuclear norm of the resulting solutions plotted in Figure 2 suggests that gradient descent
implicitly induces a low nuclear norm solution. This is the case even for d = n when the factorization imposes
no explicit constraints. Furthermore, we do not include any explicit regularization and optimization is run
to convergence without any early stopping. In fact, we can see a clear bias toward low nuclear norm even in
problems where reconstruction is not possible: in panel (c) of Figure 2 the number of samples m = nr/4 is
much smaller than those required to reconstruct a rank r ground truth matrix X∗. The optimization in (2)
is highly underdetermined and there are many possible zero-error global minima, but gradient descent still
prefers a lower nuclear norm solution. The emerging story is that gradient descent biases us to a low nuclear
norm solution, and we already know how having low nuclear norm can ensure generalization (Srebro and
Shraibman, 2005; Foygel and Srebro, 2011) and minimizing the nuclear norm ensures reconstruction (Recht
et al., 2010; Candès and Recht, 2009).

Can we more explicitly characterize this bias? We see that we do not always converge precisely to the
minimum nuclear norm solution. In particular, the choice of step size and initialization affects which solution
gradient descent converges to. Nevertheless, as we formalize in Section 3, we argue that when U is full
dimensional, the step size becomes small enough, and the initialization approaches zero, gradient descent will
converge precisely to a minimum nuclear norm solution, i.e. to argminX�0 ‖X‖∗ s.t. A(X) = y.
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3. Gradient Flow and Main Conjecture
The behavior of gradient descent with infinitesimally small step size is captured by the differential equation
U̇t := dUt

dt = −∇f(Ut) with an initial condition for U0. For the optimization in (2) this is

U̇t = −A∗(A(UtU
>
t )− y)Ut, (3)

where A∗ : R
¯
m → Rn×n is the adjoint of A and is given by A∗(r) =

∑
i riAi. Gradient descent can be seen

as a discretization of (3), and approaches (3) as the step size goes to zero.
The dynamics (3) define the behavior of the solution Xt = UtU

>
t and using the chain rule we can verify

that Ẋt = U̇tU
>
t + UtU̇

>
t = −A∗(rt)Xt − XtA∗(rt), where rt = A(Xt) − y is a vector of the residual.

That is, even though the dynamics are defined in terms of specific factorization Xt = UtU
>
t , they are actually

independent of the factorization and can be equivalently characterized as

Ẋt = −A∗(rt)Xt −XtA∗(rt). (4)

We can now define the limit point X∞(Xinit) := limt→∞Xt for the factorized gradient flow (4) initialized at
X0 = Xinit. We emphasize that these dynamics are very different from the standard gradient flow dynamics of
(1) on X , corresponding to gradient descent on X , which take the form Ẋt = −∇F (Xt) = −A∗(rt).

Based on the preliminary experiments in Section 2 and a more comprehensive numerical study discussed
in Section 5, we state our main conjecture as follows:

Conjecture. For any full rank Xinit, if X̂ = limα→0X∞(αXinit) exists and is a global optima for (1) with
A(X̂) = y, then X̂ ∈ argminX�0 ‖X‖∗ s.t. A(X) = y.

Requiring a full-rank initial point demands a full dimensional d = n factorization in (2). The assumption
of global optimality in the conjecture is generally satisfied: for almost all initializations, gradient flow will
converge to a local minimizer (Lee et al., 2016), and when d = n any such local minimizer is also global
minimum (Journée et al., 2010). Since we are primarily concerned with underdetermined problems, we
expect the global optimum to achieve zero error, i.e. satisfy A(X) = y. We already know from these existing
literature that gradient descent (or gradient flow) will generally converge to a solution satisfying A(X) = y;
the question we address here is which of those solutions will it converge to.

The conjecture implies the same behavior for asymmetric problems factorized as X = UV > with gradient
flow on (U, V ), since this is equivalent to gradient flow on the p.s.d. factorization of

[
W X
X> Z

]
.

4. Theoretical Analysis
We will prove our conjecture for the special case where the matrices Ai commute, and discuss the more
challenging non-commutative case. But first, let us begin by reviewing the behavior of straight-forward
gradient descent on X for the convex problem in (1).

Warm up: Consider gradient descent updates on the original problem (1) inX space, ignoring the p.s.d. con-
straint. The gradient direction∇F (X) = A∗(A(X)−y) is always spanned by the m matrices Ai. Initializing
at Xinit = 0, we will therefore always remain in the m-dimensional subspace L = {X = A∗(s)|s ∈ Rm}.
Now consider the optimization problem minX ‖X‖2F s.t. A(X) = y. The KKT optimality conditions for this
problem are A(X) = y and ∃ν s.t. X = A∗(ν). As long as we are in L, the second condition is satisfied,
and if we converge to a zero-error global minimum, then the first condition is also satisfied. Since gradient
descent stays on this manifold, this establishes that if gradient descent converges to a zero-error solution, it is
the minimum Frobenius norm solution.

Getting started: m = 1 Consider the simplest case of the factorized problem when m = 1 with A1 = A
and y1 = y. The dynamics of (4) are given by Ẋt = −rt(AXt + XtA), where rt is simply a scalar,
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and the solution for Xt is given by, Xt = exp (stA)X0 exp (stA) where sT = −
∫ T
0
rtdt. Assuming

X̂ = limα→0X∞(αX0) exists and A(X̂) = y, we want to show X̂ is an optimum for the following problem

min
X�0
‖X‖∗ s.t. A(X) = y. (5)

The KKT optimality conditions for (5) are:

∃ν ∈ Rm s.t. A(X) = y X � 0 A∗(ν) � I (I −A∗(ν))X = 0 (6)

We already know that the first condition holds, and the p.s.d. condition is guaranteed by the factorization of X .
The remaining complementary slackness and dual feasibility conditions effectively require that X̂ is spanned
by the top eigenvector(s) of A. Informally, looking to the gradient flow path above, for any non-zero y, as
α→ 0 it is necessary that |s∞| → ∞ in order to converge to a global optima, thus eigenvectors corresponding
to the top eigenvalues of A will dominate the span of X∞(αXinit).

What we can prove: Commutative {Ai}i∈[m] The characterization of the the gradient flow path from the
previous section can be extended to arbitrary m in the case that the matrices Ai commute, i.e. AiAj = AjAi

for all i, j. Defining sT = −
∫ T
0
rtdt – a vector integral, we can verify by differentiating that solution of (4) is

Xt = exp (A∗(st))X0 exp (A∗(st)) (7)

Theorem 1. In the case where matrices {Ai}mi=1 commute, if X̂ = limα→0X∞(αI) exists and is a global
optimum for (1) with A(X̂) = y, then X̂ ∈ argminX�0 ‖X‖∗ s.t. A(X) = y.

Proof. It suffices to show that such a X̂ satisfies the complementary slackness and dual feasibility KKT
conditions in (6). Since the matrices Ai commute and are symmetric, they are simultaneously diagonalizable
by a basis v1, .., vn, and so is A∗(s) for any s ∈ Rm. This implies that for any α, X∞(αI) given by (7)
and its limit X̂ also have the same eigenbasis. Furthermore, since X∞(αI) converges to X̂ , the scalars
v>k X∞(αI)vk → v>k X̂vk for each k ∈ [n]. Therefore, λk(X∞(αI)) → λk(X̂), where λk(·) is defined as
the eigenvalue corresponding to eigenvector vk and not necessarily the kth largest eigenvalue.

Let β = − logα, then λk(X∞(αI)) = exp(2λk(A∗(s∞(β)))− 2β). For all k such that λk(X̂) > 0, by
the continuity of log, we have

2λk(A∗(s∞(β)))− 2β − log λk(X̂)→ 0 =⇒ λk

(
A∗
(s∞(β)

β

))
− 1− log λk(X̂)

2β
→ 0. (8)

Defining ν(β) = s∞(β)/β, we conclude that for all k such that λk(X̂) 6= 0, limβ→∞ λk(A∗(ν(β))) = 1.
Similarly, for each k such that λk(X̂) = 0,

exp(2λk(A∗(s∞(β)))− 2β)→ 0 =⇒ exp(λk(A∗(ν(β)))− 1)
2β → 0. (9)

Thus, for every ε ∈ (0, 1], for sufficiently large β

exp(λk(A∗(ν(β)))− 1) < ε
1
2β < 1 =⇒ λk(A∗(ν(β))) < 1. (10)

Therefore, we have shown that limβ→∞A∗(ν(β)) � I and limβ→∞A∗(ν(β))X̂ = X̂ establishing the
optimality of X̂ for (5).

Interestingly, and similarly to gradient descent on X , this proof does not exploit the particular form of the
“control" rt and only relies on the fact that the gradient flow path stays within the manifold

M = {X = exp (A∗(s))Xinit exp (A∗(s)) | s ∈ Rm} . (11)

Since the Ai’s commute, we can verify that the tangent space of M at a point X is given by TXM =
Span {AiX +XAi}i∈[m], thus gradient flow will always remain inM. For any control rt such that following
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Ẋt = −A∗(rt)Xt−XtA∗(rt) leads to a zero error global optimum, that optimum will be a minimum nuclear
norm solution. This implies in particular that the conjecture extends to gradient flow on (2) even when the
Euclidean norm is replaced by certain other norms, or when only a subset of measurements are used for each
step (such as in stochastic gradient descent).

However, unlike gradient descent on X , the manifoldM is not flat, and the tangent space at each point is
different. Taking finite length steps, as in gradient descent, would cause us to “fall off" of the manifold. To
avoid this, we must take infinitesimal steps, as in the gradient flow dynamics.

In the case that Xinit and the measurements Ai are diagonal matrices, gradient descent on (2) is equivalent
to a vector least squares problem, parametrized in terms of the square root of entries:

Corollary 2. Let x∞(xinit) be the limit point of gradient flow on minu∈Rn ‖Ax(u)− y‖22 with initialization
xinit, where x(u)i = u2i , A ∈ Rm×n and y ∈ Rm. If x̂ = limα→0 x∞(α~1) exists and Ax̂ = y, then
x̂ ∈ argminx∈Rm+ ‖x‖1 s.t. Ax = y.

The plot thickens: Non-commutative {Ai}i∈[m] Unfortunately, in the case that the matrices Ai do not
commute, analysis is much more difficult. For a matrix-valued function F , d

dt exp(Ft) is equal to Ḟt exp(Ft)

only when Ḟt and Ft commute. Therefore, (7) is no longer a valid solution for (4). Discretizing the solution
path, we can express the solution as the “time ordered exponential":

Xt = lim
ε→0

 1∏
τ=t/ε

exp (−εA∗(rτε))

X0

 t/ε∏
τ=1

exp (−εA∗(rτε))

 , (12)

where the order in the products is important. If Ai commute, the product of exponentials is equal to
an exponential of sums, which in the limit evaluates to the solution in (7). However, since in general
exp(A1) exp(A2) 6= exp(A1 +A2), the path (12) is not contained in the manifoldM defined in (11).

It is tempting to try to construct a new manifoldM′ such that Span {AiX +XAi}i∈[m] ⊆ TXM′ and
X0 ∈ M′, ensuring the gradient flow remains inM′. However, since Ai’s do not commute, by combining
infinitesimal steps along different directions, it is possible to move (very slowly) in directions that are not of
the formA∗(s)X+XA∗(s) for any s ∈ Rm. The possible directions of movements indeed corresponds to the
Lie algebra defined by the closure of {Ai}mi=1 under the commutator operator [Ai, Aj ] := AiAj−AjAi. Even
when m = 2, this closure will generally encompass all of Rn×n, allowing us to approach any p.s.d. matrix X
with some (wild) control rt. Thus, we cannot hope to ensure the KKT conditions for an arbitrary control as we
did in the commutative case — it is necessary to exploit the structure of the residuals A(Xt)− y in some way.

Nevertheless, in order to make finite progress moving along a commutator direction like [Ai, Aj ]Xt +
Xt[Ai, Aj ]

>, it is necessary to use an extremely non-smooth control, e.g., looping 1/ε2 times between ε steps
in the directions Ai, Aj ,−Ai,−Aj , each such loop making an ε2 step in the desired direction. We expect the
actual residuals rt to behave much more smoothly and that for smooth control the non-commutative terms in
the expansion of the time ordered exponential (12) are asymptotically lower order then the direct term A∗(s)
(as Xinit → 0). This is indeed confirmed numerically, both for the actual residual controls of the gradient flow
path, and for other random controls.

5. Empirical Evidence
Beyond the matrix reconstruction experiments of Section 2, we also conducted experiments with similarly
simulated matrix completion problems, including problems where entries are sampled from power-law
distributions (thus not satisfying incoherence), as well as matrix completion problem on non-simulated
Movielens data. In addition to gradient descent, we also looked more directly at the gradient flow ODE (3)
and used a numerical ODE solver provided as part of SciPy (Jones et al., 2001). But we still uses a finite
(non-zero) initialization. We also emulated staying on a valid “steering path" by numerically approximating
the time ordered exponential of 12 — for a finite discretization η, instead of moving linearly in the direction of
the gradient ∇f(U) (like in gradient descent), we multiply Xt on right and left by e−ηA

∗(rt). The results of
these experiments are summarized in Figure 3.
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min
A(X) = y

‖X‖ ∗
ODE approx.
‖U0‖F = 10−4

Time ordered exp.
‖U0‖F = 10−4, η= 0. 1

Gradient descent
‖U0‖F = 10−4, η= 10−3 Xgd

(i) Gaussian random measurements. We report the nuclear norm of the gradient flow solutions from three different approximations to (3)
– numerical ODE solver (ODE approx.), time ordered exponential specified in (12) (Time ordered exp.) and standard gradient descent
with small step size (Gradient descent). The nuclear norm of the solution from gradient descent on X space – Xgd and the minimum
nuclear norm global minima are provided as references. In (a) X∗ is rank r and m = 3nr, in (b) X∗ has a decaying spectrum with
‖X∗‖∗ =

√
r‖X∗‖F and m = 3nr, and in (c) X∗ is rank r with m = nr/4, where n = 50, r = 2.
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(ii) Uniform matrix completion: ∀i, Ai measures a uniform random entry of X∗. Details on X∗, number of measurements, and the
legends follow Figure3-(i).
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(iii) Power law matrix completion: ∀i, Ai measures a random entry of X∗ chosen according to a power law distribution. Details on X∗,
number of measurements, and the legends follow Figure3-(i).

argminA(X)=y ‖X‖∗
Gradient descent
‖U0‖F = 10−3 , η = 10−2

Xgd

Test Error 0.2880 0.2631 1.000

Nuclear norm 8391 8876 20912

(iv) Benchmark movie recommendation dataset — Movielens 100k. The dataset contains ∼ 100k ratings from n1 = 943 users on
n2 = 1682 movies. In this problem, gradient updates are performed on the asymmetric matrix factorization space X = UV > with
dimension d = min (n1, n2). The training data is completely fit to have <10−2 error. Test error is computed on a held out data of 10
ratings per user. Here we are not interested in the recommendation performance (test error) itself but on observing the bias of gradient flow
with initialization close to zero to return a low nuclear norm solution — the test error is provided merely to demonstrate the effectiveness
of such a bias in this application. Also, due to the scale of the problem, we only report a coarse approximation of the gradient flow 3 from
gradient descent with ‖U0‖F = 10−3, η = 10−2.

Figure 3: Additional matrix reconstruction experiments
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In these experiments, we again observe trends similar to those in Section 2. In some panels in Figure 3,
we do see a discernible gap between the minimum nuclear norm global optima and the nuclear norm of the
gradient flow solution with ‖U0‖F = 10−4. This discrepancy could either be due to starting at a non-limit
point of U0, or numerical issue arising from approximations to the ODE, or it could potentially suggest a
weakening of the conjecture. Even if the later case were true, the experiments so far provide strong evidence
for atleast approximate versions of our conjecture being true under a wide range of problems.

Exhaustive search Finally, we also did experiments on an exhaustive grid search over small problems,
capturing essentially all possible problems of this size. We performed an exhaustive grid search for matrix
completion problem instances in symmetric p.s.d. 3× 3 matrices. With m = 4, there are 15 unique masks
or {Ai}i∈[4]’s that are valid symmetric matrix completion observations. For each mask, we fill the m = 4
observations with all possible combinations of 10 uniformly spaced values in the interval [−1, 1]. This gives
us a total of 15× 104 problem instances. Of these problems instances, we discard the ones that do not have
a valid PSD completion and run the ODE solver on every remaining instance with a random U0 such that
‖U0‖F = ᾱ, for different values of ᾱ. Results on the deviation from the minimum nuclear norm are reported
in Figure 4. For small ᾱ = 10−5, 10−3, most of instances of our grid search algorithm returned solutions with
near minimal nuclear norms, and the maximum deviation is within the possibility of numerical error. This
behavior also decays for ᾱ = 1.
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Figure 4: Histogram of relative sub-optimality of nuclear norm of X∞ in grid search experiments. In this figure, we plot the histogram
of ∆(X∞) =

‖X∞‖∗−‖Xmin‖∗
‖Xmin‖∗

, where ‖Xmin‖∗ = min
A(X)=y

‖X‖∗. The three panels correspond to different values of norm of

initialization ᾱ = ‖U0‖F . In (a) ᾱ = 10−5, in (a) ᾱ = 10−3, and in (c) ᾱ = 1.

6. Discussion
It is becoming increasingly apparent that biases introduced by optimization procedures, especially for under-
determined problems, are playing a key role in learning. Yet, so far we have very little understanding of the
implicit biases associated with different non-convex optimization methods. In this paper we carefully study
such an implicit bias in a two-layer non-convex problem, identify it, and show how even though there is no
difference in the model class (problems (1) and (2) are equivalent when d = n, both with very high capacity),
the non-convex modeling induces a potentially much more useful implicit bias.

We also discuss how the bias in the non-convex case is much more delicate then in convex gradient descent:
since we are not restricted to a flat manifold, the bias introduced by optimization depends on the step sizes
taken. Furthermore, for linear least square problems (i.e. methods based on the gradients w.r.t. X in our
formulation), any global optimization method that uses linear combination of gradients, including conjugate
gradient descent, Nesterov acceleration and momentum methods, remains on the manifold spanned by the
gradients, and so leads to the same minimum norm solution. This is not true if the manifold is curved, as using
momentum or passed gradients will lead us to “shoot off” the manifold.
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Much of the recent work on non-convex optimization, and matrix factorization in particular, has focused
on global convergence: whether, and how quickly, we converge to a global minima. In contrast, we address
the complimentary question of which global minima we converge to. There has also been much work on
methods ensuring good matrix reconstruction or generalization based on structural and statistical properties.
We do not assume any such properties, nor that reconstruction is possible or even that there is anything to
reconstruct—for any problem of the form (1) we conjecture that (4) leads to the minimum nuclear norm
solution. Whether such a minimum nuclear norm solution is good for reconstruction or learning is a separate
issue already well addressed by the above literature.

We based our conjecture on extensive numerical simulations, with random, skewed, reconstructible, non-
reconstructible, incoherent, non-incoherent, and and exhaustively enumerated problems, some of which is
reported in Section 5. We believe our conjecture holds, perhaps with some additional technical conditions or
corrections. We explain how the conjecture is related to control on manifolds and the time ordered exponential
and discuss a possible approach for proving it.
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