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Abstract—In this paper we study a multiple access system
without feedback supporting multiple carriers for delay critical
applications with a small loss tolerance. In such a system,
users transmits R times within the next N timeslots, in order
to improve their success probability. In an earlier work [1],
we considered the same problem in a single carrier system
and demonstrated that the distribution of properly designed
user codes significantly improved the success probability over
a random selection strategy. These user codes, that determine
the R slots used for transmission, corresponded to so-called 2-
(N;R; 1) designs.

Mainly motivated by DVB-RCS satellite systems, this paper
considers a system with multiple carriers with the limitation
that at any time, at most one slot, and thus carrier, can be used
by a single user. We introduce two static and four dynamic slot
assignment schemes and under some mild assumptions provide
closed form formulas for the success probability in each of
these systems. For the last dynamic scheme we will show how
group divisible designs are the multi-carrier equivalent of the
2-(N;R; 1) designs of the single carrier system and provide a
simple procedure to construct these user codes.

Finally, we compare all of the proposed assignment schemes
and show that the group divisible designs are superior, especially
for large population sizes. Some engineering rules with respect
to their usage are also provided. For two of the dynamic schemes
we also compare two different strategies in case there are not
enough user codes available for all users.

I. INTRODUCTION

The first multiple access systems without feedback con-
sidered [2], [3] demanded that all packets were transmitted
successfully with probability one and consisted in designing
user transmit patterns of length M such that irrespective of
how many users are active, at least one of the transmissions is
successful. Afterward, algorithms for random access systems
without feedback that allowed for a predefined loss tolerance,
e.g., of at most � = 1%, were studied in [4], [5]. Their
motivation stems from random access channels were the
round-trip time, and thus the feedback, is (too) large for delay
critical applications that can tolerate some losses. For example,
Voice-over-IP can cope with some limited packet loss, whereas
retransmitting lost packets would take too long, especially
in two-way satellite networks. Since there is no feedback,
packets are transmitted multiple times to improve their success
probability. The most natural way to select the R transmission
occasions out of the next N timeslots (for some N ), is by
selecting these R slots at random, as was done in [4], [5].

A better, more recent approach is to introduce user codes

[1], to make this selection of R slots, meaning we exploit the
limited population size by assigning each user its individual
code. Furthermore, these codes were designed such that any
two user codes share at most one slot. Hence, they correspond
to binary constant weight codes with weight R and minimum
distance 2(R � 1). Moreover, for any 2 slots, there exists a
user code using both slots. Hence, we considered sets of user
codes of maximum cardinality such that every two slots are
part of exactly one user code. In combinatorial design [6], such
codes are known as 2-(N;R; 1) designs (or (2; N;R) Steiner
systems). In [1], we focused on this type of user codes as it
creates as little overlap between two user codes as possible,
without having an extremely small number of codes (which
would be the case if we allowed no overlap).

In principle, we consider synchronous systems with a max-
imum allowed delay of 2N timeslots, in the sense that we
rely on frames of N timeslots; that is, the R slots have to be
chosen from these N slots. Since a user has to wait at most
N timeslots until a new frame starts, the maximum delay is
limited by 2N . However, the synchronous restriction can be
circumvented as follows. Suppose a user code is represented
by a bit vector of length N and weight R, where bit number
i is set if the user must use slot i as one of his R slots. When
a new packet becomes ready for transmission at the end of
the k-th timeslot of a frame of N slots, it will change its
original user code by moving the first k bits to the back of
its user code. This shifted bit vector is subsequently used for
the packet transmission and may commence in the very next
slot (that is, slot k + 1). In this way, we guarantee that any
two packets still interfere in at most one slot, even though
the transmissions are no longer synchronized to the start of a
frame.

The work presented in [1] was limited to TDMA systems
consisting of one carrier. However, several systems employ
multiple carriers to increase their capacity, in terms of the
number of users or the absolute amount of traffic. For example
in DVB-RCS [7] some slots can be used in contention mode;
a SAC message can be used to make bandwidth reservations,
whereas TRF slots can be used to transmit data directly. As
the employed frame structure is MF-TDMA, these slots can be
found on a set of carrier frequencies, each of which is divided
into timeslots.

One could define a simple extension from a one carrier
system to an F carrier system, by using codes for NF



instead of N slots, and by mapping slot i to carrier di=Ne
and timeslot1 i mod N . This solution has several drawbacks.
First, some users will receive a user code containing two
or more simultaneous slots, which is impossible since users
typically only possess one transmitter. Therefore, some users
cannot transmit R times and are treated unfairly. A remedy
would be to remove these problematic codes, thereby slightly
reducing the maximum supported population size. This typi-
cally produces asymmetrical codes, where some slots belong
to more user codes than others, which creates another type
of unfairness (and may prohibit computing closed formulas
for the loss probabilities). Second, the required 2-(FN;R; 1)
designs become harder to generate as FN becomes large,
meaning these codes are harder to generate for increasing F
values.

The contributions of this paper are the following. In Section
II we introduce two static and four dynamic assignment
schemes to select R slots out of the FN slots occurring in
a frame. Except for the last dynamic scheme, they all rely
on random selection and/or the 2-(N;R; 1) designs of the
single carrier system. In Section III we identify the class of
combinatorial designs, known as group divisible designs, that
are required to define fair user codes in an F carrier system.
The codes are fair in the sense that all users experience exactly
the same success probability. Moreover, we discuss a simple
construction method for these large sets of users codes via
finite affine and projective spaces. After paying some attention
to the case where there are fewer users than user codes
in Section IV, we provide closed formulas for the success
probability for each of the proposed assignment schemes in
Section V under some mild assumptions on the population
size. Finally, Section VI compares the performance of each of
the assignment schemes and provides some engineering rules,
e.g., for selecting R the number of transmission attempts. For
two of the dynamic assignment schemes we also consider and
compare two different strategies in case there are not enough
user codes available for all users.

There is some minor resemblance with frequency hopping
spread spectrum (FHSS), a code division multiple access
(CDMA) transmission technique used in Bluetooth, GSM, and
the IEEE802.11 standard. FHSS divides each message into
multiple smaller blocks, where a frequency is chosen for each
block, based on some predetermined codes. Hence, FHSS
provides a robust solution for time-varying multi-path fading
and attempts to prevent eavesdropping and signal jamming
[8], [9]. However, these systems are designed such that each
user has its own reserved (virtual) channel, with little cross
interference. Our solution differs in that we primarily address
the contention access problem, by transmitting a message
several times, typically on different carriers.

II. APPROACHES

In this section we introduce a variety of approaches for
the C users to determine their R transmission slots in a frame

1We will refer to the combination of carrier and time as slot, whereas a
timeslot refers only to a specific time, i.e., containing F slots.

consisting of N timeslots and F carriers, i.e., to select R out of
the FN slots. Apart from random selections, some approaches
also rely on the 2-(N;R; 1) designs discussed in [1] for the
single carrier system, i.e., F = 1. This set of user codes SN;R
is a set of maximum cardinality jSN;Rj, such that for every
two slots there is exactly one user code holding both slots.
As there are only N slots and every code consists of R slots,
there are exactly N(N � 1)=R(R� 1) user codes as there are
N(N � 1)=2 choices for the two slots and each code holds
R(R� 1)=2 sets of two points. A known necessary condition
for such designs to exist is N = 1 or R mod R(R� 1) and
a simple construction for R � 5 and N � 85 was provided
in [1]. Thus, given the maximum delay, we will make use of
the largest N value that meets this criteria, i.e., that satisfies
N = 1 or R mod R(R� 1).

A. Static assignments

The first class of approaches considered assigns the F
carriers between the C users in a static manner. Meaning each
user is assigned to a carrier, such that there are C=F users per
carrier (assuming F divides C). Hence, a user always uses the
same pre-assigned carrier for this R transmission attempts.
Therefore, the system behaves as F independent single carrier
systems with C=F users each. We will consider two static
schemes:

1) We do not utilize user codes and each user selects R
slots out of the N slots on his carrier at random.

2) We make use of the jSN;Rj = N(N�1)=R(R�1) user
codes discussed in [1] by assigning each of the jSN;Rj
user codes to one user on each frequency, meaning we
can support up to FN(N �1)=R(R�1) users with our
codes. If the system contains more users, the additional
users select R slots at random (as this was shown to be
superior to reusing codes in a single carrier system).

Due to the results for a single carrier system in [1], the second
scheme is superior to the first, which is considered mainly for
comparison with some of the dynamic schemes.

B. Dynamic assignments

In the dynamic setup, we do not partition the users over
the F carriers, meaning each user will transmit on any of the
F carriers at some point in time. Four different schemes are
considered:

1) We do not utilize user codes and each user selects R
slots out of the FN slots on all of the F carriers at
random by first selecting R different timeslots among the
N and then by selecting a carrier out of the F carriers
for each of the N timeslots. Hence, there are

�
N
R

�
FR

possible choices for each user.
2) We make use of the N(N � 1)=R(R � 1) user codes

discussed in [1] by assigning each of these codes to
one user, meaning we can only support up to N(N �
1)=R(R � 1) users with our codes. The user code
determines the R timeslots, while the carrier is chosen
at random and all R attempts are made on the same
chosen carrier.



3) We use exactly the same solution as in the previous case,
but for each of the R timeslots we select a carrier at
random, meaning the R transmissions can be located at
different carriers.

4) We use the set of user codes discussed in the next
section. These codes are designed for multiple carrier
systems and will consist of F 2N(N � 1)=R(R � 1)
user codes.

If the system contains more than N(N � 1)=R(R � 1) users
in the second or third scheme, we will either (a) reuse the
codes by assigning the same code to different users, or (b)
make use of the random selection of the first scheme for the
additional users. Notice, in the dynamic assignment case, code
reuse cannot be excluded without consideration as users with
the same code might select a different carrier. Finally, in the
exceptional case of having more than F 2N(N �1)=R(R�1)
users, we will also rely on random selection for the additional
users for the last scheme.

III. CONSTRUCTION

In this section we introduce the codes used by the fourth
dynamic assignment scheme. The idea is to generate a set
of maximal cardinality such that for every two slots, not
occurring at the same time, there exists exactly one user code
using both slots, while none of the user codes hold two slots
occurring at the same time. As there are F 2N(N�1)=2 ways
to select two slots that do not occur at the same time and
we have R(R � 1)=2 sets of two slots per user code, we are
looking for a set of F 2N(N �1)=R(R�1) codes. These will
be constructed using group divisible designs (GDDs) in case
N = 1 or R mod R(R � 1) (as in the single carrier case)
and F is a prime power.

Before we can see how GDDs can provide these patterns; let
us first recall a few definitions from [10] that are reformulated
in out network setting. A GDD is based on an association
scheme for � slots, which is defined by:

Definition 1. Given � slots, a set of ordered pairs satisfying
the following conditions is said to be an association scheme
with g classes:

1) Any two slots are either each others 1st, 2nd, � � � , or
g-th associates.

2) Each slot � has ni i-th associates, ni being independent
of �.

3) If any two slots � and � are i-th associates, then the
number of slots that are both a j-th associate of � and
a k-th associate of �, is pij;k and is independent of the
pair of i-th associates � and �.

The following example is the one we will use to design the
user codes. Assume we have � = FN slots and two slots
occurring at the same time are 1st associates, while any two
other slots are 2nd associates. Thus, n1 = F � 1 and n2 =
F (N�1), while p11;1 = F�2, p11;2 = p12;1 = 0, p12;2 = F (N�
1), p21;1 = 0, p21;2 = p22;1 = F�1 and p22;2 = F (N�2). Notice,
an association scheme consisting of one class is nothing but
the set of all pairs of slots.

Now, a partially balanced incomplete block design (PBIBD),
which is a set of user codes on the � slots, can be defined on
an association scheme with g classes as follows.

Definition 2. Given an association scheme with g classes, we
have a PBIBD with g associate classes if the � slots form b
user codes of length R such that

1) Every slot occurs at most once in a user code.
2) Every slot occurs in exactly r user codes.
3) If two slots � and � are i-th associates, then they occur

together in �i user codes, �i being independent of the
particular pair of i-th associates � and �.

Notice, if we take g = 1, �1 = 1, � = N and b = N(N �
1)=R(R � 1), we obtain balanced incomplete block design
(BIBD) codes used for the single carrier case, as in [1]. For
the multi-carrier case, we consider the association scheme of
the earlier example with � = FN and g = 2 and set �1 = 0
and �2 = 1, as this implies that no two simultaneous slots
occur in a single user code, while all other pairs of slots are
used exactly once by a user code. In this case, b = F 2N(N �
1)=R(R� 1) and as a result r = F (N � 1)=(R� 1). Finally,
a specific PBIBD, a GDD, can be now be defined as:

Definition 3. A PBIBD with two associate classes is said to be
group divisible if there are � = mn symbols and the symbols
can be divided into m groups of n symbols each, such that
any two symbols of the same group are first associates and
two symbols from different groups are second associates.

Hence, our running example is a GDD. There are several
construction methods for GDDs in the literature. For complete-
ness, we will now introduce a simple procedure to generate
such a GDD from the existing codes for a single carrier (for
which a simple construction method was given in [1]).

Instead of just assigning one single carrier and user code
to a specific user, as in the second dynamic assignment
scheme, we want to find a set of translation codes, with each
codeword of the form F1F2 : : : FR with 1 � Fi � F . Such
a code translates a single carrier user code, by assigning the
Fi-th carrier to the i-transmission, for all R transmissions.
Notice, by construction two slots occurring at the same time
will never be part of the same user code. The second static
assignment scheme of Section II would correspond to the
F translation codes f11 : : : 1; 22 : : : 2; : : : ; FF : : : Fg. As we
are aiming for F 2N(N � 1)=R(R � 1) user codes, we need
to find a set of F 2 translation codes to combine with the
N(N�1)=R(R�1) single carrier user codes. For this purpose,
we rely on orthogonal arrays (OAs). OAs are defined as
follows:

Definition 4. A k � v matrix A with entries from a set of
s (� 2) elements is called an orthogonal array of size v if
any t � v submatrix of A contains all possible t � 1 column
vectors equally often, i.e., � times. Such an array is denoted
by (v; k; s; t).

We are interested in OAs with parameters (F 2; R; F; 2),
which implies that � = 1, as the F 2 columns represent the
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Fig. 1: The two dimensional affine space over GF(3)

F 2 translation codes F1F2 : : : FR with 1 � Fi � F and every
two rows must hold all of the F 2 pairs exactly once. The latter
property guarantees that any two slots that do not occur at the
same time are part of exactly one user code as required.

It is also immediate to see that an (F 2; R0; F; 2) OA can be
obtained from an (F 2; R; F; 2) OA with R0 < R, by removing
R � R0 rows. Hence, we only need to construct a few OAs
to cover most of the cases. We will now start by describing
a simple construction method for (F 2; F; F; 2) OAs with F a
prime power, relying on two dimensional finite affine spaces.
Next, we will extend them to (F 2; F+1; F; 2) OAs by relating
them with finite projective spaces. This two step approach will
show its benefits in Section IV.

A finite affine space AG(2; F ) of dimension 2 over a finite
field K = GF (F ), with F = pk for some p prime and k � 1,
consists of a set V of F 2 points having coordinates of the
form (x1; x2) with xi 2 K, for i = 1; 2. Through every two
points in such a space, there exists exactly one line and every
line holds exactly F points. This implies that there are exactly
C =

�
F 2

2

�
=
�
F
2

�
= F 2(F 2 � 1)=F (F � 1) = F 2 + F different

lines in AG(2; F ). Further, every two lines intersect in at most
one point.

Each line is characterized by the F points that it holds.
We can produce a list of lines by iterating over all 2-element
subsets of V and determining the coordinates of the remaining
F � 2 points. Given two points a = (a1; a2) and b = (b1; b2),
we first compute the difference vector b�a as (b1�a1; b2�a1),
where ai; bi 2 K and bi � ai 2 K is determined via the
subtraction operation of the finite field K. The F points of the
line through a and b are then given by fa+c�(b�a)jc 2 Kg,
where � denotes the product in K. Clearly, setting c = 0 and
1 simply reproduces the points a and b.

For example, for F = 3 there are nine points (0; 0); (0; 1),
(0; 2); (1; 0); : : : ; (2; 2). If we relabel these as 1 to 9,
the 12 lines can be written as 123; 456; 789; 147; 258; 369;
159; 267; 348; 357; 249 and 168 (see also Figure 1).

Let us now choose F parallel lines (which we will refer
to as a spread, as each point is included in exactly one of
the F lines), and arrange the points in a matrix such that
each parallel line corresponds with one column. Since these
F parallel lines hold all the F 2 points of the space and every
other line holds F points that never share 2 points with one
of the chosen parallel lines, all other lines must cross each

1 2 3 1 3 2 3 2 1
1 2 3 2 1 3 2 1 3
1 2 3 3 2 1 1 3 2
1 1 1 2 2 2 3 3 3

TABLE I: Example of the F 2 translation codes for F = 3 and
R = 3 and 4 stemming from the two dimensional affine and
projective space over GF(3)

column exactly once. Mapping a line on a translation code is
then accomplished by letting the i-th symbol of the translation
code correspond to the row number of the point where the
line crosses the i-th column. These remaining F 2 lines of the
affine space AG(2; F ) then form F 2 translation codes for a
(F 2; F; F; 2) OA.

In our earlier example of F = 3, we can pick the three lines
123; 456 and 789 as the spread defining the three columns. For
each of the remaining nine lines we can now use the above
mapping. For instance, for the line 168, we find that it uses
the first point of 123, the third point of 456 and the second
point of 789, thus its corresponding translation code is 132. If
we repeat this for all the nine points we end up with the nine
length 3 translation codes found in the first three rows of Table
I. Notice, any two rows hold each of the nine combinations
exactly once.

An (F 2; F + 1; F; 2) OA can be constructed from a finite
projective space PG(2; F ) of dimension 2 over a finite field
K = GF (F ), with F = pk for some p prime and k � 1. The
projective space PG(2; F ) can be constructed from the affine
space AG(2; F ) by adding points at infinity. For our purpose,
for each difference vector b� a, and thus each spread, except
for the one corresponding to the chosen set of parallel lines,
we add a single point to AG(2; F ) and we also add this point
to each of the F lines that correspond to this difference vector,
such that each line now carries F +1 points. Hence, we have
F 2 lines each holding F + 1 points and we have F (F + 1)
points. We now add one column to the F columns formed by
the chosen spread and this extra column holds the F added
points. Finally, we apply the same procedure by letting the i-th
symbol of the translation code correspond to the row number
of the point where the line (holding F +1 points) crosses the
i-th column, meaning the translation codes are now of length
F + 1.

Continuing our earlier example, we add three points labeled
10; 11 and 12. The point 10 is also added to the lines 147; 258
and 369, as they all have the same direction (being (0; 1)),
likewise point 11 is added to the lines 159; 267 and 348
(direction (1; 1)) and point 12 to 357; 249 and 168 (direction
(1; 2)). The fourth column now reads 10; 11; 12 and therefore
the OA is obtained by adding 111222333 as a fourth row to
the OA of the affine space as shown in Table I.

A summary of all OAs obtained from combining this
construction with the property that an (F 2; R; F; 2) can be
constructed from a (F 2; F + 1; F; 2), with R < F + 1, can
be found in Table II. It contains also a few more OAs which
can be found in the literature in case F is not a prime power.



F=R 3 4 5 6 7 8 9 10
2 OA
3 OAr OA
4 OAr OAr OA
5 OAr OAr OAr OA
6 SR30
7 OAr OAr OAr OAr OAr OA
8 OAr OAr OAr OAr OAr OAr OA
9 OAr OAr OAr OAr OAr OAr OAr OA

10 SR34 SR51

TABLE II: Overview of orthogonal arrays for R;F � 10.
OA refers to orthogonal arrays which can be constructed as
described in this paper. OAr are also resolvable. SR30, SR34
and SR51 refer to the orthogonal arrays described in [11].

Furthermore, the resolvable OAs are also identified in this
table. The definition and usefulness of resolvability will be
discussed in the next Section.

IV. ARBITRARY POPULATION SIZES

For the assignment schemes that relied on user codes, we
already mentioned that either random selection or code reuse
will be used when there are more users in the system than user
codes. In this section we address the issue of having less users
C than user codes. In this case, we will select C user codes
out of the total set, but a bad selection can result in degraded
performance, as was already pointed out in [1]. Intuitively, we
want each slot to be used by an equal number of users, as
one can expect this to yield a good bandwidth usage. This
also leads to closed form formulas for the success probability,
keeping in mind that this does not always results in an optimal
success probability.

There are several population sizes where a fair selection can
be made, in the sense that each slot is used by equally many
user codes. For this, we will rely on the resolvability of both
the single carrier user codes of [1] and the OAs stemming from
the affine spaces discussed earlier. A set of user codes is called
fully resolvable when all the user codes can be partitioned
into a number of subsets, where each subset contains every
slot exactly once. A partial form of resolvability would be to
demand that the codes can be partitioned into a number of
sets, such that in each set every slot is used equally often. We
will select the C codes by first assigning all the user codes in
the first partition, followed by the codes in the second partition
and so on until all users have received a code. The order in
which the partitions are considered will have no impact on the
performance.

The resolvability of single carrier user codes was already
addressed in [1]. These N(N � 1)=R(R � 1) user codes are
typically only partially resolvable. More specifically, for N =
1 mod R(R�1) the user codes can be partitioned into (N�
1)=R(R�1) sets of size N each, such that each set uses every
slot R times. For the case where N = R mod R(R� 1) we
had a single set of size N=R and (N �R)=R(R� 1)+1 sets
of size N .

The resolvability of OAs with F = R can be seen directly
from the affine geometry based construction method in Section

III, that is, these designs are fully resolvable by associating a
partition with each difference vector, meaning every partition
holds F translation codes. Thus, as pointed out by Table II,
OAs with F = R and F a prime power are resolvable. One
can also easily check that reduced OAs (i.e., with R < F ) are
also resolvable.

Due to these two results the user codes developed in the
previous section are also partially resolvable and the partitions
have the following sizes. For N = 1 mod R(R�1), we find
that all the partitions have the same size being FN , where
every slot is used R times. If N = R mod R(R�1), the first
partition has size FN=R, while all the other partitions have
size FN . In case the single carrier code is fully resolvable, so
is the F carrier code and all the partitions have size FN=R
and utilize each slot exactly once.

In general, the existence and resolvability of an
(F 2; R; F; 2) OA is not fully known, except when F is
a prime power, in which case existence implies R � F + 1,
and resolvability implies R � F [12].

V. PERFORMANCE ANALYSIS

In this section we derive closed formulas for the success
probability of all the dynamic assignment schemes introduced
in Section II, as the static schemes were already covered in [1].
If the scheme relies on user codes and the number of users is
less than the number of user codes, we assume that the number
of user codes C required is such that C = P1 + : : :+ Pz , for
some integer z, where P1 to Pz are the sizes of z different
partitions introduced in the previous section. In other words,
if the user codes are resolvable C is a multiple of FN=R, if
not it suffices that it is a multiple of FN (or F plus a multiple
of FN if N = R mod R(R�1)). Hence, for these C values
every slot is used equally often, allowing us to obtain closed
formulas for the success probability.

These closed formulas even apply for any population size
C, by introducing a simple rotation scheme. Suppose that Ck
is the smallest value that meets the above criteria for which
C < Ck holds (and thus each slot is used equally often). We
can apply this list of codes to a smaller size C population
as follows. At the start of each frame, the active population
selects a random subset of C out of Ck codes. If this selection
is randomly chosen such that each code is still used at most
once and each subset appears equally likely, we operate as
if there were Ck users operating on the channel. As such the
closed formulas still apply. A practical implementation for this
permutation system could be based on a globally distributed
random seed. After each frame, a new random number is
generated simultaneously and identically by all users. Based
on this number, a specific permutation is chosen.

A. Dynamic random selection

Let us first calculate the success probability for the random
selection scheme, where first R timeslots are selected at
random, followed by a random selection of the slots per
timeslot. We first apply an inclusion-exclusion argument to



determine the probability p
(B1)
suc (W ) that a tagged users is

successful provided that W � 1 other users transmit, i.e.,

p(B1)
suc (W ) =

RX
i=1

(�1)i+1
�
R

i

�
f (B1)(W; i); (1)

where f (B1)(W; i) is the probability that none of the W � 1
other users transmit in a particular set of i slots belonging
to the user code of our tagged user. As
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j
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N�i
R�j
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R
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is

the probability that a user selects j identical timeslots as the
tagged user and for each of these j timeslots this user selects
a different carrier with probability (F � 1)=F , we have

f (B1)(W; i) =

0
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: (2)

We further assume that each user generates packets according
to a Poisson process with rate �. As was done in [1], if multiple
packets are generated by a single user in a length N interval,
they are combined into one message that is transmitted R times
in the next interval. Thus, with probability p = 1 � e��N , a
user will participate in a length N interval. The total load
on the contention channel therefore matches � = pC=(NF )
(per slot). Hence, the overall success probability under Poisson
arrivals matches

p(B1)
suc =

CX
W=1

�
C � 1

W � 1

�
pW�1(1� p)C�W p(B1)

suc (W )

=

CX
W=1

W

�NF

�
C

W

�
pW (1� p)C�W p(B1)

suc (W ):

(3)

When generating numerical results, we will typically fix p and
consider various population sizes C resulting in different loads
�.

B. Dynamic F carrier codes

Next, we consider the fourth dynamic scheme that uses
the user codes of Section III. As discussed in Section IV we
assume that the population size is such that each slot is used
equally often. Notice, this means that C is always a multiple
of FN=R and denote C = kFN=R. The analysis is identical
to the random selection in the sense that Eqns. (1) and (3)
still apply, except that f (B1)(W; i) must be replaced by an
appropriate function f (B4)(W; i).

We can apply the same argument as in [1]. Due to the design
of the selection algorithm, each slot is shared by exactly k user
codes. Thus, if we tag a user, each slot belonging to its user
code c will be shared by exactly k � 1 other users. Also, the
set of codes that contain one slot of c will be disjoint with a
code that shares any other slot with c. Hence,

f (B4)(W; i) =

�
(C�1)�i(k�1)

W�1

�
�
C�1
W�1

� ;

as the active users may not belong to the set of the i(k � 1)
users that share a slot with the i particular slots. For k = 1,
this expression reduces to pB4

suc(W ) = 1. If the population C

exceeds F 2N(N�1)=R(R�1) we will use random selection
for the additional users and the success probabilities for this
case can be calculated using the same approach as in [1].

C. Dynamic single carrier codes

In this section we simultaneously treat the second and third
dynamic selection scheme. We start by assuming we have
enough user codes, i.e., C � N(N � 1)=R(R � 1). Once
more, it suffices to find an expression for f (B2;3)(W; i) and
plugging this into Eqns. (1) and (3).

Analogue to the previous section we now denote C =
kN=R, such that each timeslot is part of exactly k user codes,
meaning i(k�1) other users share one timeslot with the i par-
ticular timeslots of our tagged user. As opposed to the previous
section, some of these users may also attempt transmission as
they might select a different carrier when using the same times-
lot. With probability

�
(C�1)�i(k�1)

W�1�s

��
i(k�1)

s

�
=
�
C�1
W�1

�
, there are

s users among the other W � 1 active users that share a
timeslot with our tagged user. As these users only share one
timeslot, each one does not use one of the i particular slots
with probability (F�1)=F , irrespective of whether the second
or third dynamic scheme is used, hence:

f (B2;3)(W; i) =

W�1X
s=0

�
(C�1)�i(k�1)

W�1�s

��
i(k�1)

s

�
�
C�1
W�1

�
�
F � 1

F

�s
:

Therefore, both schemes coincide for small population sizes.
Moreover, if we have more than jSN;Rj = N(N�1)=R(R�1)
users and the additional users use random selection, both
schemes still coincide and the success probability can be
computed in a manner similar to [1] when we combine random
users with user code based users.

Both scheme however no longer coincide for C > jSN;Rj
when we distribute the user codes multiple times, i.e., in case
of code reuse. In this case, each code is used at least � =
bC=jSN;Rjc times, while some codes may be used �+1 times.
Therefore, with probability p� = �((�+1)jSN;Rj�C)=C the
tagged user has a code that is used � times and its success
probability can now be written as

p(B2=B3)
suc (W ) =

RX
i=1

(�1)i+1
�
R

i

�
�

�
p�f

(B2=B3)
� (W; i) + (1� p�)f

(B2=B3)
�+1 (W; i)

�
;

where f
(B2=B3)
j (W; i) is the probability that the i particular

slots are not used by the other W � 1 users provided that
the tagged user’s code is distributed j times among the user
population, for j = � or � + 1. Thus, for the third dynamic
scheme we find that f (B3)

j (W; i) can be written as

j�1X
v=0

W�1�vX
s=0

�
(C�j)�i(k�j)
W�1�s�v

��
i(k�j)

s

��
j�1
v

�
�
C�1
W�1

�
�
F � 1

F

�s+vi
;

for j = � and � + 1, as there are j � 1 other users that
use the same user code and thus share each of the i timeslots
and i(k� j) other users share a single timeslot. Thus, if v of
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Fig. 2: N = 49, R = 3, F = 4, p = 0:002. The failure
probability for the proposed dynamic schemes based on user
codes.
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Fig. 3: N = 49, R = 3, F = 4, p = 0:002. Comparison
between the fully random selection strategies and the best user
code based schemes for both assigment policies.

the j � 1 users are among the W � 1 users, each does not
coincide with probability ((F � 1)=F )i, while each of the s
users belonging to the group of i(k � j) users does not use
any of the i slots with probability (F � 1)=F .

For the second dynamic scheme, each of the v users that
make use of the same user code as our tagged user, does not
use the set of i slots with probability (F � 1)=F as all the
R transmission attempts occur on the same randomly chosen
carrier, meaning the factor ((F � 1)=F )s+vi is replaced by
((F � 1)=F )s+v and f

(B2)
j (W; i) can be simplified to

W�1X
s0=0

�
(C�j)�i(k�j)

W�1�s0

��
i(k�j)+j�1

s0

�
�
C�1
W�1

�
�
F � 1

F

�s0
:

VI. NUMERICAL RESULTS

For brevity, we will refer to the single carrier user codes
as BIBD codes, while the user codes developed in Section
III are termed the GDD codes. Figure 2 compares the failure
probability for the proposed dynamic schemes. Here, N = 49,
R = 3, F = 4 and p = 0:002. If we focus on the second and
third dynamic scheme, which we denote as B:2 and B:3, both
making use of the N(N � 1)=R(R � 1) = 392 BIBD codes,
we find that random selection is the best policy to support
C > 392 users, as was the case in the single carrier case
[1]. In case of code reuse, the policy where each of the R
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Fig. 4: N = 49, R = 3, F = 4, p = 0:002. The relative failure
probability for a cross comparison between the random and
user codes, and the dynamic and the random scheme.

transmissions select a random carrier (B:3) is clearly superior
to selecting the same random carrier for all R transmissions
(B:2). This can be intuitively explained by looking at two
users sharing the same code at the same time. The carrier
selection of the first transmission is identical for both systems;
if they both select the same carrier, policy B:2 implies R
collisions, which does not necessarily occur with B:3. This
performance penalty is severe, even if the number of users is
only marginally larger than 392. The fourth dynamic policy
B:4, based on the GDDs, is superior over the entire range of
population sizes. In the above example, the 392F 2 = 6272
codes suffice for all population sizes considered.

To highlight the difference between the static and random
assignments, we included Figure 3, which contains only the
best user code based approaches and random selection strate-
gies, for the same parameters as in Figure 2. For the code
based approach, we see that the static and dynamic assignment
schemes coincide, as long as the former does not run out of
user codes, which happens F = 4 times faster for the static
scheme (i.e., at 392F versus 392F 2). This similarity can be
explained by regarding the static scheme as a dynamic scheme,
with translation codes which place each user on a single
carrier (see also Section III). This contrasts with the fully
random selection schemes, where static assignment induces a
significant performance penalty. In either case, the user codes
provide a significantly lower failure probability. Notice, the
additional increase in the loss probability for the GDD scheme
when C exceeds 6272 is hardly noticeable.

The relative failure probability for this example is shown
in Figure 4, by cross comparing the random and user codes,
as well as the dynamic and the random scheme. It further
amplifies the large gains that can be achieved by a code-based
approach in comparison with a random selection strategy. It
also shows that the GDD codes are able to half the loss
probability of the BIBD codes for certain population ranges.

Very similar conclusions can be drawn for other N , R, p and
F values, where for F = 1 carrier the static and dynamic cases
coincide. A higher number of carriers F typically increases the
difference between the static and dynamic random selection
strategy, as well as between the two dynamic BIBD policies
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Fig. 5: Evolution of the optimal number of transmissions for N = 61, depending on the number of carriers. The solid lines
define the regions for the user codes (B:4), whereas the dashed lines represent the dynamic random selection (B:1).

with code reuse. The dynamic BIBD schemes remains constant
in terms of the number supported users, whereas this number
grows linearly for the static BIBD scheme and quadratically
for the GDD scheme. The latter thus outperforms all other
schemes for any parameter setting, with a slightly lower
performance gain compared to the dynamic random scheme
if the number of users becomes large (i.e., several thousands).
Although not shown in a figure, additional numerical examples
indicate that for a given loss tolerance �, about 20% more
users can be supported by the GDD codes when compared to
a dynamic random selection strategy for large ranges of p.

Finally, in Figure 5, the optimal R (i.e., which achieves the
highest p, 1 � R � 5) is shown for both the GDD scheme and
the dynamic random scheme, for a large range of population
sizes and loss tolerances. For 1 carrier, as indicated in [1], the
optimal R depends heavily on both the loss tolerance and the
population size C, where the latter was mainly influenced by
the number of codes available. As the number of frequencies
F becomes larger, the optimal R becomes less dependent on
C, as is the case for the random selection strategy. In effect,
the optimal number of transmissions R for both scenarios
converge when further increasing the number of carriers, even
though their corresponding loss probabilities do not. Notice
that setting F = 3 and R = 5 is only of theoretical interest,
as no OAs exist for these parameters.

VII. CONCLUSION

We showed how multi-carrier multiple access systems with-
out feedback can benefit from specific user patterns, relying
on single and multi-carrier user codes (BIBDs and GDDs).
More specifically, we introduced two static and four dynamic
assignment strategies, identified the multi-carrier equivalent of
the BIBDs used in [1] for the single carrier case and provided
a simple construction method based on finite affine and

projective spaces. By means of closed formulas, we generated
numerical results that indicated that the dynamic scheme is
superior in case of random selection. When exploiting user
codes however, both systems have similar success probabilities
for fairly small population sizes, while for larger populations
the GDDs clearly outperformed all other schemes and given a
loss tolerance typically allows 20% more users in the system.
We also studied the optimal number of transmission attempts
as a function of the loss tolerance and user population size C
and demonstrated that this value becomes far less dependent
on C as the number of carriers increases.
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