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Abstract—In this paper we present a new analysis of energy
consumption in cellular networks. We focus on the distribution of
energy consumed by a base station for one isolated cell. We first
define the energy consumption model in which the consumed
energy is divided into two parts: The additive part and the
broadcast part. The broadcast part is the part of energy which
is oblivious of the number of mobile stations but depends on
the farthest terminal, for instance, the energy effort necessary
to maintain the beacon signal. The additive part is due to the
communication power which depends on both the positions,
mobility and activity of all the users. We evaluate by closedform
expressions the mean and variance of the consumed energy. Our
analytic evaluation is based on the hypothesis that mobilesare
distributed according to a Poisson point process. We show that
the two parts of energy are of the same order of magnitude and
that substantial gain can be obtained by power control. We then
consider the impact of mobility on the energy consumption. We
apply our model to two case studies: The first one is to optimize
the cell radius from the energetic point of view, the second one
is to dimension the battery of a base station in sites that do not
have access to permanent power supply.

I. I NTRODUCTION

According to the GSM Association,more than 80% of
a typical mobile network operator’s energy requirements are
associated with operating the network. The typical annual CO2
emissions per average GSM subscriber is now about 25kg CO2,
which equates to the same emissions created by driving an
average European car on the motorway for around one hour.
However, the mobile industry continues to look for ways to
reduce energy needs. Air conditioning is being replaced by
fans or passive air flows whenever possible. Several programs
are aiming to deploy solar, wind, or sustainable bio fuels
technologies to 118,000 new and existing off-grid base sta-
tions in developing countries by 2012. Network optimization
upgrades currently can reduce energy consumption by 44% and
solar-powered base stations could reduce carbon emissionsby
80%. Optimization of the physical network through improved
planning and the spectrum allocations for mobile broadband
can also contribute to significant energy savings.

As a consequence of the previous statements, it appears
clearly that energy consumption must be taken into consid-
eration at the very beginning of the conception of cellular
networks. For the development of cellular communications in
emerging countries, it is necessary to be as energy conservative
as possible by using the least possible number of base stations
for a given quality of service. As the size of a cell covered bya
given base station depends essentially on the emitting power of
its antenna, the smaller the size of a cell, the less the consumed

energy. However, when base stations cover a small region,
many of them are necessary to cover a given region. There
is thus a trade-off between the number and the coverage of
each base stations. In order to fix the optimal radius of a cell,
one must have quantitative models of the energy consumed at
a base station in terms of positions, locations and traffic of
the terminals. Furthermore, if we think about the deployment
of base stations in low populated regions without power
supply, base stations should be energetically autonomous,thus
powered by a battery, be it solar or chemical. The energy
consumed in such a situation is thus a key parameter in the
building of a cellular network. These are the two questions we
aim to answer in the following considerations.

Several measurement based analysis pointed out the dif-
ferent aspects in energy consumption (see [1], [2], [3], [4]
and references therein). In [5], some models are proposed
for the activity of a single terminal and the resulting energy
consumption. In [6], [7], the choice of the cluster heads in
Ad-Hoc networks integrates energy consumption consideration
and take into account the geometry of the terminals by consid-
ering the proximity graph. In [8], energy saving motivates to
use network coding in ad-hoc networks. As a conclusion, there
are many investigations about how to save energy but no model
seems to emerge in order to evaluate quantitatively the energy
consumption. There is however one notable exception which is
the paper [9]. In that work, a stochastic geometry based model
for energy consumption in a cellular network is considered.
It assumes that mobiles are connected to their closest base
stations and introduces an energy consumption model based
on the distance between base stations and mobiles, taking
into account interference due to the presence of several base
stations. We go further in this direction by considering a
refined model for the energy consumption in an isolated cell,
as it includes the energy devoted to broadcast messages (like
the beacon signal) and takes into account both traffic activity
and users mobility. Moreover, instead of relying on simulation
results, we give as much as possible closed form formulas
for different statistics of the energy consumption. This leads
to qualitative results showing the importance of the path-loss
exponent (see below for its definition).

This paper is organized as follows: In Section II, we rec-
ollect basic and advanced facts about Poisson point processes
in general spaces. We then present the system model based
on a Poisson point process including not only the positions
but also the traffic activity and the mobility pattern of each
user. In Section IV, we first evaluate the consumed energy for
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motionless users. We show, in Section V, that mobility does
not change the mean value but decreases the variance of the
consumed energy. Thus, as far as dimensioning is concerned,
it is conservative to consider that users do not move. We
apply these considerations in Section VI to two case studies:
Finding the optimal radius of a cell under energy constraints
and estimating the power of a battery to maintain a functioning
network during a given time.

II. A PRIMER ONPOISSON POINT PROCESS

A Poisson processN on the real line admits a usual
description based on a sequence(Sn, n ≥ 1) of independent
exponentially distributed random variables. Denote byλ the
parameter ofS1. The atoms of a Poisson process are the
sequence(Tn = S1 + . . . + Sn, n ≥ 1). Then, one can
prove [12] that the number of points in a domain of Lebesgue
measurel is a Poisson random variable of parameterλl.
Moreover, givenN(D) = n, i.e. given the number of points
in D is equal ton, the atoms ofN are independently and
uniformly distributed overD. This explains the definition of
a Poisson process in any dimension.

Definition 1. πµ a measure on the set configuration onE =
Rd, is a Poisson point process (PPP) of intensityν if for all
sets(C1, · · · , Cn) of mutually disjoint compact subsets ofE:

P(N(C1) = k1, · · · , N(Cn) = kn)

=

n
∏

i=1

(

e−ν(Ci)
(ν(Ci))

ki

ki!

)

. (1)

If ν( d z) = λ d z, πν is called the homogeneous Poisson point
process with intensity parameterλ on Rd.

Actually, words for words, this definition does not need that
E is anRd-like space. For the mathematical details to work,
it is sufficient to haveE a metric space with some weak
topological properties. It is a useful point of view since it
is often interesting to add some information to the location
of users when these are represented by the realization of
Poisson point process. For instance, one may want to add to
the position of a customer, the fading and/or the shadowing
he is experiencing, his traffic rate, etc. In the simplest case,
all these characteristics should be independent from one user
to the other and identically distributed. We then say that they
aremarksof the Poisson process. Under the above mentioned
hypothesis of independence and identity in distribution, the
process whose particles are couples(x, v) is still a Poisson
process on the product spaceRd×V whereV is the space in
which the marks “live”. The intensity measure of this process
is the product ofλ dx times the probability distribution of
the marks, denoted bydV(v). Many quantities we are longing
to compute are expressible as a sum over the points of a
realization of a deterministic function:

F =
∑

x∈η

f(x,m)

where η is a realization ofπµ. The calculations of the
different moments of such a functional turn to be known and

resort to the Bell polynomials. The complete Bell polynomials
Bn(a1, ..., an) are defined as follows:

exp

{

∞
∑

n=1

an
n!
θn

}

=

∞
∑

n=1

Bn(a1, a2, ..., an)

n!
θn

for all a1, ..., an andθ such that all above terms are correctly
defined. The first four Bell complete polynomials are given
as:

B1(a1) = a1

B2(a1, a2) = a21 + a2

B3(a1, a2, a3) = a31 + 3a1a2 + a3

B4(a1, a2, a3, a4) = a41 + 4a21a2 + 4a1a3 + 3a22 + a4

Theorem 1 (Generalized Campbell’s formula). Let
νλ( dx, d v) = λ dx ⊗ dV(v) and n be an integer
and assume thatf ∈ Lp(E, νλ) for p ≥ n. The moments of
F are given by:

E [Fn] = Bn

(
∫

E

f(z) d νλ(z), · · · ,
∫

E

fn(z) d νλ(z)

)

wherez = (x, v).

Poisson point processes enjoy a lot of useful properties
for thinning, superposition and displacement which roughly
say that whatever one of these transformations we apply to a
Poisson point process, the resulting process is still a Poisson
point process with a tractable intensity measure (see [10] for
complete references). In the forthcoming computations, we
need a more recently established property. From [13], [14],
we have the following theorem.

Theorem 2. Let νλ( dx, d v) = λ dx ⊗ dV(v) and πνλ be
a Poisson process of intensity measureνλ. For some function
f sufficiently integrable, letF (η) =

∑

x∈η f(x, v) and

F̃ (η) =
F (η) −

∫

f(x, v)νλ( dx, d v)
(∫

f(x, v)2νλ( dx, d v)
)1/2

·

For any p ≥ 1, let

m(p, λ) = (

∫

C

f2(x, v)νλ(dx, d v))
−p/2

× (

∫

C

|f(x, v)|pνλ( dx, d v).

Let µ be the standard Gaussian measure onR and µ3, the
measure given by

dµ3(x) = (1 +
1

6
m(3, λ)H3(x)) dµ(x),

whereH3(x) = 8x3 − 12x is the third Hermite polynomial.
Then,

sup
‖ψ‖

C3

b

≤1

∣

∣

∣

∣

E

[

ψ(F̃ )
]

−
∫

R

ψ dµ3

∣

∣

∣

∣

≤ Eλ
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where

Eλ =

(

m(3, 1)2

6
+
m(4, 1)

9

√

2

π

)

λ−1.

This means that forEλ small, the distribution ofF̃ is in
some sense very close toµ3.

III. SYSTEM MODEL

For the application we have in mind, i.e. deployment of a
cellular network in low populated region, one can consider an
isolated cell, neglecting the interference from adjacent base
stations. To simplify the computations, we consider that the
region covered by the base station, hereafter called the cell
and denoted byC, is circular of radiusR, centered at the
base stationo. The forthcoming analysis can be extended to
any bounded domain of coverage but the integrals would have
to be numerically evaluated. The terminals are identified toa
cloud of points, which we denote byη, whose elements are
the positions of each terminal in a domain larger thanC.

The power consumed by the battery of the base stationo
can be divided into two parts:

• The power dedicated to transmit, receive, decode and
encode the signal of any active user. The cumulative
power over the whole configuration is then the sum over
all terminals of the energy consumed for each one.

• The power dedicated to broadcast messages. In order to
guarantee that all active users receive these messages, the
power must be such that the farthest user in the cell is
within the reception range (if the system performs power
control) or all the cell is within reception range (if the
system does not perform power control). Thus, the power
is a function of the maximum distance between the base
station and the terminals or it is constant if power control
is not performed.

For a very simple propagation model (without fading and
shadowing), the Shannon’s formula states that for a receiver
located atx, the transmission rate is given by

W log2(1 + Pel(x)),

whereW is the bandwidth,Pe is the transmitted power and
l(x) is the path-loss function. This implies that in order
to guarantee a minimum rate at positionx, Pe must be
proportional to1/l(x). Usual choices of path-loss functions
are of the forml(x) = |x|−γ (singular path-loss model) or
l(x) = (r0∨|x|)−γ or l(x) = (1+ |x|−γ)−1. The forthcoming
analysis does not depend on a particular choice, so we keep
it generic. It follows that for a user configurationη, the total
consumed power, in presence of power control, is given by:

P (η) = βA
∑

x∈η∩C,x active

l−1(x) + βB max
x∈η∩C

l−1(x)

:= PA(η) + PB(η),

whereβA andβB are multiplicative factors defined below. The
subscript A stands for "additive" and B stands for "broadcast".
The term

∑

x∈η l
−1(x) means that we add over all pointsx of

b

b

b

b

b

b

bc

bc

bc

bc

bc

bc
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Time

0

t

User1 2 3 4 5 6

Figure 1. Illustration of the model, each user is associatedwith a ON-OFF
process and a mobility process.

the configurationη, the value ofl−1(x). Now, if the terminals
are moving, we denote byηt the configuration at timet which
represents the locations of all terminals at this instant. Since
the energy is the integral of the power over time, the total
consumed energy between time0 and timeT is given by

JT := JT (η, T ) =

∫ T

0

PA(ηs) d s+

∫ T

0

PB(ηs) d s

= JA(η, T ) + JB(η, T ).

We should also add a constant part for the energy associated to
operate the network but it doesn’t alter the statistical aspects
we aim to analyze.

For years, models for the locations of users in cellular
networks were left aside considering a sort of diffuse ether
from which a density of calls per unit of surface and unit
of time would emerge. After [10], [11], we know how to
represent users locations by a Poisson point process. Note that
according to the Mecke formula (2), the earlier fluid model can
be viewed as a space average of this refined description. As
is, one cannot expect to compute variances and higher order
statistics from this model. We hereby consider that terminals
are initially located according to a Poisson point process in
the plane, of intensityλ: for two disjoint bounded subsets
of the plane, the random variables counting the number of
users in each subset are independent and Poisson distributed
with parameterλ times the surface of the subset. We enrich
the Poisson point process description by adding traffic and
mobility characteristics. The traffic of the user initiallylocated
at x, is an ON/OFF process, denoted byAx, independent of
the position of the user. We assume, as usual, that all the
traffic processes of all users are independent and identically
distributed. Moreover, at the beginning of the time observation
window, they have all reached they stationary state (supposed
to exist). We denote byπON the probability for a given traffic
process to be in its ON phase at any given time. One simple
example of such a process is the exponential ON/OFF model,
in which exponentially distributed ON periods alternate with
exponentially distributed OFF periods. If we denote byµON
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andµOFF the parameters of the exponential distributions, then
πON = µOFF/(µON + µOFF). The choice of a traffic model
boils down to choose a probability measure on the spaceT

of piece-wise, two valued, functions. We denote byT this
probability measure, henceT ( d a) is the probability to have
a traffic process close to the processa and

∫

H(a) T ( d a) = E [H(A)] ,

means that we compute the mean value of a functionH with
respect to all possible values of the generic traffic processA.
We also envision the impact of mobility on energy consump-
tion. We just assume that users move independently and are
statistically indistinguishable: IfMx denote the movement of
user initially located atx, so that its position at timet is
x +Mx(t), then we assume that the collection of processes
(Mx, x ∈ η0) are independent and identically distributed.
Besides the motionless situation whereMx(t) = o for any
t and any x, the simplest model is that constant speed
movement:Mx(t) = vxt where the vectors(vx, x ∈ η0) are
independent and identically distributed overR2. Choosing a
mobility model boils down to determine a probability measure
M on the spaceC of continuous functions onR2, starting
at o. Putting the pieces together means that we consider a
Poisson process of the product spaceR2×T×C with intensity
λ dx⊗T ( d a)⊗M( dm). In plain words, this means that a
user, say located atx, is equipped with a traffic processAx
and a mobility processMx such that all these processes are
independent and identically distributed among all users.

Moreover, the so-called Mecke formula stands that

E

[

∑

x∈η

ζ(x, Ax, Mx)

]

=

∫∫

ζ(x, a, m)λ dx T ( d a)M( dm), (2)

for any bounded functionζ. The configuration of users at
time t is

ηt =
∑

x∈η0

δx+Mx(t),

while the configuration of active users is
∑

x∈η0

Ax(t) δx+Mx(t).

In particular, the additive part of consumed energy can be
rewritten as:

JA(η, T ) =
∑

x∈η0

∫ T

0

Ax(t)l
−1(x +Mx(t))1x+Mx(t)∈C d t

(3)
and the broadcast part is:

JB(η, T ) =

∫ T

0

max
x∈ηt∩C

l−1(x+Mx(t)) d t. (4)

IV. M OTIONLESS USERS

When users do not move, from (3), we get

JA(η, T ) = βA
∑

x∈η0

1x∈C

(

∫ T

0

Ax(t) d t

)

l−1(x),

so thatJA(η, T ) appears as a shot noise process. In view of
Theorem 1, we can compute easily the moments of any order
of the additive part.

Theorem 3. For motionless users, the moments ofJA(η, T )
are given by:

E [JA(η, T )
n] = Bn(α1, · · · , αn)

where

mk (A, T ) = ET





(

∫ T

0

A(s) d s

)k


 for k ≥ 2.

and

αk = λβkAmk (A, T )

∫

C

|l−1(x)|k dx.

In particular, for the singular path-loss model,

E [JA(η, T )] =
2βA
γ + 2

ρRγ T (5)

wheren = λπR2 is the mean number of terminals into the
cell and ρ = n πON is the mean number of active customers
in the cellC of radiusR.

We now show how to determineβA. If Pe denotes the power
emitted by a mobile located atx from the base station, since
we do not take into account interference, shadowing and fad-
ing, the received power at the base station isPr = PeK l(x)
whereK = (c/4πfdref )

2dγref , f is the frequency of the radio
transmission,c is the light celerity anddref is the so-called
reference distance. Since the base station can detect a signal of
power greater thanP r

min, this requires thatPe is greater than
P r
min/Kl

−1(x). One can consider that the same considerations
hold for the downlink channel so thatβA = 2P r

min/K. In
practical situation,P r

min is of the order of10−9 mW andf
around2 GHz, henceβA varies between2.10−10 for γ = 5
to 2.10−8 for γ = 3.

On the other hand, without power control, letP ′
r the power

sufficient to ensure a reception at any point of the cell. If
we denote byP b

min the minimum power for the beacon to be
detected by a mobile at distanceR from the base station, we
should have

KP ′
r

Rγ
≥ P b

min.

This amounts to say that we can takeβB = P b
min/K. Usually,

P b
min is around10−8 mW. In the usual frequency bands, we

obtainβB varying from10−9 for γ = 5 to 10−7 for γ = 3. If
there is no power control, the energy consumed for the beacon
is thus equal to

J0
B(η, T ) = βBR

γT. (6)
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If power control is used, the power should be adjusted for the
farthest terminal to be able to receive the beacon signal:

P b
min

K
max
x∈η∩C

l−1(x) = βB max
x∈η∩C

l−1(x).

Hence, in absence of movement,

JB(η, T ) = βBT max
x∈η∩C

l−1(x).

Since all the usual path-loss functions depend only on the
distance betweenx ando, let L be defined asL(‖x‖) = l(x).
From the remark that

( max
x∈η∩C

‖x‖ ≤ u) = (η(B(o,R)\B(o, u)) = 0),

it follows from (1) that the random variableδ =
maxx∈η∩C ‖x‖ has probability density function:

fδ(u) = 2λπe−λπR
2

u eλπu
2

.

The next result follows.

Theorem 4. For motionless users, with power control, the
consumed energy to maintain the beacon signal, denoted by
JpB has moments given by:

E
[

(JpB(η, T ))
k
]

= (βBT )
k
∫ R

0

(L−1(u))k fδ(u) du,

for any k ≥ 1. (7)

For the singular path-loss function, we obtain

E [JB(η, T )] = e−n
n
−γ/2

∫

n

0

vγ/2ev d v J0
B(η, T ).

Thus the gain of power control does depend only on the
mean number of terminals whatever the radius, be it a few
meters or some kilometers. Figure 2 shows that, as expected,
the gain is higher for lower load.

0 10 20 30 40 50

Mean number of terminals

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G
a
in

Figure 2. The energy gain with power control.

In view of (5) and (6), we have

κ :=
E [JA(η, T )]

J0
B(η, T )

=
2

γ + 2

ρβA
βB

=
2

γ + 2

ρP r
min

P b
min

· (8)

Sinceρ, the mean number of active users is of the order of
10 to 50, in view of the values ofβA andβB, (8) says thatκ
depends essentially of the ratio betweenP r

min andP b
min. For

the values we considered, this means thatJA andJB are of
the same order of magnitude.

V. I MPACT OF MOBILITY

For the sake of simplicity for the proofs, we now assume
thatJB is constant, equal toJ0

B given by (6). We now evaluate
the impact of mobility on energy consumption.

According to the displacement theorem for Poisson pro-
cesses, we known that for each timet, the point process
ηMt = (x + Mx(t), x ∈ η0) is a still a Poisson point
process with intensityλ dx. It follows that the expectation
of consumed energy does not depend on the mobility model
and is equal to the value for motionless users.

However, for higher order moments, the correlations be-
tween positions at different instants are to be taken into
account so that the variance and other moments are different
for truly mobile users. Let

̥
M
n (f, T ) =

∫

R2

ET ,M

[(

∫ T

0

f(x+M(t))A(t)1x+M(t)∈C d t

)n]

dx.

The following theorem uses the same techniques of proof as
before but in a more involved fashion.

Theorem 5. The moments ofJA(η, T ) with mobility are given
by

ET

[

JA(η
M, T )n

]

=

Bn(λ̥
M
1 (βA l

−1, T ), λ̥M2 (βA l
−1, T ), · · · , λ̥Mn (βA l

−1, T )).

It follows that mobility reduces moments ofJA; i.e

ET ,M [JA(η, T )
n] ≤ ET , 0 [JA(η, T )

n] . (9)

Proof: The first part of the proof follows from Theorem 1.
Let f(x) = βA l(x) 1x∈C . Since the Lebesgue measure is
translation invariant,

∫

R2

f(x+ y) dx =

∫

R2

f(x) dx.

If we combine that remark with Hölder inequality, we get that
for y1, · · · , yn in R2,

∫

R2

n
∏

j=1

f(x+ yj) dx ≤
n
∏

j=1

(

∫

R2

f(x+ yj)
n dx)1/n

=

∫

R2

f(x)n dx. (10)
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For the sake of presentation, we denote byd t the product
measure⊗nj=1 d tj According to (10), we get

̥
M
n (f, T )

=

∫

R2

∫

[0, T ]n
ET ,M

[

n
∏

i=1

(f(x+M(ti))A(ti))

]

d t dx

=

∫

R2

∫

[0, T ]n
EM

[

n
∏

i=1

f(x+M(ti))

]

ET

[

n
∏

i=1

A(ti)

]

d t dx

=

∫

[0, T ]n
ET

[

n
∏

i=1

A(ti)

]

∫

R2

EM

[

n
∏

i=1

f(x+M(ti))

]

dx d t

≤
∫

[0, T ]n
E

[

n
∏

i=1

A(ti)

]

∫

Rd

f(x)n dx d t

= E

[(

∫ T

0

A(t) d t

)n]
∫

R2

f(x)n dx

= mn (A, T )

∫

R2

f(x)n dx.

Since the coefficients of Bell polynomials are non-negative,
(9) follows.

We now study the limiting variance when the speed of
particles is large (for instance, terminals in a high speed
train). We say that a movement distributionM has propertyT
wheneverP(M(s) =M(t)) = 0 for all s 6= t. We denote by
M ǫ the accelerated version ofM (andMǫ the corresponding
probability distribution onC): M ǫ(t) = M(t)/ǫ. The full
proof of the next result is given in [15].

Theorem 6. If M has the propertyT then in high mobility
regime, the variance ofJA tends to0, i.e

V

[

JA(η
Mǫ

, T )
]

→ 0 as ǫ→ 0.

The above results say that, when users move the total
consumed energy by a base station does not changein average,
and the moments of the additive part are reduced. Moreover,
when users move very fast, the consumed energy during a time
period is almost constant. We can see this as a consequence
of weak central limit theorem. When users move faster, the
configuration of users is more mixing during a same period
of time, thus converge faster to the mean.

VI. A PPLICATIONS

A. Dimensioning optimal cell size

Consider an operator aiming to design the optimal cell
radiusR to cover a region of total areaS ⊂ R2. We assume
that the cells are circular. The average total cost of the network
is assumed to be the sum of the operating cost during the life
time of the network (sayT ) and the cost of facilities (base
stations). We assume a fixed deployment cost for any base
station regardless of its transmission range. The number of
base stations is then roughly equal toS R−2 so the installation
cost of base stations isc1 SR−2 with c1 > 0. The operating
cost is assumed to be proportional to the consumed energy.

We assume thatl is the singular path-loss function, i.e.
l(x) = ‖x‖−γ . From the previous results, the mean energy
consumed by the network during its operating time is:

S

R2
(1 + κ)βBR

γT.

This is an increasing function ofR, which means that small
cell systems will consume less energy than larger cell systems.
The average total cost for the network is then

Cost(R) = S(1 + κ)βBTR
γ−2 +

c1 S

R2
. (11)

Note thatκ implicitly depends onR, as the larger the cell,
the higher the mean number of active customers. Equation
(11) shows that there are two antagonist trends: large radius
cells minimize the deployment cost whereas they increase the
operating cost.

If we keepκ constant, i.e. we may have larger cell providing
that the mean number of customers per unit of surface is
decreasing in such a wayλR2 is constant; the optimization
problem has a solution obtained by differentiation:

Ropt =

(

2c1
(γ + 2)(1 + κ)βBT

)1/γ

·

As expected, the optimal radius depends heavily on the value
of γ which is linked to the density of obstacles in the path of
radio waves.

B. Dimensioning cell battery

The proposed model can be used to dimension sites that do
not have access to power supply facilities. In this situation,
operators have to replace or reload base station’s battery at
each periodT . We want to determine the energy levelα
of battery so that the probability of running out of energy
before replacement (or reloading) be smaller than some given
thresholdǫ. We use results derived in the previous sections to
find α. The problem is to findα such that:

P
(

JT (η
M , T ) > α

)

< ǫ.

In order to simplify the problem, we assumeJB to be constant
equal toKB = βBR

γT and that the users are motionless.
In view of Theorem 4, it may be thought as a pessimistic
point of view without the economy due to power control.
Hence,JT (ηM , T ) = JA(η

M , T ) + KB. One could resort
to the Bienaymé-Tcebycev inequality and use Theorem 3 to
bound the variance ofJT but this approach is known to
give imprecise results. Otherwise, one can use the Gaussian
approximation of Theorem 2. We can apply this theorem to
the function

f(x, a) = βA l−1(x)

∫ T

0

a(t) d t,

and hence,
∫

C

∫

T

f(x, a)kνλ( dx, d a) = mk (A, T )
(βAR

γ)k

γk/2 + 1
n.
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It follows that for anyk ≥ 3,

m(k, λ) =
γ + 1

γk/2 + 1

mk (A, T )

m2 (A, T )
k/2

n
1−k/2.

Since the processA is supposed to be ergodic, it is well known
thatmk (A, T ) ∼ (πON T )

k asT goes to infinity or at least if
T is large compared to the cycle duration ofA, i.e. the time
between two successive communications plus the length of a
communication. Since that is usually so, we get:

m(k, λ) =
γ + 1

γk/2 + 1
n
1−k/2.

Note thatm(k, λ) depends weakly on the geometric properties
of the domain which are summarized byγ and on the traffic
pattern but mainly on the mean number of customers in the
cell. The procedure is then the following: We first verify that
Eλ is negligible compared toǫ. Then, we solve the equation
in α,

µ3([α, +∞)) = ǫ

and take

ζ = m1 (A, T )
βAR

γ

γ/2 + 1
n+ α

√

m2 (A, T )
βAR

γ

√
γ + 1

√
n

∼
(

1

γ/2 + 1
+

α√
γ + 1

√
n

)

βAρR
γT. (12)

With this procedure, we get a simple way to determine
the thresholdζ which guarantees that the real value of
P
(

JT (η
M , T ) > α

)

is smaller thanǫ. In Figure 3, we analyze
the variations ofζ with respect toγ. Once again, we see that
the provisioning of resources, i.e. energy for the time being,
is exponentially dependent ofγ, the path-loss exponent.

VII. C ONCLUSION

We have shown how to model energy consumption in a
cellular network taking into account both communication and
signaling traffic. The closed form formulas we obtained may
be used for several purposes mainly in order to dimension cells
or batteries under energy constraints. We pointed out the great
importance of the domain geometry which is summarized by
the path-loss parameterγ.
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