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Given a collection L of n points on a sphere S2
n of surface area

n, a fair allocation is a partition of the sphere into n parts each
of area 1, and each is associated with a distinct point of L. We
show that, if the n points are chosen uniformly at random and
if the partition is defined by a certain “gravitational” potential,
then the expected distance between a point on the sphere and
the associated point of L is O(

√
log n). We use our result to define

a matching between two collections of n independent and uni-
form points on the sphere and prove that the expected distance
between a pair of matched points is O(

√
log n), which is optimal

by a result of Ajtai, Komlós, and Tusnády.

bipartite matching | allocation | transportation | gravity

Suppose that we are given n points on the unit sphere S2⊂R3.
We would like to partition the sphere into n equally sized

cells, assigning each point to a different cell. How can we make
this partition so that each point is close to the points in the cell
to which it has been assigned? This natural question, known as
the fair allocation problem, has connections to optimal transport
and discretization (or “quantization”) of continuous measures
(1, 2). Allocation is also closely related to the matching prob-
lem, in which n red points and n blue points are chosen from
the sphere (say, independently at random), and our goal is to
pair each red point with a different blue point so as to make
the distances between paired points as small as possible. Min-
imal matching for random points in the plane has generated a
substantial literature in its own right (3–5).∗

We analyze a particular allocation rule called gravitational
allocation and apply it to matchings. Gravitational allocation
is based on treating our n points as wells of a potential func-
tion. The cell allocated to a given point z is then taken to be
the basin of attraction of z with respect to the flow induced
by the negative gradient of this potential. When the potential
takes a particular form that mimics the gravitational potential
of Newtonian mechanics, it is ensured that each cell has area 1
(Fig. 1).

Related Work
The idea of transportation between measures via gradient flows
dates back at least to Dacorogna and Moser (6). However, the
first analysis that we know of concerning the resulting allo-
cation cells was carried out by Nazarov, Sodin, and Volberg
(7), who studied allocation to zeroes of a Gaussian analytic
function.

The term gravitational allocation was introduced by
Chatterjee, Peled, Peres, and Romik (8, 9), who studied fair allo-
cations to a Poisson process in Rd with d ≥ 3. In that setting, they
proved exponential tail bounds on the diameter of a typical cell,
showing that this diameter is of constant order.

The same does not hold when d ≤ 2: it was shown in refs. 10
and 11 that, for translation invariant allocation schemes in R or
R2, the expected allocation distance must be infinite. For this
reason, to understand what happens when d = 2, it helps to con-
sider a finite setting, such as the sphere. Suppose that we take
the scaling where each cell has unit area. Then, it turns out that
the typical allocation distance will need to be of at least order

√
log n , which is also the same asymptotic behavior that is seen

in minimal matching (3). In a recent paper, Ambrosio, Stra, and
Trevisan (12) proved a more precise estimate of log n

4π
for the

expectation of the minimum average squared distance between
random points and the uniform measure, confirming a prediction
of Caracciolo, Lucibello, Parisi, and Sicuro (13).

Other than gravitational allocation, other allocation schemes
have been proposed and analyzed, many based on the Gale–
Shapley stable matching algorithm (11, 14–16).

Formal Definitions and Main Result
Let S2

n ⊂R3 denote the sphere centered at the origin with sur-
face area n , so that we work in the scaling where each cell has
unit area. Let λn denote the surface area measure on S2

n , so that
λn(S2

n) =n .
For any set L⊂S2

n consisting of n points, we say that a mea-
surable function ψ : S2

n→L∪{∞} is a fair allocation of λn to L
if it satisfies the following:

λn(ψ−1(∞)) = 0, λn(ψ−1(z )) = 1, ∀z ∈L. [1]

For z ∈L, we call ψ−1(z ) the cell allocated to z .
Let us now describe gravitational allocation in particular. First,

we define a potential function U : S2
n→R given by

U (x ) =
∑
z∈L

log |x − z |, [2]

where | · | denotes Euclidean distance in R3. For each location
x ∈S2

n , let F (x ) denote the negative gradient of U with respect
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Fig. 1. Gravitational allocation to n uniform and independent points on a
sphere with n = 15, 40, 200, and 750. The basin of attraction of each point
has equal area. The basins become more elongated as n grows, reflecting
Theorem 1. The MATLAB script used to generate the gravitational allocation
figures in this article is based on code written by Manjunath Krishnapur.

to the usual spherical metric (i.e., the one induced from R3). We
can view F (x ) as lying in the plane tangent to S2

n at x (i.e., the
tangent space), so that F is a vector field on S2

n .
Second, we consider the flow induced by F . For any x ∈S2

n ,
let Yx (t) denote the integral curve that solves the differential
equation

dYx

dt
(t) =F (Yx (t)), Yx (0) = x . [3]

By standard results about ordinary differential equations, the
curve Yx (t) can be defined up until some maximal time τx (pos-
sibly τx =∞). In fact, τx will be finite for all x ,† because by
flowing along F , Yx will eventually fall into one of the wells of
the potential U (i.e., one of the points in L) (Fig. 2).

We thus define the basin of attraction of z ∈L as

B(z ) =

{
x ∈S2

n : lim
t↑τx

Yx (t) = z

}
[4]

(i.e., the set of points that will eventually flow into z ). We then
define the gravitational allocation function to be

ψ(x ) =

{
z if x ∈B(z ) for z ∈L,
∞ if x /∈

⋃
z∈L B(z ).

[5]

It turns out that ψ indeed defines a fair allocation of λn to L,
so that each B(z ) has area 1. Before explaining why this is the
case, let us first state our main result.

Theorem 1. Let n ≥ 2 be a positive integer. Consider any x ∈S2
n ,

and let L⊂S2
n be a set of n points chosen uniformly and inde-

pendently at random from S2
n . Then, there is a constant C > 0

such that
E|ψ(x )− x | ≤C

√
log n. [6]

†Except for a set of measure zero.

More generally, for any p> 0, there is a constant Cp > 0 depending
only on p such that

E|ψ(x )− x |p ≤Cp(log n)p/2. [7]

Why Is Gravitational Allocation a Fair Allocation?
The reader may find it somewhat surprising that the basins of
attraction in gravitational allocation always have equal areas,
even if a point in L is crowded by many other points in L (Fig.
3). As seen in Fig. 3, the surrounded point will still attract certain
faraway points, so that its basin of attraction still has total area 1.

We give two explanations for this phenomenon. Both explana-
tions rely on the fact that our potential U satisfies the Poisson
equation

∆SU (x ) =−2π+ 2π
∑
z∈L

δz ,

where ∆S denotes the spherical Laplacian (i.e., the Laplace–
Beltrami operator on S2

n).
The first explanation is based on the divergence theorem.

Consider any z ∈L and its cell B(z ). Since B(z ) is a basin of
attraction, F must be parallel to B(z ) along its boundary. We
can then apply the divergence theorem‡ to obtain

0 =−
∫
∂B(z)

F · nds =

∫
B(z)

divF dλn

=

∫
B(z)

∆SUdλn = 2π− 2πλn(B(z )).

It follows that λn(B(z )) = 1 as desired.
The second explanation is slightly longer, but it also provides

a more detailed understanding of the flow under F . Imagine the
surface area measure λn as representing the density of grains
of sand uniformly distributed on the sphere. The sand is flowing
along F , so that a grain of sand at x will be moved to location
Yx (t) after time t .

In a small time ε, the net change in the density of sand at a
point x ∈S2

n will be approximately

−ε divF (x ) = ε∆SU (x ) =−2πε+ 2πε
∑
z∈L

δz (x ).

Thus, the density is decreasing everywhere at a uniform rate,
except at points of L, where sand is accumulating (at the same
rate for each point). Integrating this over time, the density of
sand at a time t will be given by

λn,t : =e−2πtλn + (1− e−2πt)
∑
z∈L

δz .

We find that limt→∞ λn,t =
∑

z∈L δz , so that the amount of sand
at each point in L tends to one. Consequently, the area of each
basin of attraction must have been one.

Proof Outline of the Main Theorem
The proof of Theorem 1 is based on estimating the magnitude of
the gradient force F . In the previous section, we saw that, after
time t , all but a e−2πt proportion of the sphere will have reached
one of the points in L, and therefore, the average time that it

‡Assuming various smoothness properties, which we do not justify here.
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Fig. 2. Illustration of Yx , B(z), and ψ(x) for x∈ S2
n and z∈L.

takes for a point to flow into a potential well is
∫∞
0

e−2πt dt =
1/2π. We can also estimate the average distance traveled in a
similar way:∫

S2n

∫ τx

0

|F (Yx (t))| dt dλn(x ) =

∫ ∞
0

∫
S2n\L

|F (x )| dλn,t(x ) dt

=

∫ ∞
0

e−2πt

∫
S2n

|F (x )| dλn(x ) dt

=
1

2π

∫
S2n

|F (x )| dλn(x ). [8]

It remains to estimate the average magnitude of F (x ), which is
given by the following lemma.

Lemma 2. Fix any x ∈S2
n . Then, E|F (x )|=O(

√
log n), where

the expectation is taken over the randomness of L.
Taking expectations in Eq. 8 and then integrating Lemma 2

over all x ∈S2
n proves Theorem 1 in the case p = 1. Larger val-

ues of p can be handled in the same spirit, but it requires more
involved estimates for F that we do not reproduce here (ref. 17
has details).

Proof : Let Uz (x ) = log |x − z | and Fz (x ) =∇SUz (x ), so that
U (x ) =

∑
z∈LUz (x ) and F (x ) =

∑
z∈L Fz (x ). Thus, Fz (x ) rep-

resents the contribution to F (x ) coming from the point
z ∈L.

To estimate F (x ), it is convenient to decompose into the con-
tributions of nearby and faraway points in L. For our purposes,
“near” means points within the spherical cap of radius 1 around
x , which we denote by B(x , 1). Then, we may write

F (x ) =

Fnear(x)︷ ︸︸ ︷∑
z∈L∩B(x ,1)

Fz (x ) +

Ffar(x)︷ ︸︸ ︷∑
z∈L\B(x ,1)

Fz (x ) . [9]

When |z − x |= r , an explicit computation shows that |Fz (x )|
is of order 1/r . It is also not hard to calculate that the expected
number of points in L with distance from x that is between r and
r + dr is of order r dr . By the triangle inequality, we can estimate
Fnear as

E|Fnear(x )| ≤E
∑

z∈L∩B(x ,1)

|Fz (x )|=
∫
B(x ,1)

|Fy(x )| dy

=O

(∫ 1

0

1

r
· (r dr)

)
=O(1). [10]

To estimate the far term, the triangle inequality is too weak,
because we expect much cancellation between the Fz (x ). In fact,
by symmetry, we have E[Ffar(x )] = 0. Thus, we instead estimate
the second moment

E|Ffar(x )|2 = E
∑

z∈L\B(x ,1)

|Fz (x )|2 =

∫
S2n\B(x ,1)

|Fy(x )|2 dy

=O

(∫ √n

1

1

r2
(r dr)

)
=O(log n). [11]

Combining Eqs. 9–11 yields

E|F (x )| ≤E|Fnear(x )|+
√

E|Ffar(x )|2 =O(
√

log n),

which is the bound claimed in Lemma 2.

A Heuristic Picture
Lemma 2 also provides a good heuristic proof of Eq. 7. We
know by Lemma 2 that, for a typical point x , we have F (x ) =
O(
√

log n), and moreover, our above analysis suggests that the
value of F (x ) is dominated by contributions from faraway points.
Thus, we expect that direction and speed of travel for x under the
flow induced by F will remain relatively constant.

However, x will not travel forever in this way; suppose that
it passes within O(1/

√
log n) distance of a point z ∈L. Then,

the contribution Fz (x ) from z to the overall “force” F will be
of order

√
log n , which may overpower the contribution from all

other points, causing x to fall into the potential well at z .
Consider a strip of width 1/

√
log n around the path of x (Fig.

4). If there is a point z ∈L in this strip, then it is likely to “swal-
low” x (i.e., x will be allocated to z ). The probability that any
given region contains no points of L decays exponentially in its
area, which suggests the heuristic

P
(
x travels distance at least r

√
log n

)
≈P

(
no points of L in a strip of area roughly
r
√

log n · (1/
√

log n) = r

)
≈ e−r ,

giving Eq. 7, because |ψ(x )− x | is bounded above by the distance
traveled by x .

From Allocations to Matchings
We now turn to the connection between fair allocations and
optimal matchings. Suppose that A= {a1, . . . , an} and B=
{b1, . . . , bn} are two sets of n points in S2

n . A matching from A
to B is a bijective function ϕ :A→B. Recall that the matching

Fig. 3. The center point is surrounded by seven other nearby points (Left).
Nevertheless, it turns out that its basin of attraction (light blue; Right) can
slip past its neighbors in certain places.
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Fig. 4. The speed F is mainly determined by points far away and is approx-
imately constant in large regions, except very near points of L. A typical
point, therefore, travels in an approximately straight line until it gets within
distance O(1/

√
log n) of some point in L.

problem is to find the matching that minimizes the total distance
between matched points.

When the points of A and B are drawn uniformly at random,
the asymptotic behavior of the minimal matching distance was
identified by Ajtai, Komlós, and Tusnády (3), who proved the
following theorem.

Theorem 3 (Ajtai–Komlós–Tusnády). Suppose that A and B
each consist of n points drawn uniformly and independently at
random from [0,

√
n]2. Let

dmatch(A,B) = min
ϕ:A→B
bijective

1

n

∑
a∈A

|ϕ(a)− a|.

Then, there are constants C1,C2> 0 for which

lim
n→∞

P
(
C1

√
log n ≤ dmatch(A,B)≤C2

√
log n

)
= 1. [12]

It turns out that the average displacement of a fair alloca-
tion gives an upper bound on the matching distance, as the next
proposition shows.

Proposition 4. LetA,B⊂S2
n be two sets of n points, and let ψA

and ψB be fair allocations of λn to A and B, respectively. Then,
there exists a matching ϕ :A→B such that

∑
a∈A

|a −ϕ(a)| ≤
∫

S2n

|x −ψA(x )|dλn(x ) +

∫
S2n

|x −ψB(x )|dλn(x ).

[13]

Remark 5: Consider the case whereA and B are drawn uniformly
at random, and suppose that we use gravitational allocation for
ψA and ψB in Proposition 4. Then, the p = 1 case of Theorem
1 implies that the right-hand side of Eq. 13 has expectation of
order n

√
log n . Comparing with Theorem 3, this implies that the

asymptotic rate of
√

log n in Theorem 1 is the best possible up to
a constant factor. By Eq. 8, we also get that E|F (x )| is at least of
order

√
log n for any fixed x ∈S2

n .
The triangle inequality for the linear Wasserstein distance jus-

tifies why we can pass from an allocation to a matching, but we
choose to describe the connection explicitly. Let Ai =ψ−1

A (ai)

denote the cell allocated to ai , and similarly, let Bi =ψ−1
B (bi).

Consider the n ×n matrix M = (Mij )
n
i,j=1 given by

Mij =λn(Ai ∩Bj ).

We see that M is a doubly stochastic matrix:

n∑
j=1

Mij =

n∑
j=1

λn(Ai ∩Bj ) =λn(Ai) = 1,

n∑
i=1

Mij =

n∑
i=1

λn(Ai ∩Bj ) =λn(Bj ) = 1.

By the Birkhoff–von Neumann theorem (ref. 18, theorem 5.5),
any doubly stochastic matrix is a convex combination of permu-
tation matrices. For a permutation σ, we write Pσ to denote the
corresponding permutation matrix, so that Pσij = 1 if j =σ(i) and
Pσij = 0 otherwise. Then, we may write

M =

N∑
k=1

ckP
σk , [14]

where ck are nonnegative numbers summing to one and σk are
permutations.

Let X be chosen uniformly at random from S2
n . Observe

that nP[X ∈Ai ∩Bj ] =Mij and that |ψA(X )−ψB(X )|= |ai −
bj | on the event X ∈Ai ∩Bj . By Eq. 14 and this observation,

min
σ

n∑
i=1

n∑
j=1

Pσij |ai − bj | ≤
n∑

i=1

n∑
j=1

Mij |ai − bj |

=nE|ψA(X )−ψB(X )|. [15]

By the triangle inequality, the right side of Eq. 15 is bounded
above by the right side of Eq. 13, which implies Proposition 4.

Online Matching
One can also consider an “online” version of the matching prob-
lem, in which we initially see only the points in B, and we are
given the points inA= {a1, a2, . . . , an} one by one. As soon as ai
is revealed to us, we must immediately match it to a point ϕ(ai)
in B (that has not already been matched). In particular, we make
this decision without knowing the locations of the remaining
points in A.

There is a natural online matching algorithm using gravita-
tional allocation. When a point ak is revealed, let B′ be the set
of points in B that have not yet been matched. We then consider
the gravitational allocation ψB′ to B′ and match ak to ψB′(ak ).

The analysis of this procedure is particularly simple if the
points of A and B are sampled uniformly and independently at
random. Consider what happens when we pair the first point a1.
According to Theorem 1, the expected distance between a1 and
its pair is bounded by

E|a1−ϕ(a1)|= E|a1−ψB(a1)| ≤C
√

log n.

Since ψB gives a fair allocation and the first point a1 is drawn
uniformly at random, each of the points in B is an equally likely
match for a1 under our scheme. It follows that the remaining
points B \ {ϕ(a1)} will still be distributed uniformly and inde-
pendently at random. Thus, we have reduced the problem to
matching two sets of n − 1 independent random points on S2

n

after incurring a cost of C
√

log n for matching the first pair
(Fig. 5).

We may iterate this analysis for each point in A. When we
receive ak , there will be m : =n − k + 1 remaining unpaired
points in B (still uniformly distributed), so that a typical distance

Fig. 5. Illustration of the online matching algorithm. The set B \ϕ(a1)
consists of n− 1 uniform and independent points on the sphere S2

n of
area n.
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in gravitational allocation will be O
(√

n/m · logm
)
, where the

factor
√

n/m comes from rescaling S2
m to S2

n . Thus,

n∑
k=1

E|ak −ϕ(ak )| ≤
n∑

m=2

O
(√

n/m · logm
)

≤O(
√

n log n)

n∑
m=2

1√
m

=O(n
√

log n),

which shows that, even in the online setting, one has similar
asymptotics as in Theorem 3.

We remark that our online matching algorithm can be imple-
mented efficiently using the well-known “fast multipole method”
introduced by Rokhlin (19) and Greengard and Rokhlin (20).
This entails precomputing estimates of the gravitational poten-
tial from clusters of points in B, and these computations can be
reused as new points of A are introduced.

Gravitational Allocation for Other Point Processes
So far, we have focused on the setting where our n points on
S2
n are taken independently at random. However, one may also

analyze other random point processes where the points are not
independent, which allows them to be distributed more evenly
over the sphere.

One example is given by the roots of a certain Gaussian
random polynomial. Specifically, we look at the polynomial

p(z ) =

n∑
k=0

ζk

√
n(n − 1) · · · (n − k + 1)√

k !
z k ,

where ζ1, . . . , ζn are independent standard complex Gaussians.
The roots λ1, . . . ,λn of p are then n random points in the com-
plex plane, which we can bring to the sphere via stereographic
projection. More explicitly, let x0 = (0, 0, 1). The function

P : z 7→
√

n

4π

(
x0 +

2(z − x0)

|z − x0|2

)
maps the horizontal plane in R3 to S2

n . Then, viewing the λk as
lying in the horizontal plane,

L= {P(λk )}nk=1

is a rotationally equivariant random set of n points on S2
n .

[The rotational equivariance comes from the particular choice
of coefficients for p (ref. 21, chapter 2.3).]

Heuristically, the points of L are distributed more evenly than
independent uniformly random points, because roots of ran-
dom polynomials tend to “repel” each other (Fig. 6). This can
be quantified as follows. Let ψ : S2

n→L be the gravitational
allocation. Then, we claim that

1

n
E
∫

S2n

|x −ψ(x )|dλn(x ) =O(1). [16]

To prove this, by Eq. 8 and rotational symmetry, it suffices to
show that E|F (x )|=O(1) for any point x ∈S2

n . It is convenient
to pick x = (0, 0,−

√
n/4π). Then, in the notation of the Proof of

Lemma 2, we may calculate that

Fλk (x ) =

√
π

n
· λ̄−1

k ,

Fig. 6. A simulation of gravitational allocation to the zeroes of a Gaussian
random polynomial. The cells are evenly proportioned, in contrast with the
more elongated shapes seen in Fig. 1.

where we interpret the complex number on the right-hand side
as a 2D vector. Thus, we have

F (x ) =

√
π

n

n∑
k=1

λ̄−1
k =

√
π

n
· ζ̄1 ·

√
n

ζ̄0 · 1
=
√
π · ζ̄1

ζ̄0
,

which gives a simple expression for F in terms of two indepen-
dent complex Gaussians. Taking expectations of the magnitude,
we obtain

E|F (x )|=
√
πE
|ζ̄1|
|ζ̄0|

=
π
√
π

2
,

which establishes Eq. 16.

Open Problems
We conclude by describing two other matching algorithms for
which we do not know a precise analysis.

First, one may consider a dynamic electrostatic version of grav-
itational allocation. Suppose that the points inA (B) are positive
(negative) and that points of different (similar) kinds attract
(repulse) each other. After some time, it seems that each point
in A will collide with a point in B, forming a matching. What
will be the average distance between the original positions of
matched pairs?

Second, in the online matching problem, instead of match-
ing each new point ak to a point in B according to gravi-
tational allocation, suppose that we simply match ak to the
closest point in B that has not been matched already. Alter-
natively, we can reveal A and B simultaneously and iteratively
match closest pairs of points. In other words, we choose i , j ∈
{1, . . . ,n} such that |ai − bj | is minimized, we define ϕ(ai) = bj ,
and we repeat with the sets A\{ai} and B \ {bj}. What will
be the average matching distance in these settings? In the lat-
ter setting, ref. 16, theorem 6 suggests an upper bound for the
matching distance of

∫√n

0
r−0.496... dr = Θ(n0.252...). Can this be

improved?
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