
Applications of Online Nonnegative Matrix
Factorization to Image and Time-Series Data
Hanbaek Lyu

Department of Mathematics
University of California

Los Angeles, CA 90025
hlyu@math.ucla.edu

Georg Menz
Department of Mathematics

University of California
Los Angeles, CA 90025

gmenz@math.ucla.edu

Deanna Needell
Department of Mathematics

University of California
Los Angeles, CA 90025
deanna@math.ucla.edu

Christopher Strohmeier
Department of Mathematics

University of California
Los Angeles, CA 90025

c.strohmeier@math.ucla.edu

Abstract—Online nonnegative matrix factorization (ONMF) is
a matrix factorization technique in the online setting where data
are acquired in a streaming fashion and the matrix factors are
updated each time. This enables factor analysis to be performed
concurrently with the arrival of new data samples. In this article,
we demonstrate how one can use online nonnegative matrix
factorization algorithms to learn joint dictionary atoms from
an ensemble of correlated data sets. We propose a temporal
dictionary learning scheme for time-series data sets, based on
ONMF algorithms. We demonstrate our dictionary learning
technique in the application contexts of historical temperature
data, video frames, and color images.

I. INTRODUCTION

In the last few decades, the quantity of data available and the
need to effectively exploit this data have grown exponentially.
At the same time, modern data also presents new challenges in
its analysis for which new techniques and ideas have become
necessary. Many of these techniques may be classified as
topic modeling (or dictionary learning), which aim to extract
important features of a complex dataset so that one can
represent the dataset in terms of a reduced number of extracted
features, or topics. One of the advantages of topic modeling-
based approaches is that the extracted topics are often directly
interpretable, as opposed to the arbitrary abstractions of deep
neural networks.

Matrix factorization provides a powerful setting for dimen-
sionality reduction and dictionary learning problems. In this
setting, we have a data matrix X ∈ Rd×n, and we seek a
factorization of X into the product WH for W ∈ Rd×r

and H ∈ Rr×n (see Figure 1). Hence each column of the
data matrix is approximated by the linear combination of the
columns of the dictionary matrix W with coefficients given
by the corresponding column of the code matrix H . This
problem has been extensively studied under many names each
with different constraints: dictionary learning, factor analysis,
topic modeling, component analysis. It has also found applica-
tions in text analysis, image reconstruction, medical imaging,
bioinformatics, and many other scientific fields more gener-
ally [SGH02, BB05, BBL+07, CWS+11, TN12, BMB+15,
RPZ+18].

In today’s data world, large companies, scientific instru-
ments, and healthcare systems are collecting massive amounts
of data every day so that an entire data matrix is hardly

available at any single time. Online matrix factorization is a
matrix factorization problem in the online setting where data
are accessed in a streaming fashion and the matrix factors
are updated each time. This enables factor analysis to be
performed concurrently with the arrival of new data samples.

𝑑

𝑛

𝑑

𝑟 𝑛

𝑟 ×
≅ 𝑋 𝑊

𝐻

Dictionary Code Data

Dictionary

NMF

≈

Sample sq. patches

Code

×

1 2 3

4

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

1
2
3
4

1 2 3 4

Graph Matrix Pixel picture

of sq. patches sampled

(rank-r basis)

 𝑘

 𝑘ଶ

 𝑘

Fig. 1: Illustration of matrix factorization. Each column of the
data matrix is approximated by the linear combination of the
columns of the dictionary matrix with coefficients given by
the corresponding column of the code matrix.

In this article, we demonstrate three application contexts
of matrix factorization algorithms, namely, historical temper-
ature data, color images, and video frames. In doing so, we
demonstrate how one can use matrix factorization techniques
to learn joint dictionary atoms from an ensemble of correlated
data sets. In the case of historic temperature data, we show
that the online-learned joint dictionaries reveal key features
of dependence between temperatures of four cities (LA, SD,
SF, and NYC), which we use to “in-paint” missing data
in one city by inferring from observed data in other cities.
By a suitable matricization, we learn a small number of
dictionary patches from a color image and reconstruct the
original image from this low-rank image basis. The same
procedure, used in conjunction with a convolutional neural
network for classifying image patches, enables us to restore
color to a grayscale image. Lastly, for video frames, we
compare dictionary frames learned from “offline” and online
matrix factorization algorithms and show that they capture
different features of the video frames. By factorizing along
the time dimension, we also demonstrate that one can detect
a significant temporal change in the dataset using matrix
factorization algorithms.

ar
X

iv
:2

01
1.

05
38

4v
1

 [
cs

.L
G

]
 1

0
N

ov
 2

02
0

II. DICTIONARY LEARNING BY ONLINE NONNEGATIVE
MATRIX FACTORIZATION

In this section, we describe a dictionary learning algorithm
based on online nonnegative matrix factorization.

A. Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a variant of
matrix factorization where one seeks find two smaller matrices
whose product approximates a given nonnegative data matrix.
Below we give an extension of NMF with extra sparsity con-
straint on the code matrix, which is often used for dictionary
learning problems. Given a data matrix X ∈ Rd×n

≥0 , the goal is
to find nonnegative dictionary W ∈ Rd×r and code matrices
H ∈ Rr×n by solving the following optimization problem:

inf
W∈Rd×r

≥0
, H∈Rr×n

≥0

‖X −WH‖2F + λ‖H‖1, (1)

where ‖A‖2F =
∑

i,j A
2
ij denotes the matrix Frobenius norm

and λ ≥ 0 is the L1-regularization parameter for the code
matrix H .

A consequence of the nonnegativity constraints is that
one must represent the data using the dictionary W without
exploiting cancellation. In practice, this forces the learned
atoms to be “atomic,” or localized. A famous comparison
was presented in [LS99]. There, the authors apply PCA and
NMF to (vectorized) images of human faces. The (matricized)
learned dictionary atoms from PCA resembled entire faces,
while the matricized dictionary atoms from NMF resembled
parts of faces, edges, etc. Furthermore, by enforcing a sparsity
constraint on the code matrix, the learned dictionary elements
have to appear sparsely in approximating each column of
the data matrix. To make the dictionary components more
localized and reduce the overlaps between them, one can also
enforce sparseness on the dictionary matrix [Hoy04] in the
optimization problem for NMF as in (1).

Many efficient iterative algorithms for NMF are based on
block optimization schemes that have been proposed and stud-
ied, including the well-known multiplicative update method by
Lee and Seung [LS01] (see [Gil14] for a survey).

Algorithm 1 NMF by Multiplicative Updates

Input: W0, H0,K
for k = 1, ...,K do

Update code:
Hk+1

ij ← Hk
ij

((Wk)TX)ij
((Wk)TWkHk)ij

Update dictionary:
W k+1

ij ←W k
ij

(X(Hk+1)T)ij
(WkHk+1((Hk+1)T))ij

end for

B. Online Nonnegative Matrix Factorization

Online Matrix Factorization (OMF) is an optimization
problem where given a sequence (Xt)t≥0 of data matrices,
one seeks to find sequence of dictionary and code matrices
(Wt, Ht)t≥0 which asymptotically minimizes a loss function
of choice. If we have the additional nonnegativity constraint

on the factors, the resulting problem is called the Online
Nonnegative Matrix Factorization (ONMF).

One of the most fundamental ideas in many algorithms for
OMF is empirical loss minimization. Roughly speaking, the
idea is to choose Wt−1 be to the minimizer of an empirical
loss function up to time t− 1, and when the new data matrix
Xt arrives, we find an improved dictionary Wt in response
to the empirical loss up to time t. However, as the empirical
loss function is usually nonconvex and difficult to optimize,
many successful algorithms for OMF exploit techniques such
as block optimization, convex relaxation, and majorization-
minimization. Below we present one of the most well-known
OMF algorithms proposed in [MBPS10]. The superscript of
matrices in the algorithm below denotes iterates.

Algorithm 2 Online Nonnegative Matrix Factorization

Input: W0, λ
for t = 1, ..., T do

Update sparse code:
Ht = argmin

H≥0
||Xt −Wt−1H||2F + λ||H||1

Aggregate data:
At =

1
t ((t− 1)At−1 +HtH

T
t)

Bt =
1
t ((t− 1)Bt−1 +HtX

T
t)

Update dictionary:
Wt = argmin

W≥0

1
2 tr(WAtW

T)− tr(BtW)

end for

Rigorous convergence guarantees for online NMF algo-
rithms have been obtained in [MBPS10] for independent and
identically distributed input data. Recently, convergence guar-
antees of online NMF algorithms have been established when
the data matrices have hidden Markov dependence [LNB19],
ensuring further versatility of NMF based topic modeling from
input sequences generated by Markov Chain Monte Carlo
algorithms.

A simple computation reveals that the minimization problem
in the update of the dictionary W equivalant to the more
intuitive problem,

Wt = argmin
W≥0

1

t

t∑
s=1

||Xs −WHs||2F + λ||Hs||1

where the objective function is a convex upper bounding
surrogate of the corresponding empirical loss function. In
practice, there is critical difference: the latter optimization
problem requires one to have access to all of the data up to
time t in order to obtain Wt, while the former only needs the
“aggregation matrix” of the data and the data sample Xt. This
property of the formulation of the algorithm is what enables
ONTF to deal with the data size, acquisition, and evolution
problems mentioned in the introduction.

We comment on a related important contrast between NMF
and ONMF. While the NMF algorithm in the last subsection
was essentially symmetric in the update of the dictionary
and code for λ = 0, this is far from true in the ONMF

algorithm. This is intuitive: in ONMF, one attempts to learn
a fixed dictionary that can well-model all data in expectation.
However one particular data sample generally has little to do
with another, and so there is no reason for their respective
codes to be similar.

III. TIME-SERIES APPLICATION

In this section, we apply ONMF to time-series data for
online dictionary learning and online reconstruction. We will
be using the online nature of the dictionary learning algorithm
there.

Suppose we observe a single numerical value xs ∈ R at each
discrete time s. By adding a suitable constant to all observed
values, we may assume that xs ≥ 0 for all s ≥ 0. Fix integer
parameters k,N, r ≥ 0. Suppose we only store N past data
at any given time, due to a memory constraint. So at time t,
we hold the vector Dt = [xt−N+1, xt−N+2, · · · , xt] in our
memory. The goal is to learn dictionary patterns of k-step
evolution from the observed history (xs)0≤s≤t up to time t.
A possible approach is to form a k by N − k+1 data matrix
Xt, whose ith column consists of the k consecutive values of
Dt starting from its ith coordinate. We can then factorize this
into k by r dictionary matrix W and r by t−k code matrices
using an NMF algorithm:

Xt =


xt−N+1 xt−N+2 · · · xt−k+1

xt−N+2 xt−N+3 · · · xt−k+2

...
...

...
...

xt−N+k xt−N+k+1 · · · xt

 ≈WH. (2)

This approximate factorization tells us that we can represent
any k-step evolution from our past data (xs)t−N<s≤t approx-
imately by a nonnegative linear combination of the r columns
of W . Hence the columns of W can be regarded as dictionary
patterns for all k-step time evolution patterns in our current
dataset Dt at each time t.

In order to extend the above ‘temporal dictionary learning’
scheme into an online setting, we apply the ONMF algorithm
given in Subsection II-B. This only requires us to store
additional aggregate matrices At ∈ Rr×r and Bt ∈ Rr×d. We
denote the resulting dictionary matrix at time t as Wt. Then
the r columns of Wt are temporal dictionary for all k-step
evolution in the time series (xs)0≤s≤t up to time t.

Lastly, we can further extend the above online temporal
dictionary learning scheme for a collection of time-series data.
We explain this in a concrete context. We analyze the historical
monthly temperature (measured in Fahrenheit) data of four
cities – Los Angeles (LA), San Diego (SD), San Francisco
(SF), and New York City (NYC), which is published as part
of the NOAA online weather data (NOWData) [Sta]. The time
period of our data set spans the years 1944-2020, a total of
869 months. At each time step 0 ≤ t ≤ 868, we obtain four
numerical values for the average monthly temperatures from
the four cities, which we denote as a four-dimensional column
vector [LA(t), SD(t), SF (t), NY C(t)]T . Instead of applying
our online temporal dictionary learning scheme separately for
each city, we stack the resulting data matrices from the time

series from each city vertically and form a joint data matrix
at each time t. We use the parameters k = 6, N = 50, and
r = 16. Then we can learn a sequence (Wt)t≥0 of 4k by r
dictionary matrices using the ONMF algorithm. We plot the
last dictionary W868 after a suitable reshaping, which gives us
16 joint temporal dictionary elements as shown in Figure 2.

Fig. 2: 16 joint temporal dictionary elements learned from
the average monthly temperature of LA, SD, SF, and NYC
during years 1944-2020. Each element indicates a fundamental
pattern in the 6-month joint evolution of the temperatures in
the four cities.

The online-learned joint temporal dictionary elements
shown in Figure 2 reveal an interesting dependency structure
between the temperature evolution of the four cities. For
instance, LA and SD (blue and red) evolve almost in synchrony
with a small amplitude. On the other hand, NYC (black) has
a larger amplitude and has a mostly positive correlation with
LA and SD. Lastly, SF (yellow) has an intermediate amplitude
with a negative correlation between LA and SD.

One way to evaluate the accuracy of learned dictionary
patterns is to use them to reconstruct the original dataset, as
shown in Figure 3. Here for each time t, we reconstruct the 6-
step (6-month) joint time evolution vector vt during the period
[t−5, t] using the online-learned joint dictionary Wt from the
observe data up to time t. This can be easily done by obtaining
the best coefficient matrix H such that ‖vt−WtH‖+λ‖H‖1
is minimized, which is a convex quadratic problem. Then the
product WtH gives the reconstruction for vt. We take the
time-t-coordinates from this reconstruction to get the four red
curves in Figure 3, plotted on top of the original temperature
data in blue.

We emphasize that there is no a priori training. Initial dic-
tionary matrix W0 is completely random, but we progressively
learn better dictionary matrix Wt over time. Also, we remark
that for the three cities SD, SF, and NYC, there are several

Fig. 3: (Blue) Plot of historical average monthly temperature (measured in Fahrenheit) data of four cities Los Angeles (LA),
San Diego (SD), San Francisco (SF), and New York City (NYC). Missing entries are coded as 0 ◦F. (Red) Online-reconstructed
data using online-learned joint temporal dictionary.

missing entries, which were coded as -100 ◦F. For a plotting
purpose, we have modified these missing entries to 0 ◦F, which
are shown as horizontal bars in the blue curve at height 0
in Figure 3. Our reconstruction (red) matches the original
data (blue) accurately for the observed entires. Furthermore,
we used a modified reconstruction algorithm so that we only
approximate observed entries, and use the resulting linear
coefficients to “fill-in” the missing entries using our joint
dictionary. The result indicates that we can use our online joint
dictionary learning to inferring missing entries in our dataset,
purely based on learning the dependency structure.

IV. VIDEO APPLICATION

In the previous section, we applied ONMF to two important
problems in image processing which did not use any particular
advantage of the algorithm, which serves to demonstrate its
utility. In this section, we turn to applications of ONMF to
video processing. It is here that the sequential nature of the
ONMF algorithm enforces a qualitatively different structure
on the learned dictionary atoms when compared to standard
offline NMF.

We now describe our experiment. Our data consisted of a
grayscale video of a candle, which consisted of 75 time frames.
Each time frame was represented by an 80 x 30 matrix of pixel
intensities.

We reshaped our data by vectorizing each time frame and
then concatenating these vectors to form a single 2400 x 75
data matrix of pixel intensities. We applied an alternating least
squares-based offline NMF to learn four dictionary elements.

Next, we applied ONMF in natural way: each vectorized time
frame corresponded to a new data sample. Again we learned
four dictionary elements, which were then matricized and
displayed in 4.

Additionally, we plotted the dictionaries learned by ONMF
up to various time frames and displayed the results. This
reveals an interesting, and intuitive, illustration of how ONMF
uncovers temporal structure in the video. In particular, like
the candle in the video moves, initially trivial atoms one by
one become nontrivial, and adopt the shape of a particular
configuration of the candle, e.g. left, center, right. When one
plots the full evolution of the learned dictionaries, once the
basic patterns have been established we empirically observe
that when the candle is in a certain configuration at a particular
time frame, only the atom with the corresponding config-
uration exhibits any significant update. By the end of the
learning process, the final atoms look like superpositions of
small perturbations of a single configuration (e.g. the second
atom resembles a superposition of right configurations, the
fourth atom resembles a superposition of left configurations).
The results are displayed in 5.

Lastly, we apply NMF to the video frame along the temporal
dimension to learn the dictionary for time evolution. This
will enable us to detect a temporally significant change in
the video frame through the learned dictionary elements. To
explain our simulation setup, first recall that the candle video
frame is stored as an 80 x 30 x 75 tensor, where the last
dimension corresponds to time. By flattening the first two
spatial dimensions, this video frame can be represented as

Fig. 4: Candle Video Dictionaries. The first dictionary consists
of four elements and was trained by an alternating least
squares-based, offline NMF, the second dictionary below was
trained using ONMF, where each time frame of the video
represented a new data point.

a 2400 x 75 matrix. In the previous experiments, we have
factorized this data matrix using NMF and ONMF algorithms.
Here, we take the transpose of this data matrix so that the
dimension of 75 x 2400 correspond to [time x space]. We
generate another video frame with the same size and length
using white noise and concatenate with the candle video.
Altogether, we form a data matrix X of shape 150 x 2400,
where the first 75 rows are coming from the candle video, and
the last 75 are from white noise.

Next, we approximately factorize the data matrix X into
WH using an NMF algorithm, where W is of shape 150
x 5. This factorization tells us that each column of X ,
which corresponds to the time evolution of a single pixel
for 150 frames, can be approximated by a nonnegative linear
combination of the 5 columns of W . Hence the columns of
W give a dictionary for the time evolution of each of the
2400 pixels in the video frame. Since we have planted a
significant change between times 75 and 76, these five time-
evolution dictionary elements should be able to detect this
“phase transition” in our video. Indeed, as in Figure 6, all
five columns of W (shown as rows) exhibit significant change
between frames 75 and 76, as expected. Furthermore, the first
halves of the third and last dictionary elements in Figure
6 contains information on the time evolution for the candle
video, which disappears after the phase transition at frame 76.
This is also expected since a basis for time evolution in the
candle video should not contain meaningful information for

Fig. 5: Candle video and learned dictionary at various time
frames (time goes from top to bottom). The left column
corresponds to the actual video frame. The remaining four
columns each correspond to a particular dictionary element.
The six rows correspond to different time frames, 1, 5, 7, 15,
35, and 75

the frames generated by white noise.

V. ONMF FOR COLOR IMAGE PROCESSING

In this section, we describe how ONMF can be applied to
the two important image processing problems.

First, a quick introduction to patch-based image processing.
A typical e.g. jpeg grayscale image may be represented by a
matrix of unsigned integers with values between 0 and 255,
representing the intensity. Lower values correspond to black,
higher values to white. Color images may be stored similarly:

Fig. 6: Learning time evolution dictionary from a video frame using NMF. The first and last 75 frames of the video are from a
candle video and white noise, respectively, as shown below. By an approximate factorization of shape [time x space] = [time
x 5] [5 x space], we learn 150 x 5 dictionary matrix, whose columns give an approximate basis for the time evolution of each
pixel of the video frame. The learned time evolution dictionaries detect the planted ‘phase transition’ between frames 75 and
76.

to each of the three color channels red, blue and green, there
corresponds an analogous matrix of color intensities.

In general, images may contain thousands of pixels, so
working with the full image directly can be computationally
infeasible, even when using online algorithms. Thankfully, one
can achieve success on various image processing applications,
such as compression, denoising, and impainting, by taking
a “patch-based” approach. The idea is to extract (typically,
overlapping) small patches, usually of size in the range 8× 8
to 30 × 30 pixels. One may apply some procedures to each
patch and recover the full image by patch averaging.

A. Color Image Compression

In this subsection, we describe how one can utilize ONMF
to implement a patch-based approach to image compression.
These applications do not leverage any particular advantage
of ONMF compared to other nonnegative matrix factorization
algorithms, but serve to illustrate its versatility. However, in the
video processing application we will have seen that ONMF can
produce qualitatively distinct dictionaries compared to those
obtained from standard offline nonnegative matrix factoriza-
tion algorithms.

First, we consider the patch-based compression of images.
The motivation for the approach presented here is as follows.
A typical image, in its uncompressed form, is very high
dimensional. Indeed, images of moderate size may contain
thousands to millions of pixels. Thankfully, most real-world
images are sufficiently regular to enable a substantial reduction
in the effective dimension. For instance, while it is true that
an image of a clear sky may contain a large number of pixels,
there is little variation in this image, and so intuitively one may
expect a representation by an object of dimension far lower
than the number of pixels to be possible (indeed, a single blue
image patch ought to suffice).

One of the most popular ways of exploiting the regularity
of natural images is through the use of small image patches.
The general scheme is to first learn a collection of relatively
few “atomic image patches” through some dictionary learning

algorithms such as KSVD or NMF. One then may then imple-
ment one’s application of choice, e.g. compression, denoising,
inpainting, to some collection of overlapping small image
patches that cover the full image. Finally, one can recover
a full-size image through patch averaging.

We now describe in more detail how we used ONMF
to compress color images. ONMF sequentially receives data
and updates the learned dictionary to effectively model new
data samples. In our implementation, a single data sample
will consist of a matrix whose columns consist of vectorized
color image patches. For instance, we may select 1000 20
x 20 color image patches so that our data sample is a 1200
x 1000 matrix. The first 400 entries of the jth column are
obtained by extracting the red channel of the jth image patch
and vectorizing along the first axis. The next 400 entries
are analogously obtained from the blue channel and the final
400 from the green channel. We may then apply ONMF as
described in section II with some number of data samples.
Figure 7 displays the results of ONMF applied to a famous
painting.

We comment that for quality compression, it is often nec-
essary to use the significant overlap of patches. Too small
overlap can lead to a certain “blockiness” of the recovered
image. For more information, consult the references [Juv17],
[AES17], [Ela10].

B. Color Restoration

Next, we describe how ONMF can be used in conjunction
with convolutional neural networks to approach the problem
of restoring color to grayscale images.

Color restoration without additional qualification of the term
“restoration” is an ill-posed problem. Indeed, any sensible
conversion from color to grayscale images is necessarily lossy.
That said, of primary interest, are real-world images. For the
sake of concreteness, one may have an old black and white
photograph of a landscape, and wish to restore color to this
photo. It is reasonable to assume a great degree of similarity
between elements of old and recent photographs. Naturally

Fig. 7: Image Compression Via ONMF. (Top) uncompressed
image of Leonid Afremov’s famous painting “Rain’s Rus-
tle.” (Middle) 25 of the 100 learned dictionary elements,
reshaped from their vectorized form to color image patch
form. (Bottom): Painting compressed using a dictionary of 100
vectorized 20×20 color image patches obtained from 30 data
samples of ONMF, each consisting of 1000 randomly selected
sample patches. We used an overlap length of 15 in the patch
averaging for the construction of the compressed image.

Fig. 8: Color Restoration. (First) Original image of grass
and sand. (Second) Conversion of first image using Mat-
lab’s default (linear) color to grayscale conversion function,
rgb2gray. (Third) Restored color image, obtained by apply-
ing our method to the second (grayscale) image using the
dictionary below. (Fourth) The first row displays the grass
dictionary, the second row displays the sand dictionary. Each
dictionary contains five 10 x 10 color image patches. These
were trained on our ONMF with 20 batches of 1000 randomly
selected sample patches each. We used maximal patch overlap
in the restoration process.

occurring objects like grass, water, mountains, etc. look similar
regardless of period. Thus the following idea suggests itself:
learn a “landscape dictionary,” trained on color images of
modern landscapes, and use this dictionary to restore color
to the grayscale landscape image.

One way to attempt the color restoration process is to take
the landscape dictionary of color image patches and convert
said patches to grayscale. There are many ways of doing so,
but it is important to choose a linear conversion. With this
dictionary of grayscale patches, one can use nonnegative least
squares to approximate the image patches of the black and
white landscape photo we wish to restore. The key idea is to
use the coefficients in the representation by grayscale patches
to form a color image patch using the corresponding color im-
age dictionary elements. The linearity of the conversion from
color to grayscale which produced the grayscale dictionary
patches ensures that this procedure is consistent.

For this color restoration algorithm to be successful, it
is necessary that in the above representation of an arbitrary
grayscale image patch of the black and white photo, only
(grayscale conversions of) the color landscape dictionary ele-
ments associated with this patch make a significant contribu-
tion. For example, if a grayscale image patch to be restored is
extracted from a grass portion of the image, one would hope
that ocean, mountain, cloud, etc. patches do not contribute.
This may seem plausible at first, since the textures of all of
these objects vary significantly, and so one might hope that
in general only grayscale conversions of color grass image
patches are used to represent black and white grass image
patches. Unfortunately, this is not the case.

There are many difficulties in using a pure dictionary
learning-based approach to color restoration. On one hand,
images may abruptly change from pixel to pixel between
different components of an image, e.g. the transition from
mountain to sky. This suggests that one needs to use relatively
small image patches, perhaps of size 10 x 10 or smaller, to
avoid “mountain patches” spilling into the sky portion of the
image or vise-versa. On the other hand, if there is any hope
for the necessary condition for the success of color restoration
that different components of the black and white image may
be identified despite their absence of color, one needs e.g.
spatial features such as texture to distinguish grass from other
components. For small very image patches, these features are
difficult to detect. One can see from the dictionary atoms
in both of our color image patch dictionaries that there is
little textural information. Even larger image patches exhibit
this problem: the low-rank approximation of arbitrary image
patches enforces a degree of “generality” in the few dictionary
atoms learned to represent said patches and thus finer details
like texture are obscured.

On the other hand, dictionary learning has its advantages.
It takes relatively little data to learn an effective dictionary
for tasks such as compression, and even color restoration of
monochromatic objects. Motivated by this, we approached the
color restoration problem in two stages. The first stage is to
classify grayscale image patches of the black and white image
to which we wish to restore color. Once the patch has been
classified, we can use an appropriate dictionary of color image
patches to restore color. For example, to restore color to black
and white photos of landscapes, one may train a convolutional
neural network to classify grayscale image patches as derived

from grass, cloud, sky, mountain, water, etc. One can then
train separate color image patch dictionaries corresponding to
each of these elements.

We implemented this approach in a simple example of
an image of grass juxtaposed with sand. The results of our
algorithm are displayed in 8. We comment that extensions of
this idea like those described above are possible, although they
require more effort.

VI. CONCLUSION

In this paper, we have presented various applications of
ONMF to image and video processing as well as to the analysis
of time-series. Our experiments demonstrate both the utility of
ONMF on applications of general interest as well as the special
insights its online nature can reveal in sequential data.

ACKNOWLEDGMENTS

Needell and Strohmeier were partially supported by NSF
CAREER #1348721 and NSF BIGDATA #1740325.

REFERENCES

[AES17] Monagi H Alkinani and Mahmoud R El-Sakka,
Patch-based models and algorithms for image
denoising: a comparative review between patch-
based images denoising methods for additive
noise reduction, EURASIP Journal on Image and
Video Processing 2017 (2017), no. 1, 1–27.

[BB05] Michael W Berry and Murray Browne, Email
surveillance using non-negative matrix factoriza-
tion, Computational & Mathematical Organization
Theory 11 (2005), no. 3, 249–264.

[BBL+07] Michael W Berry, Murray Browne, Amy N
Langville, V Paul Pauca, and Robert J Plem-
mons, Algorithms and applications for approxi-
mate nonnegative matrix factorization, Computa-
tional statistics & data analysis 52 (2007), no. 1,
155–173.

[BMB+15] Rostyslav Boutchko, Debasis Mitra, Suzanne L
Baker, William J Jagust, and Grant T Gullberg,
Clustering-initiated factor analysis application
for tissue classification in dynamic brain positron
emission tomography, Journal of Cerebral Blood
Flow & Metabolism 35 (2015), no. 7, 1104–1111.

[CWS+11] Yang Chen, Xiao Wang, Cong Shi, Eng Keong
Lua, Xiaoming Fu, Beixing Deng, and Xing Li,
Phoenix: A weight-based network coordinate sys-
tem using matrix factorization, IEEE Transactions
on Network and Service Management 8 (2011),
no. 4, 334–347.

[Ela10] Michael Elad, Sparse and redundant representa-
tions: from theory to applications in signal and
image processing, Springer Science & Business
Media, 2010.

[Gil14] Nicolas Gillis, The why and how of nonnegative
matrix factorization, Regularization, optimization,

kernels, and support vector machines 12 (2014),
no. 257, 257–291.

[Hoy04] Patrik O Hoyer, Non-negative matrix factorization
with sparseness constraints, Journal of machine
learning research 5 (2004), no. Nov, 1457–1469.

[Juv17] Markus Juvonen, Patch-based image representa-
tion and restoration, 2017.

[LNB19] Hanbaek Lyu, Deana Needell, and Laura Balzano,
Online matrix factorization for markovian data
and applications to network dictionary learning,
arXiv preprint arXiv:1911.01931 (2019).

[LS99] Daniel D Lee and H Sebastian Seung, Learning
the parts of objects by non-negative matrix fac-
torization, Nature 401 (1999), no. 6755, 788–791.

[LS01] , Algorithms for non-negative matrix fac-
torization, Advances in neural information pro-
cessing systems, 2001, pp. 556–562.

[MBPS10] Julien Mairal, Francis Bach, Jean Ponce, and
Guillermo Sapiro, Online learning for matrix fac-
torization and sparse coding, Journal of Machine
Learning Research 11 (2010), no. Jan, 19–60.

[RPZ+18] Bin Ren, Laurent Pueyo, Guangtun Ben Zhu,
John Debes, and Gaspard Duchêne, Non-negative
matrix factorization: robust extraction of extended
structures, The Astrophysical Journal 852 (2018),
no. 2, 104.

[SGH02] Arkadiusz Sitek, Grant T Gullberg, and Ronald H
Huesman, Correction for ambiguous solutions in
factor analysis using a penalized least squares
objective, IEEE transactions on medical imaging
21 (2002), no. 3, 216–225.

[Sta] United States, Noaa online weather data (now-
data): Interactive data query system : public fact
sheet., Washington, D.C. : National Oceanic and
Atmospheric Administration.

[TN12] Leo Taslaman and Björn Nilsson, A framework
for regularized non-negative matrix factorization,
with application to the analysis of gene expression
data, PloS one 7 (2012), no. 11, e46331.

	I Introduction
	II Dictionary learning by online Nonnegative Matrix Factorization
	II-A Nonnegative Matrix Factorization
	II-B Online Nonnegative Matrix Factorization

	III Time-series application
	IV Video Application
	V ONMF for Color Image Processing
	V-A Color Image Compression
	V-B Color Restoration

	VI Conclusion

