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Abstract—In this work, we propose a new model for the

dynamics of a single opinion propagation at a size-limited

location with a low population turnover. This means that

a maximum number of individuals can be supported by

the location and that the allowed individuals have a long

sojourn time before leaving the location. The individuals

can have either no opinion (S), a (strong) opinion that they

want to spread (I), or an opinion that they keep for them-

selves (R) (the letters stem from the popular Susceptible-

Infectious-Recovered (SIR) epidemic model). Furthermore,

we consider a variable opinion transmission rate. Hence,

the opinion spreading is modeled as a Markovian non-

standard SIR epidemic model with stochastic arrivals,

departures, infections and recoveries.

We apply a numerical approach to this specific SIR

epidemic model which rely on a Maclaurin series expansion

in order to evaluate the system performance. Finally, we

illustrate our approach by some numerical examples.

I. INTRODUCTION

Given the rapid growth of companies in the internet

sector that base their revenue model on advertisement

(such as Google, Facebook, etc.) and the ascent of social

networks in particular, the study of opinion spreading

is a trending topic, and there is a very strong interest

in understanding how new opinions spread through a

community. In this paper, we study opinion spreading

at a specific location. This can be understood as either a

virtual location, as on a group page in a social network,

or a physical location, for example at an airport where

mobile users interact and receive personalized ads.

During the last decades, the main approach for mod-

elling such opinion spreading models is the contagion

approach, which is based on the spreading of a disease.

Most models for the transmission of infectious diseases

descend from the classical SIR model [10]. SIR is

an abbreviation for susceptible (S), infectious (I) and

recovered (R). These are consequently the only possible

states that an individual can belong to when we discuss

SIR type diseases, and the possible transitions between

these states follow S→ I→ R. In particular, this model

suggests that if a healthy individual will encounter a

sick individual, there is a specific probability that a

healthy individual will get infected and there is a specific

probability that an infected individual will get recovered

from the disease. Opinion spreading can be interpreted

as behaving like a disease: if an individual without a

specific opinion about a topic (not opinionated individ-

ual) will encounter a strongly opinionated individual,

the first individual will, with some probability, be also

strongly opinionated. Afterwards, strongly opinionated

individuals may, with some probability, stop transmitting

their opinion to other not opinionated individuals and

keep their own opinion.

In the classical stochastic SIR epidemic model, many

unrealistic assumptions are made ([1], [3]). For example,

one assumes that the population is constant and that

the contact rate (also called the infection rate) and

the recovery rate are exponentially distributed. As a

consequence to this, many modifications of the model

have been introduced and analysed in the literature,

where different assumptions have been relaxed. In the

paper of Britton [3], a general SIR epidemic model



is used where the traditional contact rate is replaced

with a cyclically varying renewal process with k states.

In the paper of Clémençon [4], a specific stochastic

epidemic model is studied accounting for the effect of

contact-tracing on the spread of an infectious disease. In

particular, one considers the situation in which individ-

uals identified as infected may contribute to detecting

other infectious individuals by providing information

related to individuals with whom they have had possibly

infectious contacts.

In the present paper, we consider a location area

where at most L individuals can be present and where

individuals arrive in accordance with a Poisson process

with parameter λ`, for each type of individual ` in

the SIR model. Individuals remain at the location for

an exponentially distributed amount of time with mean

1/µ and then leave. Furthermore, the probability for not

opinionated individuals to become strongly opinionated

depends on the number of the different individual types

present at the location. In particular, the higher the

relative number of individuals that want to transmit their

opinion, the higher the probability that an individual

without an opinion will get one. We also assume that,

the higher the number of not opinionated individu-

als, the higher the probability that one of them gets

a (strong) opinion. Concerning the recovery rate, we

assume that each strongly opinionated individual has a

fixed probability to become opinionated and also that,

the more strongly opinionated individuals there are,

the higher the probability that one of them becomes

opinionated. Further explanation and the motivation on

the above assumptions is given in section II. For ease of

understanding, not opinionated (S), strongly opinionated

(I) and opinionated individuals (R) are further described

as susceptible, infected and recovered individuals, re-

spectively.

Also, this paper investigates approximations for the

defined SIR epidemic queueing system. In particular,

we propose a numerical evaluation method for this

Markovian epidemic queueing system which relies on

a Maclaurin-series expansion of the steady-state proba-

bility vector. For an overview on the technique of series

expansions in stochastic systems, which is also known

under the names light traffic analysis or stochastic

perturbation, we refer the reader to the survey in [2].

One of the methods to establish series expansions of

stochastic models is given via an updating formula in

[9]. In [6], cases for which numerical computation of

the steady-state vector is possible through a Maclaurin

expansion in a parameter µ are given and the approach

is illustrated by a practical example of a paired queueing

system.

Further, we also derive the fluid limit of the Markov

chain. Fluid limits are a popular mathematical tech-

nique (see e.g. [7], [8]) which (when a good scaling

is found) allow to focus on the salient features of

the stochastic process while discarding ‘second-order

fluctuations’ around this main trend. In the present

paper, it helps to make the link with more standard

deterministic SIR models. Also, the fluid scaling applied

for this model (arrival rates and location capacity are

sent to infinity), is highly different and complementary

to the Taylor-expansions limit (which holds for low

departure rates µ). We thus aim to view this difficult-

to-analyze Markov model from different limiting cases,

and gain new insights by combining them. We also note

that the derivation of the fluid limit as performed in this

paper also lends itself naturally to refinements in the

form of diffusion results, but this is considered to be

outside of the scope of the current paper.

The remainder of this paper is organised as follows.

In section II, the model is described and special cases are

given. Next, in section ?? the numerical series expansion

approach applied to the opinion propagation system at

hand. In section IV we derive a formally justified fluid

model from the original Markov model. To illustrate

both approaches, section V considers various numerical

examples. Finally, conclusions are drawn in section VI.



II. MARKOV CHAIN MODEL

As arrivals of the individuals are modelled by Pois-

son processes and the lifetime distribution is expo-

nential, the state of the system can be described by

a vector i = (i1, i2, i3) ∈ L where i1, i2 and i3

are respectively equal to the number of recovered,

infected and susceptible individuals. We denote L =

{(i1, i2, i3) ∈ N3|s(i) ≤ L} as the state space of this

Markov chain and the sum of all the individuals at

the location s(i) =
∑3
`=1 i` ≤ L, must be smaller or

equal to the maximum number of individuals L. Let

π(i) denote the steady-state probability distribution of

the Markov chain which satisfies the following balance

equations,

π(i)
( 3∑
`=1

1{i`>0}µs(i) +

3∑
`=1

1{s(i)<L}λ`

+ 1{i3>0}αsi(i1, i2, i3) + 1{i2>0}αir(i2)
)

=

3∑
`=1

π(iup,`)µs(iup,`)1{s(i)<L}

+

3∑
`=1

π(idown,`)λ`1{i`>0}

+ π(i1, i2 − 1, i3 + 1)αsi(i1, i2, i3)1{(i1,i2−1,i3+1)εL}

+ π(i1 − 1, i2 + 1, i3)αir(i2)1{(i1−1,i2+1,i3)εL} . (1)

Indeed, as previously mentioned, we assume the

general state-dependent infection rates captured in the

function αsi(i1, i2, i3), and recovery rates which depend

on the number of infected users i2 only (captured in the

function αir(i2). Finally, the notation iup,` and idown,`

describe respectively the increase and the decrease of

the `th element of the vector i by one.

Special case 1

If we assume that each susceptible and infected

individual have respectively a constant to get infected

and recovered, i.e. αsi(i1, i2, i3) = i3αsi and αir(i2) =

i2αsi, then the mean number of each type in steady state

can be calculated explicitly. Indeed, as the departure

rates of each individual are equal to µ, the total number

of individuals is distributed as a classic M/M/L/L

queue, with arrival rate λ = λ1 +λ2 +λ3 and departure

rate µ, for which the steady state distribution (denoted

as Pr[Q = k]) can be found in every queueing-theory

textbook. We then compute the stationary fractions of

each type p1, p2 and p3 as follows:

p1 =
λ1

λ
+
λ2

λ

αir
αir + µ

+
λ3

λ

αirαsi
(αir + µ)(αsi + µ)

,

p2 =
λ2

λ

µ

αir + µ
+
λ3

λ

µαsi
(αir + µ)(αsi + µ)

,

p3 =
λ3

λ

µ

αsi + µ
, (2)

Indeed, the fraction p3 of susceptible individuals is given

by the fraction of arriving susceptible users multiplied

by the fraction of time during which it has turned into

one of the other types. It can be checked that p1 + p2 +

p3 = 1. As we know the distribution of the total number

of individuals by the Erlang loss formula (and denote

this distribution as Pr[Q = k]): we can then compute

the distribution of the number of individuals of a certain

type ` ∈ {1, . . . , 3} as follows:

Pr[Q` = n] =

L∑
k=n

(
k

n

)
Pr[Q = k]pn` (1− p`)k−n,

(3)

from which the means can be easily computed.

Special case 2

In the numerical examples and for the fluid model,

we often consider the following special case for the

functions αsi(i3, i2, i1) and αir(i2):

αsi(i1, i2, i3) =

(
α0
si + α1

si

i2
i1 + i2 + i3

)
i3,

αir(i2) = α0
iri2.

where α0
si, α

1
si and α0

ir are given (positive) rates. The

motivation behind this special case is as follows. Firstly,

we assume that the higher the relative number of in-

fected individuals at the location, the higher the rate

at which the infection spreads. In the case of opinion

spreading, the rate that a not opinionated individual gets



an opinion increases as the number of individuals that

want to transmit their opinion, i.e. strongly opinionated

individuals, increases. Secondly, we also add a constant

term α0
si so that susceptible individuals may become

infected by themselves (i.e. without the presence of

other infected individuals). Finally, we assume that

infected individuals may eventually get recovered: a

strongly opinionated individual may, after a while, stop

transmitting his opinion and keep it for himself with rate

αirCIR.

While the former system of equations is easily

solved with a low maximum number of individuals, the

state space explodes for even a reasonable L and a direct

solution is computationally infeasible.

III. MACLAURIN-SERIES EXPANSIONS

?? To mitigate the state space explosion problem,

we rely on a Maclaurin series expansion in µ. If π(i) is

analytic in µ = 0, it admits the representation,

π(i) =

∞∑
n=0

πn(i)µn ,

for 0 ≤ µ < µ0 and for i ∈ C.

Substituting the former expression in the balance

equations yields,

∞∑
n=0

πn(i)µn
( K∑
`=1

1{i`>0}µs(i) +

K∑
`=1

1{s(i)<L}λ`

+ 1{i3>0}αsi(i1, i2, i3) + 1{i2>0}αir(i2)
)

=

∞∑
n=0

K∑
`=1

πn(iup,`)µ
n+1s(iup,`)1{s(i)<L}

+

∞∑
n=0

K∑
`=1

πn(idown,`)λ`µ
n1{i`>0}

+

∞∑
n=0

πn(i1, i2−1, i3+1)αsi(i1, i2, i3)µn1{(i1,i2−1,i3+1)εL}

+

∞∑
n=0

πn(i1−1, i2+1, i3)αir(i2)µn1{(i1−1,i2+1,i3)εL} .

(4)

For i ∈ L∗ = L \ {[L, 0, 0]}, comparing the terms

in µ0 on both sides of the former equation yields,

π0(i) = 0 , (5)

whereas comparing the terms in µn for n > 0 gives,

πn(i) =

1∑K
`=1 1{s(i)<L}λ` + 1{i3>0}αsi(i1, i2, i3) + 1{i2>0}αir(i2)( K∑

`=1

πn−1(iup,`)s(iup,`)1{s(i)<L}

+

K∑
`=1

πn(idown,`)λ`1{i`>0}

+

∞∑
n=0

πn(i1, i2−1, i3+1)αsi(i1, i2, i3)1{(i1,i2−1,i3+1)εL}

+

∞∑
n=0

πn(i1 − 1, i2 + 1, i3)αir(i2)1{(i1−1,i2+1,i3)εL}

− 1{n>0}πn−1(i)

K∑
`=1

s(i)1{i`>0}

)
. (6)

As detailed in [6], we can use the above equation

to compute new terms very efficiently, by iterating over

the state space in lexicographic fashion, as on the RHS

only entries of either order n − 1 or entries of order n

but with a lower lexicographic index are present.

A. Performance measures

Once the series expansions of the steady state dis-

tribution has been obtained, the expansion of various

performance measures directly follows. Let X ∼ π, then

for a performance measure J = E[f(X)] we have,

J =
∑
i∈L

f(i)π(i) =
∑
i∈L

f(i)

∞∑
n=0

πn(i)µn

=

∞∑
n=0

∑
i∈L

f(i)πn(i)µn =

∞∑
n=0

Jnµ
n , (7)

for 0 ≤ µ < µ0 with,

Jn =
∑
i∈L

f(i)πn(i) .

The interchange of the summations is justified by the

finiteness of L and the convergence of
∑
n πn(i)µn for

all i ∈ L. As such, any term Jn in the expansion of



a performance measure J can be calculated from the

corresponding vector πn of the expansion of the steady-

state vector. Performance measures of interest include

amongst others the kth order moment of the queue

content of the `th queue (f(i) = ik` ).

B. Computational complexity

As the calculation of πn(i) is linear in the size of the

state space S = |L|, we have that calculating the first

M orders of the expansion takes a time of the order

O(KSM).

As the size of the state space is very large, limiting

memory consumption is equally important. We note

that we only need to store just one vector which has

the size of the state space. Assuming one is mainly

interested in the expansion of a number of performance

measures, note that once the mth term of the expansion

of the steady state vector is determined, the correspond-

ing terms in the expansions of various performance

measures can be determined as well; see (7). Hence,

there is no need to keep track of previous terms of

the expansion of steady-state probabilities unless they

are required for further calculations of coefficients of

steady state probabilities. From (6) one sees that πn(i)

is expressed in terms of πn−1(j), with j larger than i

(lexicographically). This means that the coefficients of

the vector πn−1 can be overwritten progressively during

the calculation of πn and memory for only one vector

of size M is needed.

IV. FLUID LIMIT

In this section, we develop a fluid limit for the model

described in this contribution. To this end, we make

use of the versatile random time-change formulation as

proposed by Ethier and Kurtz in their book [7].

Basically, our task consists of two steps: first we

write down a time-change formulation of the Markov

process at hand, and then we use a strong law of

large numbers for Poisson processes so as to transform

the stochastic process into a differential equation. For

completeness, we state this results here as a lemma.

Lemma 1. Let Y be a unit rate Poisson process. Then

for any U > 0,

lim
N→∞

sup
0≤u≤U

|N−1Y (Nu)− u| = 0.

Let {XN
r (t), XN

i (t), XN
s (t)} denote a three-

dimensional continuous-time Markov process, the

three components respectively denoting the number

of susceptible, infected and recovered users at time t,

where N denotes the scaling parameter, which affects

the system in the following way: arrival rates of the

three types are scaled by N (λ∗ 7→ N · λ∗), and the

capacity L of the system is likewise scaled with N :

L 7→ N · L. We consider in this section both finite and

infinite capacity systems, in the latter case of course no

capacity scaling is needed. For notational convenience,

we introduce XN (t) = XN
r (t) +XN

i (t) +XN
s (t).

The number of susceptible users present at time t

consists of: (1) the number of susceptible users present

at time t = 0, which we denote as XN
s (0); (2) suscep-

tible users arriving during the interval (0, t] with rate

Nλ3; (3) minus the susceptible users that get infected

(with a rate that depends on all three processes XN
s ,

XN
i , XN

r ); (4) lastly, we need to subtract the users that

have left the system due to service completion.

We formulate this in terms of a number of inde-

pendent unit rate Poisson processes Y∗∗ as follows,

where the subscripts denote the source and destination

of the process at hand with s, i, r, o, denoting sus-

ceptible, infected, recovered and outside respectively.

This manner of writing Markov processes in terms of

Poisson processes evaluated at times which dependent

on the past of said Markov process (aptly denoted as the

random time-change method in [7]) is very handy when

it comes to smoothly establishing the corresponding

fluid models.



We have that

XN
s (t) = XN

s (0) + Yos

(
Nλ3

∫ t

0

1{XN (τ)<N ·L}dτ
)

−Ysi
(∫ t

0

αNsi(X
N
s (τ), XN

i (τ), XN
r (τ))1{XN

i (τ)<N ·L}dτ
)

− Yso
(
µ

∫ t

0

XN
s (τ)dτ

)
. (8)

Likewise, for the process of number of infected

users, we have at time t: (1) users present at time 0; (2)

arrivals of infected users in (0, t] (when there is room);

(3) susceptible users getting infected. Departures occur

because of (4) infected users recovering and (5) infected

users leaving the system.

XN
i (t) = XN

i (0) + Yoi

(
Nλ2

∫ t

0

1{XN (τ)<N ·L}dτ
)

+ Ysi

(∫ t

0

αNi (XN
s (τ), XN

i (τ), XN
r (τ))dτ

)
− Yir

(∫ t

0

αNir(X
N
s (τ), XN

i (τ), XN
r (τ))dτ

)
− Yio

(
µ

∫ t

0

XN
i (τ)dτ

)
. (9)

And for the process of the number of recovered

users:

XN
r (t) = XN

r (0) + Yor

(
Nλ1

∫ t

0

1{XN (τ)<N ·L}dτ
)

+ Yir

(∫ t

0

αNir(X
N
s (τ), XN

i (τ), XN
r (τ))dτ

)
− Yro

(
µ

∫ t

0

XN
r (τ)dτ

)
. (10)

Next, we introduce the scaled processes X̄s :=

N−1XN
s , X̄i := N−1XN

i , X̄r := N−1XN
r and X̄ :=

N−1XN . For the state-dependent infection and recovery

rates αir (and αNsi ), we assume that asymptotically as

N →∞,

N−1αNir(Ni1, Ni2, Ni3)→ ᾱir(i1, i2, i3),

and likewise for αsi. It can be easily checked that

both special cases of section II agree with the above

assumption.

Furthermore, we assume that N−1XN
∗ (0) converges

to the deterministic constant x∗(0) as N → ∞ (for ∗
equal to r, i, s).

If we introduce the scaled processes in the equations

for XN
∗ (t), then we get:

X̄s(t) = xs(0) +N−1Yos

(
Nλ3

∫ t

0

1{X̄(τ)<L}dτ
)

−N−1Ysi

(
N

∫ t

0

ᾱsi(X̄s(τ), X̄i(τ), X̄r(τ))dτ
)

−N−1Yso

(
Nµ

∫ t

0

X̄s(τ)dτ

)
. (11)

X̄i(t) = xi(0) +N−1Yoi

(
Nλ2

∫ t

0

1{X̄(τ)<L}dτ

)
+N−1Ysi

(
N

∫ t

0

ᾱsi(X̄s(τ), X̄i(τ), X̄r(τ))dτ

)
−N−1Yir

(
N

∫ t

0

ᾱir(X̄s(τ), X̄i(τ), X̄r(τ))dτ

)
−N−1Yio

(
Nµ

∫ t

0

X̄i(τ)dτ

)
. (12)

X̄r(t) = xr(0) +N−1Yor

(
Nλ1

∫ t

0

1{X̄(τ)<L}dτ

)
+N−1Yir

(
N

∫ t

0

ᾱir(X̄s(τ), X̄i(τ), X̄r(τ))dτ

)
−N−1Yio

(
Nµ

∫ t

0

X̄r(τ)dτ

)
.

(13)

As every term is either deterministic or of the form

N−1Y∗(N · · · ), we can apply Lemma 1, and state that in

the limit the process (X̄s(t), X̄i(t), X̄r(t) converges to

a deterministic limit (xs(t), xi(t), xr(t)) (with x(t) :=

xs(t) + xi(t) + xr(t)) satisfying the following integral



equations:

xs(t) = xs(0)+λ3

∫ t

0

1{x(τ)<L}dτ−
∫ t

0

ᾱsi(xs(τ), xi(τ), xr(τ))dτ

− µ
∫ t

0

xs(τ)dτ ;

xi(t) = xi(0)+λ2

∫ t

0

1{x(τ)<L}dτ+

∫ t

0

ᾱsi(xs(τ), xi(τ), xr(τ))dτ

−
∫ t

0

ᾱir(xs(τ), xi(τ), xr(τ))dτ − µ
∫ t

0

xi(τ)dτ ;

xr(t) = xr(0)+λ1

∫ t

0

1{x(τ)<L}dτ+

∫ t

0

ᾱir(xs(τ), xi(τ), xr(τ))dτ

− µ
∫ t

0

xr(τ)dτ,

(14)

which in turn can be formulated as a system of (non-

linear) differential equations:

ẋs(t) = λ31{x(t)<L}−ᾱsi(xs(t), xi(t), xr(t))−µxs(t);

ẋi(t) = λ21{x(t)<L} + ᾱsi(xs(t), xi(t), xr(t)

− ᾱir(xs(t), xi(t), xr(t))− µxi(τ);

ẋr(t) = λ11{x(t)<L}+ᾱir(xs(t), xi(t), xr(t))−µxr(t),

(15)

This can be solved efficiently with one of the nu-

merous well-honed numerical toolboxes for differential

equations. We also note that the equilibrium points

(i.e. set ẋ∗(t) equal to zero in the LHS of the above

equations) for special case 2 and L =∞ can be found

explicitly as the solutions of a quadratic equation, but

we omit the exact expressions due to space constraints.

V. NUMERICAL RESULTS

To illustrate our numerical approach, we now assess

the accuracy of the perturbation technique by means

of some numerical examples. First, consider a system

with a maximum number of individuals L equal to 5.

Moreover, the arrival intensity of each type of individual

is equal to 1 and we consider the second special case

with α0
ir, α

0
si and α1

si are all equal to 3. Figure 1,

2 and 3 depict respectively the mean recovered queue
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µ
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Mean number of recovered individuals

N = 1

N = 5

N = 10
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Fig. 1. Mean number of recovered individuals.

content, the mean infected queue content and the mean

susceptible queue content versus the lifetime rate µ.

Series expansions of various orders are depicted as

indicated (N = 1, 5, 10), as well as simulation results

which allow for assessing the accuracy of the series

expansions. As expected, the mean number of recovered

individuals decreases and the mean number of infected

and susceptible individuals increase as the departure rate

increases. Moreover, for µ = 0, the population consists

only of recovered users as their lifetime is infinite such

that all individuals get recovered eventually. Also, we

observe that the approximation method is fairly accurate

for low orders of the expansions (e.g. highly accurate

for N = 10 in figure 3). Finally, for these parameter

settings, the mean number of infected and susceptible

individuals have a non-linear behavior in µ .

Special case 1

In contrast to the previous part, we now look at

the first special case as described in section II, where

the mean number of each individual type are calculated

explicitly. Figure 4 and 5 depict the mean number

of individuals of type i and s versus the arrival rate

of infected individuals λ2 for different values of the

infection rate αsi. Moreover, the maximum number of

individuals allowed at the location L equals 10, the
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Fig. 2. Mean number of infected individuals.
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arrival intensity of recovered and susceptible individuals

and the recovery rate are equal to 3, the lifetime rate µ

equals 0.01 and the order of the series expansion M

equals 10. As expected, the higher the arrival rate of

infected individuals λ2, the lower the mean number of

susceptible individuals and the higher the mean number

of infected and recovered individuals. This trend is

strengthened when the infection rate αsi increases.

Fluid limit

We look at the fluid approximation for the second

special case in Figs. 6 and 7. In the first plot we start
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Fig. 4. Mean number of infected individuals.
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Fig. 5. Mean number of susceptible individuals.

from a large number of infected users which quickly

leads to many recovered users, whereas in the second the

large number of recovered users prevents a large infected

population taking place. We see good correspondence

with the simulations.

VI. CONCLUSION

In this paper, we evaluate the performance of a single

opinion propagation in a size-limited location that has

a low population turnover. This means that the allowed

individuals remain there on average for a long period.

Furthermore, we assume that individuals can have either



Fig. 6. Fluid model and simulations for N = 100, λ∗ = 1, µ = 1,

α∗
∗ = 3.

Fig. 7. Fluid model and simulations for N = 100, λ∗ = 1, µ = 1,

α∗
∗ = 3.

no opinion (S), a strong opinion that they want to spread

(I) or an opinion that they keep for themselves (R).

Moreover, the rate at which an individual without an

opinion may get an opinion varies according to the

number of the different individual types present at the

location.

To cope with the inherent state-space explosion, we

propose an approximative numerical algorithm of the

queueing system at hand. In particular, a numerical algo-

rithm is applied which calculates the first M coefficients

of the Maclaurin series expansion of the steady-state

probability vector in O(SM) operations, S being the

size of the state space. Out of the numerical results

we may conclude that the series expansion is quite a

good approximation for the opinion model only when

the departure rate is small. Future work will focus on

expanding the system to a multiple opinion propagation

model and deriving diffusion approximations.

REFERENCES

[1] H. Andersson and T. Britton, Stochastic epidemic models and

their statistical analysis, Springer Lecture Notes in Statistics,

Springer-Verlag, New York., 151, 2000.

[2] B. Błaszczyszyn, T. Rolski, V. Schmidt. Advances in Queue-

ing: Theory, Methods and Open Problems, chapter Light-traffic

approximations in queues and related stochastic models. CRC

Press, Boca Raton, Florida, 1995.

[3] T. Britton and M. Lindholm, The early stage behaviour of

a stochastic SIR epidemic with term-time forcing, Journal of

Applied probability, 46(4), 975–992, 2009.
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