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Abstract—The performance of broadband millimeter-wave
(mmWave) RF architectures, is generally determined by math-
ematical concepts such as the Shannon capacity. These systems
have also to obey physical laws such as the conservation of energy
and the propagation laws. Taking the physical and hardware
limitations into account is crucial for characterizing the actual
performance of mmWave systems under certain architecture
such as analog beamforming. In this context, we consider a
broadband frequency dependent array model that explicitly
includes incremental time shifts instead of phase shifts between
the individual antennas and incorporates a physically defined
radiated power. As a consequence of this model, we present a
novel joint approach for designing the optimal waveform and
beamforming vector for analog beamforming. Our results show
that, for sufficiently large array size, the achievable rate is
mainly limited by the fundamental trade-off between the analog
beamforming gain and signal bandwidth.

Index Terms—Large antenna array, millimeter-wave, analog
beamforming, directivity-bandwidth trade-off.

I. INTRODUCTION

The millimeter wave (mmWave) band offers a much higher

available bandwidth which is a key ingredient for enabling

high data rates in next-generation mobile cellular systems [1]–

[4]. Due to the required high number of antennas [4]–[6] to

compensate for the low SNR per antenna element, this tech-

nology creates several challenges at the same time, particularly

in terms of hardware complexity. Analog processing based on

phase shifters and the more general hybrid architecture [1]

are widely considered techniques for reducing the hardware

complexity. The objective of having large bandwidth and large

antenna gain simultaneously requires a careful performance

analysis that is consistent with the physical limitations. In

fact, as an important part of such communication system is

governed by electromagnetic theory and by antenna theory,

a pure mathematical treatment of communication systems

without consistent link to physical quantities such as radiated

power might be questionable.

The importance of using wave-theoretic or circuit based

models for antennas arrays has been investigated in some

previous and recent works dealing mainly with the narrowband

case [7]–[10]. Thereby, the impact of antenna spacing and

coupling on the information theoretic results of multiple an-

tenna systems has been studied with a circuit based definition

of power in [8]–[10]. An insightful and general connection

between electromagnetic wave theory and information theory

in terms of number of degrees of freedom for the signal

waveform is provided in [11], [12]. In State-of-the art research

on the performance of mmWave systems with analog beam-

forming, however, generally lacks methodologies for deriving

information theoretic results in accordance to wave-theoretic

aspects and under certain hardware restrictions. In fact, it

is known in the classical antenna theory that there is a

fundamental trade-off between the maximal achievable gain

and achievable bandwidth [13], [14]. These classical results,

however, do not consider the effect of analog processing and

do not provide a simple information-theoretic interpretation.

In this paper, we study the fundamental limits of analog

transmit beamforming that is common across frequency

given a certain radiated power. To this end, we adopt a

broadband array model including delay shifts between the

antenna elements [15]. We define the radiated power by

the surface integral of the squared field over a sphere

enclosing the antenna array [14]. The total radiated power

plays an important role for the design of such mmWave

systems not only from energy efficiency point of view but

also due to regulatory restrictions and interference issues.

As a consequence, the spatial precoding and the temporal

waveform generation are coupled and cannot be considered

independently. Therefore, we formulate a rate maximization

problem under a certain total radiated power constraint

assuming analog beamforming under single-path channel

condition. The optimization parameters are jointly the spatial

beamforming vector and the spectral shape. The combined

wave-theoretic and information theoretic analysis reveals

a fundamental directivity-bandwidth trade-off limiting the

achievable rate with analog beamforming. It shows that, for

sufficiently large array size, the maximal achievable capacity

is mainly limited by the frequency independent analog

beamforming rather than the actual number of antennas. This

finding constitutes a clear indication towards maintaining

a separate RF chain for each antenna to fully exploit the

potential of very large antenna arrays.

II. SYSTEM AND CHANNEL MODEL

We consider a single-user mmWave system, where a trans-

mitter and a receiver are communicating via a single stream

using analog beamforming. We focus in this paper on the trans-
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Fig. 1. Analog beamforming architecture at the transmitter.
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Fig. 2. Radiation intensity as function of the azimuth angle and frequency for
a circular array, N ∈ {3, 16}. Smaller beamwidth implies smaller bandwidth.

mitter side. We assume that the receiver perfectly selects its

beam in the dominant line-of-sight (LOS) or non-LOS (NLOS)

direction. The beamforming gain at the receiver is then simply

considered as part of the channel. The beamforming at the

transmitter as illustrated in Fig. 1 is performed with N antenna

elements in the analog domain subject to a certain total

radiated power constraint while the temporal signal shaping

is done in the digital domain. Due to the angular selectivity of

the receiver, the resulting channel transfer function including

the receive beamforming is approximately described in the

frequency domain by single dominant LOS or NLOS path

from the point

h(f) = αca(θc, ϕc, f), (1)

where αc is the path coefficient (including path phase and

strength), a(θc, ϕc, ω) is the far-field array impulse response

for the azimuth and elevation angles-of-departure (AoD)

θc and ϕc in a spherical coordinate system as a function

of the frequency f . The single-path assumption is made

for simplicity only, and is not essential to our purpose of

studying the limitations of analog beamforming. Further,

we adopt a frequency dependent array response, which

we refer to as the broadband array model. Note that the

terminology “narrowband”’ or “broadband” refers here to

the frequency behavior of the antenna response and not to

the propagation channel, which is assumed to be flat. Even

when the individual antenna response is frequency flat, the

frequency dependency of the array response might still result

from the group delays between these elements. This fact is

often neglected in the literature, where only phase shifts are

taken into account to describe a frequency flat array response.

The broadband array model is however more appropriate

in the context of mmWave systems as the array size might

become electrically larger than the total group delay. In other

words, denoting the signal bandwidth by B and the maximal

array size by D, the narrowband condition B·D
c ≪ 1 (c:

speed of light) is generally unjustified in mmWave systems

with large array size and bandwidth of several GHz.

For a uniform linear array (ULA) of hypothetical isotropic

antennas with element spacing d in wavelengths at the center

frequency fc and dimension N , the broadband frequency re-

sponse in the passband assuming all the frequencies propagate

with the same speed is [15]

a(f, θ)T=
[

1, · · ·, e−j2πd cos(θ)n f
fc , · · · , e−j2πd cos(θ)(N−1) f

fc

]

,

(2)

where fc is the center frequency of the occupied band

[fmin, fmax] = [fc − B/2, fc + B/2], i.e., fc = (fmin +
fmax)/2. The term d cos(θ) f

fc
accounts for the time shift

between adjacent antennas in the frequency domain and cannot

be approximated by just a phase shift (with f/fc ≈ 1) if

N · (fmax − fmin)/fc 6≪ 1 as explained earlier.

In analog beamforming, the transmitter applies a pulse

shaping filter p0(f) in the digital domain and a frequency

independent beamforming vector b0 in the analog domain to

the data signal. Both yield the following structured spatial-

temporal processing vector

b(f) = b0 · p0(f). (3)

In other words, the analog precoding part is common over the

entire bandwidth and cannot be adapted over the frequency.

The restriction of the analog beamforming vector b0 to be

frequency independent is for practical reasons and constitutes

the major constraint in terms of performance as shown later.

In addition to the frequency independence, the vector b0 is

usually subject to a constant modulus constraint due to the

implementation using phase shifters. As we are interested

in information and wave theoretical performance limits, this

design constraint is not taken into account.

Considering a single-carrier system with the channel vector

from (1), then the received signal in the frequency domain can

be described as

ỹ(f) = αca(f, θc, ϕc)
T
b(f)x̃(f) + z̃(f), (4)

with the information signal x̃(f) having unit power spectral

density and the noise z̃(f) having the constant power

spectral density N0. The state of the art design of b(f)
has mainly evolved from the standard SISO approach,

where the waveform generation through p0(f) and the

spatial beamforming through b0 are considered separately.

In particular, b0 is commonly chosen as the conjugate of

the array response evaluated at the center frequency and

the desired angular direction, i.e., b0 ∝ a(fc, θc, ϕc)
∗. This

method might be not optimal for broadband large antenna

arrays due to frequency selective nature of the antenna array



that leads to a coupled temporal and spatial behavior and a

trade-off between bandwidth and antenna gain. As example,

Fig. 2 shows the resulting total response of a circular array

and its corresponding analog beamformer, i.e., the radiation

pattern, |a(f, θ)Tb0|2 designed at 60 GHz and θc = 90◦ for

sizes N = 3 and N = 16. We observe that the beamwidth and

also bandwidth decrease simultaneously with the number of

antenna, in accordance to classical results from antenna theory.

Another important physical quantities is the radiated power.

The total radiated power plays an important role for the

design of such mmWave systems not only from energy ef-

ficiency point of view, but also due to regulatory restrictions.

Additionally, the radiated power at these frequencies is also

limited compared to the sub-6 GHz frequencies because the

implementation of efficient power amplifiers is quite chal-

lenging and costly at mmWave1. Due to conservation of

energy, the radiated power is defined by the surface integral

of the radiation intensity |a(f, θ, ϕ)Tb0p0(f)|2 over a sphere

enclosing the antenna array in the far field [16]

fmax
∫

fmin

1

4π

π
∫

0

2π
∫

0

∣

∣a(f, θ, ϕ)Tb(f)
∣

∣

2
sin θ dϕ dθ df ≤ PR. (5)

A very common, but physically not necessarily consistent,

definition of radiated power is based on the squared norm of

the beamforming vector
∫

‖b(f)‖2df . This is equivalent to

the physical definition in (5) only for the narrowband case

with exactly half-wavelength antenna spacing [8].

Based on the above facts and considerations, we formulate

in the next section the joint digital waveform and analog

beamforming optimization in terms of achievable rate.

III. ACHIEVABLE RATE MAXIMIZATION UNDER ANALOG

BEAMFORMING

As a consequence of the coupling between the temporal

and angular response in the broadband array model (2), the

goals of concentrating the signal in space (beamforming)

and frequency (pulse shaping) should be considered jointly.

The joint spatio-temporal spectral confinement is essential to

characterize the actual achievable rate of the analog hard-

ware architectures. Therefore, we formulate the following rate

maximization problem under a certain total radiated power

constraint assuming analog beamforming under the single-path

transmission assumption:

1Other radiation properties such as the EIRP are also restricted by regula-
tion, which might also limit the maximal authorized antenna gain. This will
not be taken into account as we are interested in the physical limitations.

max
b(f)=b0p0(f)

fmax
∫

fmin

log2

(

1 +
1

N0

∣

∣αca(f, θc, ϕc)
T
b(f)

∣

∣

2
)

df

s.t.

fmax
∫

fmin

1

4π

π
∫

0

2π
∫

0

∣

∣a(f, θ, ϕ)Tb(f)
∣

∣

2
sin θ dϕ dθ df ≤ PR.

(6)

The optimization parameters are the spatial beamforming vec-

tor b0 and the shaping filter p0(f). In the following, we restrict

the analysis to the ULA case in (2) and we reformulate the

problem in terms of angular-temporal spectrum. Particularly,

we exploit the Vandermonde structure of the array response in

(2) to interpret the quantity a(f, θc)
T
b0 as the discrete Fourier

transform (DFT) transform of the vector elements in b0. In

other words, we define the power spectrum density S0(f) after

the digital processing and the angular spectrum G(cos θc · f)
representing the analog processing part, using the substitutions

G(cos θ · f) = |a(f, θ)Tb0|2,
S0(f) = |p0(f)|2,

(7)

Further, we assume an infinite number of antennas, as we

are interested in the performance limits. Having unlimited

number of antennas with half-wavelength spacing d = 1/2, we

can relax the angular spectral form G(·) to be arbitrarily, but

periodic with period 2fc (and satisfying the Dirichlet Fourier

series conditions). Thus, we can obtain the asymptotic and

simplified formulation with infinite array size

max
b(f)

fmax
∫

fmin

log2

(

1 +
1

N0
G(cos θc · f)S0(f)

)

df s.t.

fmax
∫

fmin

1

2

π
∫

0

G(cos θ · f)S0(f) sin θ dθ df ≤ PR,

G(cos θ · f) ≥ 0, S0(f) ≥ 0, ∀f, ∀θ.

(8)

The optimization problem (8) is non-convex due to the bilinear

form G(cos θ · f)S0(f) and difficult to solve in general. We

provide instead the optimal solution for S0(f) given G(cos θ ·
f) and vice-versa. We introduce first the Lagrangian function

for the case S0(f) > 0 and G(cos θ · f) > 0

L(G(·), S0(·), µ)=
fmax
∫

fmin

log2

(

1 +
G(cos θc · f)S0(f)

N0

)

df

−µ







fmax
∫

fmin

1

2

π
∫

0

G(cos θ · f)S0(f) sin θ dθ df − PR






,

(9)

with the Lagrangian variable µ. For fixed G(cos θ · f), the

capacity-achieving S0(f) obtained by the KKT conditions



follows from the well-known water-filling power allocation

strategy over the frequency [17]

S0(f)=
N0

αc









1

µ
2

π
∫

0

G(cos θ · f) sin θdθ
− 1

G(cos θc · f)









+

,

(10)

for fmin ≤ f ≤ fmax, where µ is determined by the maximum

power constraint in (8) and (a)+ = max(a, 0).

Next, we consider the reverse case with fixed S0(f) and

optimized G(cos θ ·f). To this end, we rewrite the Lagrangian

function (9) using the substitutions Ω = cos θ ·f and u = cos θ
in a different way

L(G(·), S0(·), µ)=
fmax
∫

fmin

log2

(

1 +
G(cos θc · f)S0(f)

N0

)

df−

µ









2fc
∫

0

G(Ω) +G(2fc − Ω)

2

min( Ω
fmin

,1)
∫

min( Ω
fmax

,1)

S0(
Ω
u )

u
dudΩ− PR









,

(11)

where we made use of the periodicity of the function G(Ω)
and the symmetry of the cosine function. The KKT condition

corresponding to the maximization with respect to G(cos θc·f)
is obtained from the differential of (11) as follows

αc

N0
S0(f)

1 + αc

N0
G(cos θc · f)S0(f)

− µ

2

min( cos θc·f
fmin

,1)
∫

min( cos θc·f
fmax

,1)

S0(
cos θc·f

u )

u
du

−µ

2

min( 2fc−cos θc·f
fmin

,1)
∫

min( 2fc−cos θc·f
fmax

,1)

S0(
2fc−cos θc·f

u )

u
du = 0,

(12)

which can be solved with respect to G(cos θc · f) in closed

form. In the following we consider the solution for some

particular cases in terms of θc.

A. Solution around broadside of the ULA

If cos θ ≤ fmin/fmax, then cos θ · fmax ≤ fmin and 2fc −
cos θ · fmax ≥ 2fc − fmin = fmax. Therefore (12) simplifies

to

αc

N0
S0(f)

1 + αc

N0
G(cos θc · f)S0(f)

− µ

2

cos θc·f
fmin
∫

cos θc·f
fmax

S0(
cos θc·f

u )

u
du = 0.

(13)

We obtain then the optimal solution for G(·) given S0(·)

G(cos θc·f) =
N0

αc

















µ

2

cos θc·f
fmin
∫

cos θc·f
fmax

S0(
cos θc·f

u )

u
du









−1

− 1

S0(f)









+

.

(14)

For the particular case of constant spectrum S0(f) across

the entire bandwidth B, we deduce the following preposition.

Preposition 1. If cos θc ≤ fmin/fmax, then the following an-

gular and temporal spectral shapes provide a local minimum

or a saddle point for the maximization (8)

S0(f) =
PR

B
, (15)

G(cos θc · f) =
1

| cos θc| log
√

fmax

fmin

, (16)

for fmin ≤ f ≤ fmax, and zero otherwise. In other words,

a spatio-temporal shape G(cos θ · f)S0(f) which is flat over

the bandwidth B = fmin − fmax and a certain frequency

dependent beamwidth satisfying cos θc · fmin ≤ cos θ · f ≤
cos θc · fmax is a potential optimal solution.

Proof. Since flat (constant) S0(f) and G(cos θ · f) can be

shown to satisfy simultaneously the solutions for the alternat-

ing maximization (10) and (14), they solves the joint KKT

conditions and are therefore potential joint maximizers of the

achievable rate.

Preposition 1 implies that the maximum antenna gain ob-

tained with flat spectrum is, except for θc = ±π/2 (broadside),

finite regardless of the number of antennas and can maximally

reach the value in (16). As example, consider a base station

antenna configuration with a given sector size of ±60◦ around

the broadside operating in the 27.5-28.35 GHz band (intended

for 5G [2]), then the ULA gain is given by

Gmax,ULA,28 GHz =
1

| cos 60◦| log
√

28.35
27.5

≈ 21.2dB.
(17)

Higher frequency bands with larger bandwidth, for instance at

60 GHz might be limited by even lower maximum flat gain.

Deploying other antenna configurations such as planar array

can, however, improves this gain substantially.

B. Solution in the end-fire direction of the ULA

The end-fire direction θc = 0 is a limiting case that

produces the maximal delay between the antennas. We expect

therefore a more severe trade-off between antenna gain and

bandwidth. In the narrowband case, however, it is known that

the antenna gain might scale superlinearly with the number

of antennas [8], [18]. This phenomenon called “super-gain”

occurs at element spacing smaller than half-wavelength and

requires low-loss antennas and narrowband operation [19].

Here, we aim instead at analyzing the broadband case with

half-wavelength antenna spacing. To this end, we assume a

flat temporal spectrum S0(f) = PR/B across the available



bandwidth B = fmax − fmin and solve (12) for θc = 0 in

terms of G(·). The solution reads as

G(f) =
BN0

αcPR









µ

log

(

fmax√
f(2fc−f)

) − 1









+

, (18)

where µ is chosen to satisfy the radiated power constraint in

(8). Hence, the resulting radiation pattern is not flat as in the

previous case, and leads to the following achievable rate in

bit/s

Rend−fire =

fmax
∫

fmin

(

log2 µ− log2 log

(

fmax
√

f(2fc − f)

))

+

df.

(19)

In the following section, we consider some numerical ex-

amples to illustrate the behavior of the data rate for both cases

and at different frequency bands.

IV. NUMERICAL EXAMPLE

We apply our results from the previous section to the

two widely-considered mmWave bands at 28 GHz with

27.5 GHz ≤ f ≤ 28.35 GHz, and 60 GHz with 57 GHz ≤
f ≤ 66 GHz. We choose two possible directions at θc = 60◦

(30◦ apart from broadside) and θc = 60◦ (end-fire). For

θc = 60◦, we have cos θc ≤ fmin/fmax for both bands

and we can apply the results from Sub-section III-A, while

for θc = 0◦ we use the results from Sub-section III-B. The

achievable rate with analog beamforming and infinite number

of antennas is depicted in Fig. 3 versus the carrier-to-noise

density ratio (C/N) αcPR/N0. As expected, the achievable rate

in the end-fire direction is lower than around the broadside.

More interestingly, the 60 GHz band is more affected by the

trade-off between bandwidth and beamwidth particularly in the

low C/N regime and the larger bandwidth cannot be exploited

efficiently. In fact, the 60 GHz band performs even worse than

the 28 GHz when the entire available bandwidth is used at low

C/N values. For this reason, we consider the optimization of

the achievable rate based on the results from Preposition 1

with respect to the bandwidth B = fmax − fmin that should

be used for the 60 GHz band, given θc and αcPR, i.e.,

max
B≤2fc

1−cos θc
1+cos θc

R = B log2



1 +
PR

BN0| cos θc| log
√

fc+B/2
fc−B/2



 .

The results of this optimization are shown in Fig. 4 for

θc = 60◦ and fc = 60 GHz. The figure illustrates that

the optimal bandwidth is sensitive to the C/N level and

scales similarly to the rate. These observations apply for other

mmWave frequency bands as well.

V. CONCLUSION

We showed that analog beamforming with common coeffi-

cients across the frequency has a limited capacity regardless

of the number of antennas. This limitation results from the

fundamental trade-off between bandwidth and beamwidth of
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Fig. 3. Achievable rate vs. the carrier-to-noise density ratio (C/N) with analog
beamforming for the 28 GHz and 60 GHz bands. The 60 GHz band has lower
achievable rate at small C/N despite the much larger bandwidth, which is due
to the bandwidth-beamwidth trade-off.
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Fig. 4. Optimal bandwidth and achievable rate for fc = 60 GHz and
θc = 60

◦ vs. the carrier-to-noise density ratio (C/N) with flat spectral. Large
bandwidth is only meaningful for sufficiently high C/N.

the resulting radiation pattern. The analysis reveals that larger

bandwidth is not necessary beneficial for the achievable rate

due the reduced antenna gain attained by analog beamforming.

Consequently, the joint design of temporal and spatial signal

shape becomes a key for achieving the best trade-off. As

future work, we aim at considering hybrid precoding and other

antenna configurations to mitigate this limitation.
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