
A Novel Tampering Attack on AES Cores with
Hardware Trojans

Ayush Jain, and Ujjwal Guin
Dept. of Electrical and Computer Engineering, Auburn University

Emails: {ayush.jain, ujjwal.guin}@auburn.edu

Abstract—The implementation of cryptographic primitives in
integrated circuits (ICs) continues to increase over the years due
to the recent advancement of semiconductor manufacturing and
reduction of cost per transistors. The hardware implementation
makes cryptographic operations faster and more energy-efficient.
However, various hardware attacks have been proposed aiming to
extract the secret key in order to undermine the security of these
primitives. In this paper, we focus on the widely used advanced
encryption standard (AES) block cipher and demonstrate its
vulnerability against tampering attack. Our proposed attack
relies on implanting a hardware Trojan in the netlist by an
untrusted foundry, which can design and implement such a
Trojan as it has access to the design layout and mask information.
The hardware Trojan’s activation modifies a particular round’s
input data by preventing the effect of all previous rounds’ key-
dependent computation. We propose to use a sequential hardware
Trojan to deliver the payload at the input of an internal round
for achieving this modification of data. All the internal subkeys,
and finally, the secret key can be computed from the observed
ciphertext once the Trojan is activated. We implement our
proposed tampering attack with a sequential hardware Trojan
inserted into a 128-bit AES design from OpenCores benchmark
suite and report the area overhead to demonstrate the feasibility
of the proposed tampering attack.

Index Terms—Advanced Encryption Standard, Hardware Tro-
jan, Tampering.

I. INTRODUCTION

The advancement in semiconductor manufacturing and test-
ing has enabled the system-on-chip (SoC) design house to
incorporate more functionality in modern SoCs that consists
of millions of transistors. Consequently, the overall complexity
of designing and manufacturing such integrated chips (ICs)
has increased. As advanced technology nodes are adopted,
building and maintaining a foundry requires large capital
investment [1], resulting in a minimal number of foundries
across the globe. Currently, integration of third-party intel-
lectual properties (3PIP) with the original design and out-
sourcing to an offshore foundry for manufacturing and testing
is a typical current trend for design-houses. However, this
globalized and distributed supply chain model comes with
ample scope to tamper the design by implanting hardware
Trojans, malicious modifications into the IC, at the design
and fabrication phases [2], [3]. Hardware Trojans can pose a
severe security threat to the designs used for security-sensitive
applications, such as cryptographic modules.

Cryptographic algorithms have widely been adopted as
a critical means to provide the security of communication,

data, and other sensitive assets. The applications range from
commonly used smart cards to highly critical defense or gov-
ernment applications, which rely on these algorithms imple-
mented with dedicated hardware for confidentiality, end-point
authentication, integrity verification, and non-repudiation [4].
A secure hardware implementation of a cryptographic system
comprises of key dependant logic operations, where the secret
key is stored in a tamper-proof memory. The plaintext inputs
of a system go through a series of cryptographic computations
dependent on the secret key value to produce the final cipher-
text. Traditionally, such hardware implementations should be
secure even if all the design details, except the secret key, is
publicly available. Unfortunately, a hardware Trojan can leak
this secret key to an adversary once it is activated.

The research community has been extensively studying the
taxonomy of hardware Trojans, their implementation, and
detection in cryptosystems (i.e., AES, RSA, and ECC). These
Trojans are designed to leak the secret key from the circuits,
either through side-channels [5]–[7] or primary outputs [8]–
[12]. Over the years, various detection and prevention methods
have been proposed to address the threat originated from
hardware Trojans. The detection methods can be categorized
– (i) logic testing [13]–[15], (ii) side-channel analysis [11],
[16]–[18]. On the other hand, prevention methods include
modifications in the design [19]–[21] and split manufactur-
ing [22]–[24]. All of these techniques have some drawbacks
in terms of their feasibility, the type of Trojans that can be
targeted, and adverse effects due to manufacturing process
variations. Besides, sequential Trojans manifest their effect
only when a particular time has elapsed after the trigger
condition is met or when the Trojan is triggered multiple
times in a row. This property of sequential Trojan makes their
detection very difficult. As a result, this type of Trojan can
become a prominent and suitable choice for an attacker to
launch tampering attacks.

In this paper, we show how an adversary can extract
the secret key from different implementations of Advanced
Encryption Standard (AES) by tampering the netlist with a
hardware Trojan. AES performs a sequence of operations on
the plaintext in multiple rounds that involves intermediate
subkeys for each round, generated from the original secret key.
Our attack relies on masking other intermediate subkeys’ effect
in an internal round through a sequential hardware Trojan.
Once the Trojan is activated, it obstructs and modifies the
data from all previous rounds. As a result, the input data

1

ar
X

iv
:2

00
8.

03
29

0v
1 

 [
cs

.C
R

] 
 7

 A
ug

 2
02

0



for the Trojan-affected round becomes all 1s if the Trojan’s
payload is an OR gate. We can also use an AND gate as
the payload to make the input data all 0s. We refer this as
an adversarial known value (i.e., 0 or 1) because only the
adversary pertains to the knowledge regarding this value and
also the rare Trojan activation condition that would achieve
this intentional alteration. The resultant output for this round
can be observed directly from the primary output if a Trojan
is implanted in the last round.

The contributions of this paper are described as follows:
• We propose a novel attack based on the malicious mod-

ifications of the hardware implementation of an AES
core. The attack aims to modify the computation for an
internal round and extract its corresponding intermediate
subkey. For the same, we tamper the AES design with a
sequential hardware Trojan. To the best of our knowledge,
we are the first to demonstrate that the extraction of
an intermediate key can be performed by inserting a
sequential hardware Trojan, which can help an adversary
for computing the original secret key. We propose to use
the design for a sequential hardware Trojan due to its
greater difficulty of detection during manufacturing tests
and the normal functioning of the circuit. The addition
of a state element (a counter) to the trigger of sequential
Trojan requires triggered Q times consecutively, to deliver
the payload.

• We demonstrate and validate our proposed attack on the
OpenCores AES benchmark [25] synthesized in 32nm
technology using Synopsys Design Compiler. The area
and power overhead resulted from inserting a sequential
hardware Trojan are negligible compared to the AES core.

The rest of the paper is organized as follows. First, we de-
scribe the AES structure in Section II. We present the proposed
attack and its methodology on different AES implementations
in Section III. Experimental results related to hardware Trojan
and the proposed attack are shown in Section IV. Finally, we
conclude the paper and provide future directions in Section V.

II. BACKGROUND

Advanced Encryption Standard (AES) is a widely used
block cipher for data encryption recommended by the National
Institute of Standards and Technology (NIST) in November
2001 [26]. An adversary can tamper the AES core with a
hardware Trojan as the implementation details of AES are
publicly available. In this section, we provide a detailed
description of the AES core and a hardware Trojan, which can
be used to launch the tampering attack described in Section III.

A. AES Block Cipher

AES is the widely popular block cipher used almost in
every secure application. It consists of multiple rounds of
operations (e.g., 10, 12, and 14) for different key sizes
(e.g., 128, 192, and 256, respectively). Each round (Ri with
i ∈ {1, 2, . . . , n}) consists of SubBytes (SB), ShiftRows (SR),
MixColumns (MC), and AddRoundKey (AK) layers, except
for final round without the MixColumns computation [26].

The intermediate round computations are usually represented
by a 4×4 matrix, where each cell represents a byte. Note that
the subscript for any variable represents the round number
and superscript represents the accessible subgroups within that
variable. The same notations are used and referred throughout
the paper. We denote the input of the ith round by Ai

j ,
where j ∈ {0, 1, . . . , 15}. The internal round keys (Ki) are
generated from the key expansion modules. These intermediate
keys corresponding to each round can be denoted as subkeys.
These subkeys are bitwise XORed with the output of the
MixColumns (or ShiftRows for the final round). The key bytes
are arranged into a matrix with 4 rows and 4 (128-bit key),
6 (192-bit key) or 8 (256-bit key) columns. In this paper,
we only focus on AES with a 128-bit key to demonstrate
the tampering attack for simplicity. This same attack can be
launched for AES with 196 and 256-bit keys as well without
changing the attack methodology.

One can find the details for each round of AES in [26] and
can be summarized in different layers described as follows:

1) SubBytes (SB): It is the nonlinear transformation step
in AES, where each state byte is swapped with a pre-
computed value from a look-up table known as s-box.

2) ShiftRows (SR): This step rotates the 4× 4 state matrix
with different known offsets. Rows are shifted in a cyclic
manner by 1, 2 and 3-bytes for the corresponding row
number in the state matrix.

3) MixColumnns (MC): This step performs linear column-
wise operations on the state matrix. Essentially, it is a
matrix multiplication in the finite field of each column in
the state matrix with a constant 4× 4 matrix.

4) AddRoundKey (AK): It is the bitwise XOR of the state
matrix with the corresponding subkey.

f

Ki

Ki-1

W
0
i-1W
0
i-1 W

1
i-1W
1
i-1 W2

i-1W2
i-1 W3

i-1W3
i-1

W
0
iW
0
i W1

iW1
i W2

iW2
i W3

iW3
i

128128

3232

128128

3232 3232 3232

3232 3232 3232 3232

F
0

F
1

F
2

F
3

F
1

F
2

F
3

F
0

G
0

G
1

G
2

G
3

RCi S S S S

f Function

F
0

F
1

F
2

F
3

F
1

F
2

F
3

F
0

G
0

G
1

G
2

G
3

RCi S S S S

f Function

Figure 1: Key schedule module for 128-bit AES implementa-
tion.

The key schedule (KS) module generates subkeys for each
rounds. As the AES primitive with 128-bit key (can be referred
as AES-128) has 10 rounds, it is necessary to create 10 sub-
keys (K1, . . . ,K10) of 128-bit each. Following the notations,
original key for AES K consisting of {k0, k1, . . . k15}, where
each subgroup comprises of 8-bits respectively. Figure 1 shows

2



the implementation details of the key schedule module for
the ith round, where the current round’s subkey (Ki) can
be computed from the previous round’s subkey (Ki−1). The
subkey operations are performed on a word length (32-bits
or 4 bytes) subgroup. These subgroup words for each round
can be represented as W r

i , where r and i represent word
index and round index, respectively. For ith round, W 0

i is
comprised of {ki0, ki1, ki2, ki3}. Similarly, W 1

i is formed with
{ki4, ki5, ki6, ki7} and so on.

As shown in the Figure 1, we can generalise the operation
for the key schedule module and be described as:

W 0
i = W 0

i−1 ⊕ f(W 3
i−1); W 1

i = W 0
i ⊕W 1

i−1

W 2
i = W 1

i ⊕W 2
i−1; W 3

i = W 2
i ⊕W 3

i−1

where, f function can be formalised as:

G0 = S(F 1)⊕RCi; G1 = S(F 2)

G2 = S(F 3); G3 = S(F 0)

where, the values of RCi can be found in [26].
Note that the detailed implementation of the key schedule

module will help to compute the previous round’s subkey
(Ki−1) and finally the secret key K, if any of the subkey
(Ki) is known.

B. Design for a Sequential Hardware Trojan

In this paper, we consider the design of a sequential Trojan
to demonstrate the attack. Upon triggering, a sequential Trojan
manifests it effect after the occurrence of a sequence or a
period of time. Generally, Trojan comprises of a trigger and
payload that can be activated through trigger inputs, which
are taken from the primary inputs and/or internal nodes of a
circuit. The Trigger inputs are selected such that the Trojan can
evade manufacturing or production test patterns (e.g., stuck-at
fault tests, and delay tests) [27]–[29]. A Type-p Trojan com-
prises of p trigger inputs. The trigger is selected as an AND
gate. However, any other combinational logic can also form
the trigger which provides logic 1 when activated. Along with
this AND gate, the sequential Trojan trigger includes a state
element (Q-State counter). Upon availability of trigger inputs,
the output of this AND gate becomes 1 (i.e., EN = 1) and the
counter is incremented by 1. Upon triggering the Trojan Q-
times consecutively, the counter reaches the maximum value
and delivers the payload in the original circuit through the
OR gate or XOR gate. The finite state machine (FSM) for the
counter (CTR) is shown in Figure 2. The state transition occurs
only when EN = 1, otherwise, it returns to the initial state,
S0. The output of the counter becomes 1, once EN is made
to logic 1 consecutively for Q clock cycles. An adversary may
choose any different design of a Trojan as well.

III. PROPOSED TAMPERING ATTACK ON AES WITH A
HARDWARE TROJAN

The important aspect of cryptographic primitives is to
encrypt the output in such a way that an adversary cannot
find any key information at the output. In other words, no key
information is leaked at the output and an adversary cannot

S0 S1 S2 SQ-1

EN/0 EN/0

EN/1

EN/0

EN/0

EN/0

EN/0

EN/0

Figure 2: Finite state machine of the counter used in a
sequential hardware Trojan.

determine the key by observing input/output responses of a
system. In this section, we show how an adversary can extract
the secret key using the proposed tampering attack with a
sequential hardware Trojan.

A. Threat Model

The threat model is described to clearly identify the capa-
bilities of an adversary. In this model, an untrusted foundry is
considered as an adversary with the following capabilities:

• It has access to the netlist of the crypto primitives. The
untrusted foundry has access to all the layout and mask
information, which can be obtained from the GDSII or
OASIS file. The netlist can be reconstructed from this
information using reverse engineering [30].

• The attacker has the capability to modify the netlist so
that it can tamper it with a hardware Trojan.

• The attacker has access to all the manufacturing test (e.g.,
stuck-at fault and delay fault) patterns as it is common
that production tests are performed at the foundry. The
adversary can utilize these test patterns to design a Trojan
which cannot be detected during manufacturing tests [27].

B. Attack Methodology

The proposed attack relies on tampering the netlist by an
untrusted foundry with the aim of exposing the secret key.
Once the secret key is exposed, the security of AES no
longer exists. With this aim, an efficient two-step methodology
is proposed that involves a sequential Trojan. The proposed
attack can be described as follows:

• Step 1: The first step is to implement the hardware
Trojan and place its payload in the netlist. Once acti-
vated, the Trojan masks the information obtained from
previous round computations and nullify the impact of
previous subkeys. The AddRoundKey (AK) layer is our
primary area of interest while tampering the circuit with
a hardware Trojan and modify intermediate round state
matrix (Ai) to all 1s or 0s depending on the payload. In
this paper, we treat the payload as OR gates, and thus
Ai becomes all 1s. Once the response is collected at the
primary output, an adversary then computes the secret
key using Step 2.

• Step 2: The computation of the secret key is performed in
this step from the Trojan activated response. As the design
for the key schedule module is publicly available, an

3



Plaintext (P)

SB

SR

MC

CTR

SB

SR

R1-R9

R10

Key (K)

KS1-9

KS10

P

EN

1/0

Ciphertext (C)

A10 =1

K

K1-9

K10

CLK

Figure 3: Tampering attack on AES design implanted with a
sequential hardware Trojan, delivering the payload at the data
input (A10) of the last round (R10).

adversary can compute the input data of the key schedule
module from its output (see the computation details in
Algorithm 1 presented in Section III-C). With this, any
subkey can be traced back to retrieve the previous round
key (Ki−1) and finally, the original secret key (K).

C. Tampering Attack on AES Core

Figure 3 shows the proposed tampering attack on 128-bit
the AES implementation. The netlist is implanted with Type-p
sequential hardware Trojan, which consists of p-input trigger
and a payload OR gate. The trigger inputs may come from
the input depicted as plaintext (P ) in the figure. The trigger
circuit comprises of a AND gate and counter (CTR) with the
maximum count number of Q. One can find the detailed de-
scription of this sequential Trojan in Section II-B. We propose
to place the payload OR gate(s) before the last round (R10)
computation, i.e., after the add round key, AK layer in R9.
Once the Trojan is activated, the output of the payload (P)
OR gate(s) becomes 1. As a result, all the bits in the input
state matrix for last round A10 = 1, consequently, masking
the effect of all previous round key information (K1 − K9)
and round computations (R1−R9). Due to availability of the
implementation details, we can compute the K10 from the
observed ciphertext C, and described as follows:

1) The activated Trojan delivers the payload to modify the
input to the last round with A10 = 0xFF . . . FF .

2) The output of SubBytes (SB) layer of R10 can be
computed as:

Y1 = SB(A10)

= 0x1616 . . . 1616

3) Once Y1 is known, the output of ShiftRows (SR) layer
can be computed as:

Y2 = SR(Y1)

= 0x1616 . . . 161616

Since the last round R10 does not perform MixCol-
umn (MC) operation, the output of ShiftRow (SR) gets XORed
with subkey (K10) in AddRoundKey (AK) step which is the
final ciphertext (C) at the primary output. From this output
bitwise XOR being a symmetric operation, we can calculate
the subkey (K10) as:

K10 = C ⊕ Y2

= C ⊕ (0x1616 . . . 1616)

Once K10 is retrieved, an adversary can recover all the
previous subkeys and the original secret AES key. In the
following, we will show how the subkey K9 can be recovered
from K10. Here, W 0

10, W 1
10, W 2

10 and W 3
10 are known as the

value of K10 has been evaluated from the ciphertext previously
using activating the hardware Trojan.

1) Step 1: Computation of W 3
9 can be performed from

XORing the W 3
10 with W 2

10 as the XOR operation is
reciprocal.

W 3
9 = W 3

10 ⊕W 2
10

2) Step 2: Once W 3
9 is known, one can compute W 0

9 using
the following equation.

W 0
9 = W 0

10 ⊕ f(W 3
9 )

3) Step 3: Finally, W 1
9 and W 2

9 can be evaluated using the
following equations.

W 1
9 = W 1

10 ⊕W 0
10; W 2

9 = W 2
10 ⊕W 1

10

The general process for evaluating the secret key K from
K10 is described in Algorithm 1. The round subkey K10

is provided as input to the algorithm and the original key
K will be returned as the output. The algorithm starts by
selecting the subkey from which the previous round subkey
is to be calculated (Line 1). The subkey (Ki) is divided into 4
subgroups of 32-bits each, namely [W 0

i ,W
1
i ,W

2
i ,W

3
i ], from

the 128-bit key using the assign function (Line 2). The 4
subgroups for (i − 1)th key is calculated from the ith key
(refer Figure 1 in Section II) (Lines 3-6). Finally, 4 different
32-bit subgroups (i.e., W 0

0 ,W
1
0 ,W

2
0 ,W

3
0 ) are obtained for

the original key which are concatenated together and the
algorithm reports the original key K (Lines 8-9). During these
operations, function f is used which takes inputs as the 32-bit
subgroup word W (Line 17). Function f performs the SubByte
operation on 8-bits of keys using the sbox (S) and RCi

(corresponding to each round) and returns the concatenated
result (Lines 18-22).

4



Algorithm 1: Reverse Key Schedule
Input: SubKey (K10) of round R10

Output: Original Key (K)

1 for i = 10 to 1 do
2 [W 0

i ,W
1
i ,W

2
i ,W

3
i ]← assign(Ki) ;

3 W 3
i−1 ←W 3

i ⊕W 2
i ;

4 W 2
i−1 ←W 2

i ⊕W 1
i ;

5 W 1
i−1 ←W 1

i ⊕W 0
i ;

6 W 0
i−1 ←W 0

i ⊕ f(W 3
i−1) ;

7 end
8 K ← {W 0

0 ‖W 1
0 ‖W 2

0 ‖W 3
0 } ;

9 Report K ;

10 Function assign(Ki):
11 [k1i , k

2
i . . . k

16
i ]← Ki ;

12 W 0
i ← {k0i ‖ k1i ‖ k2i ‖ k3i } ;

13 W 1
i ← {k4i ‖ k5i ‖ k6i ‖ k7i } ;

14 W 2
i ← {k8i ‖ k9i ‖ k10i ‖ k11i } ;

15 W 3
i ← {k12i ‖ k13i ‖ k14i ‖ k15i } ;

16 Return [W 0
i ,W

1
i ,W

2
i ,W

3
i ] ;

17 Function f(W):
18 G0 ← S(k13)⊕RCi ;
19 G1 ← S(k14) ;
20 G2 ← S(k15) ;
21 G3 ← S(k12) ;
22 Return [G0, G1, G2, G3] ;

D. Tampering Attack on OpenCores AES Benchmark

The utilization of the hardware resources can be reduced
by adopting multicycle designs, that re-use the hardware or
functional blocks in a design. For the OpenCores AES [25]
implementation, the plaintext (P ) is provided as the input, and
the internal result after every round is stored in round registers,
which is then fed back to the SubByte layer of the next round.
The result in the round register after 10th round (R10) is the
ciphertext (C) output of the AES core.

Figure 4 shows the hardware implementation of a Open-
Cores AES benchmark. The design has a load input pin
which loads the input plaintext for encryption. The total
encryption process takes 13 clock cycles once the start signal
is assigned and the ciphertext is observed at the output when
done signal becomes 1 [25]. The proposed tampering attack
can also be extended to this OpenCores AES design, which is
tampered with a sequential Trojan described in section II-B.
The counter (CTR) of the hardware Trojan uses the load signal
as a clock. In other words, the Trojan counter will increase
its value when the load signal is high as well as the plaintext
matches the trigger input pattern (i.e., EN = 1). It is necessary
to trigger the Trojan Q times consecutively to launch the
attack. Once activated, the payload is delivered to make Ai

all 1’s. The Trojan will remain activated during the entire
encryption process and all the internal round computation will
be modified as well. The ciphertext (C) observed at the output
will be used to determine K10, which can be computed as:

Plaintext (P)

SB

SR

MC

CTR

EN

P

Ciphertext (C)

Round Registers

Ai =1

1/0

Key (K)

KSi

128

128

128

128

Ri

Load

K

Ki

Figure 4: Tampering attack on OpenCores AES benchmark
with a sequential hardware Trojan.

K10 = C ⊕ (0x1616 . . . 1616). Finally, the original key (K)
can be retrieved using the Algorithm 1. Note that the attacks
on AES are explained using a sequential Trojan. One can use
other types of existing hardware Trojan designs to launch the
attack as well.

IV. RESULTS AND DISCUSSIONS

To validate the effectiveness of our proposed attack, we
implemented our proposed hardware Trojan in the OpenCores
AES benchmark [25]. The sequential Trojan Trigger com-
prised of a AND gate followed by a counter. The Trigger
inputs to the AND gate were taken directly from the plaintext
input to the AES core. The trigger pattern was selected in
such a way so that it does not belong to the manufacturing
test patterns (e.g., stuck-at fault patterns) [27]–[29].

Table I: Area overhead analysis.
Max Count (Q) 2 4 8 16 32 64

Area Overhead (%) 0.51 0.53 0.55 0.58 0.60 0.63

The area for a hardware Trojan can vary based on the trigger
input, trigger design, and the type of Trojan selected. For
our experimentation, we implemented a sequential hardware
Trojan with 5-input AND gate, counter with maximum count
Q, and 128 payload OR gates. To estimate the area and
power overhead, the Trojan inserted AES benchmark is syn-
thesized with 32nm technology [31] using Synopsys Design
Compiler [32]. Table I shows the percentage area overhead
obtained by comparing the Trojan-free and Trojan inserted
AES benchmark. The overall area overhead for counter with
different maximum count value Q. The higher value of Q
increases the difficulty of detecting a hardware Trojan using
a logic test, as it is increasingly difficult to trigger the Trojan

5



Q times consecutively. The overhead is minimal and is less
than 1%. For example, it is only 0.55%, when we choose Q
of 8. Note that the majority of the overhead comes from the
payload as we require 128 OR gates. Since the Trojan remains
quiet during normal operation, it does not have any switching
power. The leakage power for the Trojan would only contribute
to the power overhead. However, the Trojan’s leakage power
is in order of magnitude less than the switching power of the
counter and can be negligible.

V. CONCLUSION

Hardware Trojans can pose a severe threat to our critical
infrastructure that relies on AES for encrypting sensitive
data. We presented a novel tampering attack on AES core
to extract the secret key by implanting a sequential hardware
Trojan. The attack mainly relies on modifying the input for
an internal round using the Trojan’s payload, to mask the
previous round’s information. The Trojan helps an adversary
to compute the last round subkey from the observed ciphertext.
We present an algorithm to retrieve the original key from
the last round’s subkey. The sequential Trojan presented in
the paper requires triggering of Q consecutive times, which
fulfills the requirement of increased difficulty in detecting such
Trojans. It is extremely difficult to identify such Trojans using
logic testing as the attacker only knows the trigger condition
derived from the input plaintext, and apply it repeatedly.

ACKNOWLEDGMENT

This work was supported in parts by the National Science
Foundation (NSF) under grant CNS-1755733 and Air Force
Research Laboratory (AFRL) under grant AF-FA8650-19-1-
1707. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF and AFRL.

REFERENCES

[1] Age Yeh, “Trends in the global IC design service market,” DIGITIMES
Research, 2012.

[2] M. Tehranipoor and C. Wang, Introduction to hardware security and
trust. Springer Science & Business Media, 2011.

[3] S. Adee, “The hunt for the kill switch,” iEEE SpEctrum, vol. 45, no. 5,
pp. 34–39, 2008.

[4] E. Barker, “NIST Special Publication 800-175B NIST Special Publi-
cation 800-175B Cryptographic Standards in the Federal Government:
Cryptographic Mechanisms,” 2016.

[5] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware trojans through side-channel en-
gineering,” in International Workshop on Cryptographic Hardware and
Embedded Systems, 2009, pp. 382–395.

[6] L. Lin, W. Burleson, and C. Paar, “MOLES: malicious off-chip leakage
enabled by side-channels,” in IEEE/ACM International Conference on
Computer-Aided Design-Digest of Technical Papers, 2009, pp. 117–122.

[7] Y. Zhao, J. Song, X. Wu, L. Wu, and X. Zhang, “A Novel Trojan Side
Channel For Attacking Masking,” in IEEE International Conference on
Anti-counterfeiting, Security, and Identification, 2018, pp. 151–154.

[8] S. Kutzner, A. Y. Poschmann, and M. Stöttinger, “Hardware trojan
design and detection: a practical evaluation,” in Proceedings of the
Workshop on Embedded Systems Security, 2013, pp. 1–9.

[9] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Int. Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2013, pp. 197–214.

[10] S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, and L. Sauvage,
“Hardware Trojan horses in cryptographic IP cores,” in Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2013, pp. 15–29.

[11] M. Muehlberghuber, F. K. Gürkaynak, T. Korak, P. Dunst, and M. Hutter,
“Red team vs. blue team hardware Trojan analysis: detection of a
hardware Trojan on an actual ASIC,” in Proceedings of the International
Workshop on Hardware and Architectural Support for Security and
Privacy, 2013, pp. 1–8.

[12] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan attacks: Threat analysis and countermeasures,” Proceedings of
the IEEE, vol. 102, no. 8, pp. 1229–1247, 2014.

[13] P. Kitsos, D. E. Simos, J. Torres-Jimenez, and A. G. Voyiatzis, “Exciting
FPGA cryptographic Trojans using combinatorial testing,” in Interna-
tional Symposium on Software Reliability Engineering, 2015, pp. 69–76.

[14] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious
inclusions in secure hardware: Challenges and solutions,” in IEEE Int.
Workshop on Hardware-Oriented Security and Trust, 2008, pp. 15–19.

[15] H. Salmani, “COTD: Reference-free hardware trojan detection and
recovery based on controllability and observability in gate-level netlist,”
IEEE Transactions on Information Forensics and Security, vol. 12, no. 2,
pp. 338–350, 2016.

[16] B. Hanindhito and Y. Kurniawan, “Hardware Trojan Design and Its
Detection using Side-Channel Analysis on Cryptographic Hardware
AES Implemented on FPGA,” in International Conference on Electrical
Engineering and Informatics (ICEEI), 2019, pp. 191–196.

[17] Y. Liu, K. Huang, and Y. Makris, “Hardware Trojan detection through
golden chip-free statistical side-channel fingerprinting,” in Proceedings
of the Annual Design Automation Conference, 2014, pp. 1–6.

[18] J. He, Y. Zhao, X. Guo, and Y. Jin, “Hardware trojan detection through
chip-free electromagnetic side-channel statistical analysis,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10,
pp. 2939–2948, 2017.

[19] L. Wu, X. Wang, X. Zhao, Y. Cheng, D. Su, A. Chen, Q. Shi, and
M. Tehranipoor, “AES design improvement towards information safety,”
in IEEE International Symposium on Circuits and Systems (ISCAS),
2016, pp. 1706–1709.

[20] K. Xiao, D. Forte, and M. Tehranipoor, “A novel built-in self-
authentication technique to prevent inserting hardware trojans,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 12, pp. 1778–1791, 2014.

[21] P.-S. Ba, S. Dupuis, M. Palanichamy, M.-L. Flottes, G. Di Natale, and
B. Rouzeyre, “Hardware trust through layout filling: A hardware Trojan
prevention technique,” in IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 254–259.

[22] K. Vaidyanathan, B. P. Das, and L. Pileggi, “Detecting Reliability
Attacks During Split Fabrication Using Test-Only BEOL Stack,” in Proc.
of Design Automation Conf., 2014, pp. 1–6.

[23] J. J. V. Rajendran, O. Sinanoglu, and R. Karri, “Is Split Manufacturing
Secure?” in Proc. Conf. Design, Automation and Test in Europe (DATE),
2013, pp. 1259–1264.

[24] Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The Cat and Mouse in
Split Manufacturing,” in Proceedings of Design Automation Conference,
2016, pp. 1–6.

[25] Opencores, https://opencores.org/projects/aes crypto core.
[26] NIST-FIPS, “Announcing the Advanced Encryption Standard (AES),”

Federal Information Processing Standards Publication, vol. 197, no. 1-
51, pp. 3–3, 2001.

[27] Z. Zhou, U. Guin, and V. D. Agrawal, “Modeling and test generation
for combinational hardware Trojans,” in VLSI Test Symposium (VTS),
2018, pp. 1–6.

[28] A. Jain, Z. Zhou, and U. Guin, “TAAL: Tampering Attack on Any Key-
based Logic Locked Circuits,” arXiv preprint arXiv:1909.07426, 2019.

[29] A. Jain, U. Guin, M. T. Rahman, N. Asadizanjani, D. Duvalsaint, and
R. S. Blanton, “Special Session: Novel Attacks on Logic-Locking,” in
IEEE VLSI Test Symposium (VTS), 2020, pp. 1–10.

[30] R. Torrance and D. James, “The state-of-the-art in IC reverse engi-
neering,” in International Workshop on Cryptographic Hardware and
Embedded Systems, 2009, pp. 363–381.

[31] Synopsys 32/28nm Generic Library for teaching IC design, Available:
https://www.synopsys.com/community/university-program/teaching-
resources.html.

[32] RTL Design and Synthesis: Next Generation RTL Design for Ad-
vanced Nodes, Synopsys, https://www.synopsys.com/implementation-
and-signoff/rtl-synthesis-test.html.

6


	I Introduction
	II Background
	II-A AES Block Cipher
	II-B Design for a Sequential Hardware Trojan

	III Proposed Tampering Attack on AES with a Hardware Trojan
	III-A Threat Model
	III-B Attack Methodology
	III-C Tampering Attack on AES Core
	III-D Tampering Attack on OpenCores AES Benchmark

	IV Results and Discussions
	V Conclusion
	References

