
Efficient Content Delivery in the Presence of
Impatient Jobs
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Abstract—We consider a content delivery problem in which
jobs are processed in batches and may abandon before their
service has been initiated. We model the problem as a Markovian
single-server queue and analyze two different settings: (1) the
system is cleared as soon as the server is activated, i.e., service
rate µ = ∞, and (2) the service speed is exponentially distributed
with rate µ < ∞. The objective is to determine the optimal
clearing strategy that minimizes the average cost incurred by
holding jobs in the queue, having jobs renege, and performing set-
ups. This last cost is incurred upon activation of the server in the
case µ = ∞, and per unit of time the server is active otherwise.
Our first contribution is to prove that policies of threshold type
are optimal in both frameworks. In order to do so we have
used the Smoothed Rate Truncation method which overcomes the
problem arising from unbounded transition rates. For our second
contribution, we derive the steady-state job-length distribution
under threshold policies. The latter yields a characterization of
the optimal threshold strategy, which can be easily implemented.
Finally, we present numerical results for our solution across a
wide range of parameters. We show that the performance of non-
optimal threshold policies can be very poor, which highlights the
importance of computing the optimal threshold.

I. INTRODUCTION

In large-scale, high-volume content-delivery and file-
sharing networks, bandwidth resources are scarce and must be
efficiently used. As the bulk of traffic is delay tolerant (e.g.,
software updates, video content), such requests for content can
be delayed and grouped, so as to be transmitted in multi-cast
mode through the network. After a request has been received,
it may be better to postpone the actual transmission until one
or more additional requests for the same content arrive, which
may save tremendous transmission capacity. The challenge is
to balance these gains against the risk of not meeting the
deadline of one or more jobs.

In this paper we investigate a system that combines batch
services with abandonment of jobs. Unlike typical deadline-
based models, abandonments can not be scheduled. The mech-
anism of abandonment, however, may be a good approximation
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to deadline expiration, particularly in high-volume networks
where it may require a prohibitive amount of overhead admin-
istration to monitor all individual deadlines.

Our model consists of an M/M/1 queue with an adapted
service process in which jobs may be delayed for batching of
service. We consider two different settings: (1) the system is
cleared immediately when a batch is taken into service, and
(2) the service time is exponentially distributed with positive
mean 1/µ. The service time of a batch is independent of
the number of jobs in the batch (multi-cast). Delays due to
batching come at the cost of abandonment. In particular, jobs
may abandon the system while waiting to be served (expiration
of their deadlines), for which we penalize the system at
a fixed cost per abandoning job. Such penalties can either
represent the loss of the job or the cost of serving the job
on an expensive back-up service. The abandonment process is
modeled assuming exponential expiration times for individual
jobs. A methodology similar to ours was adopted in [1] to
investigate a system in which jobs are batched for service to
avoid a service set-up cost, but still must be served individually.

The objective is to minimize the average cost incurred by
the system due to job waiting and abandonment as well as
set up paid upon activation of the server when µ = ∞ and
per unit of time the server is active when µ < ∞. From the
perspective of abandonments it is wise to serve jobs in small
batches; but it is profitable to accumulate jobs since service
comes at a very high cost. Our goal is to find the optimal
balance between this service and abandonment cost trade-off.

In our first contribution we explore the optimality of mono-
tone policies, which in this setting reduces to threshold-based
policies. The presence of abandonments in the queue causes
the system to be non uniformizable, and hence proving opti-
mality of monotone policies becomes extremely challenging.
In a recent work [2], the authors have been able to overcome
this issue by solving a truncated version of the original problem
and taking the limit as the truncating parameter grows to
infinity. This method has successfully been applied in [2]
for a retrial queue and in [3] for a multiclass abandonment
queue. In our second contribution we analyze the stationary
behavior of the system and compute the steady-state job-length
distribution for all µ ∈ R+∪{∞}, using a generating function
approach. The latter allows us to find the minimum set-up
cost, for each possible state of the system, such that taking
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a batch to service or staying idle is equally appealing cost-
wise. For the unlimited service speed case, we have been
able to completely characterize the optimal threshold. In the
limited service speed case, the analysis is more involved and
a complete characterization could not be proven; instead the
optimal threshold is determined by a function that is subject
to optimization.

The remainder of the paper is structured as follows.
Section II presents related work. Section III describes the
model under study. In Section IV we prove that policies of
threshold type are an optimal solution of the model in both
settings: µ = ∞ and µ < ∞. In Section V we compute
the steady-state job-length distribution, which enables us in
Section VI to characterize the optimal threshold policy. Finally,
Section VII illustrates the obtained solution and its features
through different numerical examples.

II. RELATED WORK

Scheduling multi-cast traffic with deadlines has various
applications, e.g., wireless sensor networks and video streams
over cellular networks [4]. Considerable attention has been
given in the literature to systems where the specific deadlines
of requests are known when the requests are made. This
gives rise to well studied scheduling problems for queues and
networks of queues with deadline-aware scheduling disciplines
like Earliest Deadline First (EDF). For example, earliest dead-
line first queues are investigated under heavy traffic conditions
in [5] and [6]. The optimality of EDF in terms of numbers of
jobs that meet their deadline was shown in [7], assuming ex-
ponentially distributed service requirements. EDF and related
schedulers assume that there is a separate “service” for each
job, whereas in our setting similar requests can be bundled.
This opens up a whole new dimension of research.

Although the mechanics are completely different, at a
higher level of abstraction, the features of waiting for similar
requests and sharing the same transmission exhibits similarities
with the operation of batch-service queues [8] and gated
service disciplines [9].

The models that we come across show interesting resem-
blances with a wide variety of models from very different
application fields, including the shot-noise process (see, for
example, [10]) and server routing in polling systems [11].

III. MODEL DESCRIPTION

We consider an M/M/1 queue with batch service, infinite
service capacity and job abandonment. Jobs arrive to the
queue according to a Poisson process with rate λ and have an
exponentially distributed service requirement with mean 1/µ,
which is independent of the batch size. Jobs that are waiting in
the queue abandon after an exponentially distributed amount
of time with mean 1/θ. Furthermore, all interarrival times,
service requirements and abandonment times are independent.

At each time the policy φ chooses whether to process the
jobs waiting in the queue or not. Once a job has been admitted
for service we assume that it can not abandon the system. Let
Nφ(t) ∈ {0, 1, . . .} denote the number of jobs waiting in the
queue at time t under the policy φ. Let Sφ(Nφ(t)) ∈ {0, 1}
denote the decision at time t under policy φ when there are
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Arrival at m=H−1, the system is 
immediately cleared. 

Arrival at m=H−1. Since server is busy,
the jobs that are waiting in the queue
are not taken into service. 

Fig. 1: Simulation of process N(t), number of waiting jobs at
time t, under threshold H = 3. Above the µ =∞ case, below
the µ < ∞ case. Below exp(µ) refers to the busy period of
the server, which is exponentially distributed with rate µ <∞.
As a consequence N(t) not only depends on H but also on
the length of each busy period.

Nφ(t) jobs present in the queue. Namely, Sφ(Nφ(t)) = 0 if
the server idles, and Sφ(Nφ(t)) = 1 if the server decides to
take a batch into service. Due to the infinite capacity of the
server we assume that, as soon as the server is activated, i.e.,
Sφ(Nφ)(t) = 1, all jobs that are waiting in the queue initialize
their service. Hence, the batch size upon activation equals the
number of jobs waiting in the queue, Nφ(t).

We will analyze this problem in two different settings
(see Figure 1):

• The system is cleared as soon as the decision of taking
a batch into service is made, that is, µ =∞.

• The service speed is limited and is exponentially
distributed with rate µ <∞.

In the first case (µ =∞), since service is immediate, the server
empties the system as soon as the decision of activating the
service is made. This means that whenever the policy φ decides
to activate service, a batch of size Nφ(t) (i.e., all jobs waiting
in the queue) will be instantaneously processed. In the second
case (µ <∞) upon activation, the server takes a batch of size
Nφ(t) into service, and allocates an exponentially distributed
amount of time to process it. While the server is busy, new jobs
might arrive to the queue. In this case, the server is not allowed
to take a new batch into service until service completion of the
previous batch; see Figure 1 (below) around t = 37. Hence,
the evolution of Nφ(t) depends on both the policy φ and the
state of the server (i.e., idling or busy). In the µ = ∞ case,
the state of the system reduces to the number of jobs waiting
in the queue. In the µ < ∞ case, the state of the system is
given by (m, a), where m denotes the number of jobs waiting
in the queue and a ∈ {0, 1} indicates whether the server is
busy (a = 1) or idles (a = 0).

Let us denote by Ch the cost per unit time of holding jobs
in the queue, by Ca the penalty for jobs abandoning the queue,
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and by Cs the set-up cost. The latter is incurred every time the
server is activated in the case µ =∞ and incurred per unit of
time the server is active in the case µ <∞. The objective of
the present work is to find the policy φ so as to minimize

lim sup
T→∞

1

T
E

[∫ T

0

[
ChN

φ(t) + CsS
φ(Nφ(t))

]
dt+ CaR

φ(T )

]
,

where Rφ(T ) denotes the number of jobs that abandon
in the interval [0, T ]. By Dynkin’s formula [12], we have
CaE[Rφ(t)] = CaθE[Nφ(t)], and therefore the latter objective
function is equivalent to finding φ that minimizes

lim sup
T→∞

1

T
E

[∫ T

0

[C̃Nφ(t) + CsS
φ(Nφ(t))]dt

]
,

where C̃ = Ch + θCa. Due to ergodicity of the system, the
time-average optimal policy is equivalent to the averaged-over-
space optimal policy, and hence we want to find φ such that

min
φ

(
C̃E[Nφ] + CsP

φ
b

)
. (P)

In this last equation Pφb stands for the probability that the set-
up cost is paid under policy φ, i.e., Pφb = P(Sφ(Nφ) = 1).
The problem described above is a Markov Decision Process
and we refer to it as Problem P throughout the paper.

In general these types of problems are very complicated to
solve due to the curse of dimensionality and the unbounded
transition rates which yield a non-uniformizable system. How-
ever, we will observe in Section IV that the result in [2] allows
structural results to be proven for Problem P. We will show
that in both settings, µ = ∞ and µ < ∞, monotone policies
are average optimal. That is, there exists a threshold H for
which the system prescribes not to take jobs into service for
all states m ≤ H − 1, and serves them otherwise.

IV. OPTIMALITY OF THRESHOLD POLICIES

The optimality of monotone policies has been broadly
studied in the literature on uniformizable problems; see, e.g.,
[13], [14]. However, obtaining structural results for non-
uniformizable problems is much more involved. In a recent
study, the authors in [2] have developed a methodology to
overcome the problem originated by unbounded jump Markov
processes. This method is known as the Smoothed Rate Trun-
cation method (SRT) and consists of approximating the infinite
state Markov Decision Process (MDP) by finite state MDPs.
The relative value function that corresponds to the original
MDP can then be obtained as a limit of the relative value
functions of the finite state MDPs. Moreover, the limiting
value function keeps the same structural properties, namely
convexity and supermodularity. In this section we start by
establishing that the requirements to apply the SRT are satisfied
herein. Later, in Proposition 1, we prove that monotone policies
are optimal for Problem P.

Let us first define the finite state MDP, that is, let L <∞
and let the number of jobs waiting in the queue be m ∈
{0, . . . , L}. Furthermore, let us smooth the arrival rate as
follows: qφ,L(m−1,m) = λ

(
1− m−1

L

)
, for all L ≥ m ≥ 1.

This truncation now yields bounded transition rates, and the
smoothing of the arrival rate guarantees the structure of the

original value function to be maintained. We refer to this finite
state space MDP as Problem T.

In Lemma 1, we show that the assumptions in [2, The-
orem 3.1] hold for Problem P, making SRT suitable for the
model under study; the proof can be found in [15]. We first
introduce the following definition which will be needed in
Lemma 1.

Definition 1 Let Er be an increasing sequence as r → ∞
such that Er → E, where E is the state space. Further let
h : E → R+ be such that inf{h(m) : m /∈ Er} → ∞ as
r →∞. Then h is called a moment function.

Lemma 1 Let qφ,L(m, m̃) denote the transition rate from
state m to state m̃ under policy φ and truncation parameter
L. Then Problem T satisfies the following conditions.

• There exists a function h : N ∪ {0} → R+, constants
k1, k2 > 0 and M > 0 such that for all φ and L
∞∑
m̃=0

qφ,L(m, m̃)h(m̃) ≤ −k1h(m) + k21{m<M}(m).

• The functions (φ,L) → qφ,L(m, m̃) and (φ,L) →∑
m̃ q

φ,L(m, m̃)h(m̃) are continuous in φ and L.

Having proven that Problem T satisfies the conditions in
Lemma 1, we next prove that monotone policies, which in our
setting reduce to threshold policies, are optimal for Problem P.
A sketch of the proof can be found below for the case µ =∞
and found in Appendix IX-A for the case µ <∞.

Proposition 1 Letting µ ∈ R+ ∪ {∞}, then there exists a
threshold policy H such that it is optimal for Problem P.

Proof: Consider the case µ = ∞ (refer to the appendix
for the case µ < ∞). Let us denote by V∞(m) the value
function corresponding to Problem P, and let g∞ be the average
cost incurred by an optimal policy. Recall that the state of
the system in this framework reduces to m, the number of
jobs waiting in the queue. Then, V∞(m) satisfies the Bellman
equation [13] for all m ≥ 0

(λ+ θm)V∞(m) + g∞ = C̃m+ min{λV∞(m+ 1)

+ θmV∞((m− 1)+), Cs + (λ+ θm)V∞(0)}.

Proving that a threshold policy is optimal is equivalent to
proving that passive action being optimal in state m + 1 ≥ 1
implies passive action to be optimal in state m ≥ 0. Namely,

λV∞(m+ 2) + θ(m+ 1)V∞(m)

≤ Cs + (λ+ θ(m+ 1))V∞(0)

implies

λV∞(m+ 1) + θmV∞(m− 1) ≤ Cs + (λ+ θm)V∞(0).

It is easy to see that V∞(·) being a non-decreasing function is
a sufficient condition for the latter implication to be satisfied.
Since V∞(·) being non-decreasing implies λ(V∞(m + 1) −
V∞(0)) + θm(V∞(m − 1) − V∞(0)) ≤ λ(V∞(m + 2) −
V∞(0)) + θ(m+ 1)(V∞(m)− V∞(0)) ≤ Cs.
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Now recall that Problem P is non-uniformizable and there-
fore we use the SRT approach. To apply SRT we truncate
the system with the parameter L, and define smoothed arrival
transition rates q(m,m+ 1) = λ

(
1− m

L

)
for all 0 ≤ m ≤ L.

We denote by V∞,L(·) the value function of the truncated
system. By Lemma 1 and [2, Theorem 3.1] we have that
V∞,L → V∞ as L → ∞ component wise. Therefore, it
suffices to prove that V∞,L is a non-decreasing function, as
this implies V∞ to be non-decreasing. The proof of V∞,L(m)
being non-decreasing can be found in [15].

We have proven threshold policies to be optimal for Prob-
lem P. This allows us to study the stationary behavior of the
system under this type of policies.

V. STEADY-STATE DISTRIBUTION

In this section we derive the steady-state distribution of
Problem P under policies of threshold type. We will refer
to these policies as threshold H or simply φ = H , when
the threshold is determined by H ∈ {0, 1, . . .}. Recall that
threshold H prescribes to be passive for all states m ≤ H−1,
and active for all m ≥ H . Throughout this section, for clarity
of exposition, we drop the dependency on H from the notation.

In V-A we derive the steady-state distribution of Problem P
for the case µ =∞ and in V-B for the case µ <∞.

A. Steady-state distribution in the case µ =∞

In the case of infinite service speed we assume that the
system empties the queue as soon as the decision to serve is
made. In this setting, under threshold H , the state space is
given by E = {0, 1, . . . ,H − 1}. As soon as an arrival occurs
in state m = H − 1 the system is immediately cleared.

Let us define πm as the steady-state probability of being
in state m ∈ {0, . . . ,H − 1}. Hence, we have the following
balance equations

λπm−1 = θmπm + λπH−1, ∀ 0 < m ≤ H − 1,

together with the normalizing equation
∑H−1
i=0 πi = 1.

Solving these balance equations results in

πm = πH−1

(
1 +

H−1−m∑
i=1

(
θ

λ

)i
(m+ i)!

m!

)
,

for all m = 0, 1, . . . ,H−1. Calculations can be found in [15].
Moreover, from the normalization equation, we obtain

πH−1 =

(
H−1∑
m=0

(
1 +

H−1−m∑
i=1

(
θ

λ

)i
(i+m)!

m!

))−1

. (1)

We therefore have obtained the expression for all πm and 0 ≤
m ≤ H − 1.

B. Steady-state distribution in the case µ <∞

In the case of finite service speed, the state of the system is
given by (m, a) where m denotes the number of jobs waiting
in the queue and a ∈ {0, 1} whether the server is available
(a = 0) or busy (a = 1). Observe that under threshold H,
during the idle period of the server, the number of jobs in the

queue, i.e., m, takes values in the set {0, . . . ,H−1}. The latter
means that, as soon as an arrival happens in state m = H−1,
the server activates the service with a batch of H jobs. Once
the server is active, during the time the batch is being processed
(exponentially distributed with mean 1/µ), the number of jobs
waiting in the queue are such that m ∈ N∪{0}. That is, even
if the threshold H is reached, the activation of the server is
postponed until it completes processing the previous batch.

Let us denote by π(m, a) the steady-state probability of
being in state (m, a), for all m ≥ 0 and a ∈ {0, 1}, and assume
π(m, 0) = 0 for all m ≥ H . As in the previous section, we
omit the dependence on H from the notation. Then, π(m, a)
for all m ∈ N ∪ {0} and a ∈ {0, 1} can be derived from the
following balance equations: for all m ∈ N

(λ+mθ + µ)π(m, 1)

= λπ(m− 1, 1) + (m+ 1)θπ(m+ 1, 1), (2)

and for all 0 ≤ m ≤ H − 1

(λ+mθ)π(m, 0)

= λπ(m− 1, 0) + µπ(m, 1) + (m+ 1)θπ(m+ 1, 0). (3)

In order to solve the balance equations in (2) and (3) we will
use their corresponding ordinary generating functions. Observe
in Equation (3) that the steady-state probabilities of the idle
period depend on the steady-state probabilities of the busy
period. Therefore, we first obtain the closed-form expression
of π(m, 1) for all m, and using these expressions we derive
those that correspond to the idle period, i.e., π(m, 0) for all
H−1 ≥ m ≥ 0. The explicit expression of the probabilities are
presented in Propositions 2. The calculations to derive these
expressions can be found in Appendix IX-B1, for the busy
period, and in Appendix IX-B2, for the idle period.

Proposition 2 Let π(m, 1) = a1(m)π(0, 1) where a1(0) := 1,

a1(1) :=
λ+ µ

θ
− eλ/θ∑∞

i=0
(λ/θ)i

i!(µ/θ+i)

,

a1(m) :=
1

m!

m∑
k=0

(
m

k

)(∑∞
j=0

(λθ )
j
`k(−µθ−j)
j!(µθ+j)∑∞

i=0
(λθ )i

i!(µθ+i)

·
m−k∑
i=0

(
m− k
i

)(
λ

θ

)m−k−i
`i

(µ
θ

))
,

for all m ≥ 2, and `k(x) the Pochhammer symbol.
Let π(m, 0) = aH0 (m)π(0, 1) where aH0 (H − 1) :=
µ
λ

∑H−1
m=0 a1(m),

aH0 (m) :=

(
µ

λ

H−1∑
r=0

a1(r)

)
H−1−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!

− µ

λ

H−1∑
r=m+1

a1(r)

(
r−m−1∑
i=0

(
θ

λ

)i
(m+ i)!

m!

)
,

for all H−2 ≥ m > 0, and aH0 (0) := µ
λ + θ

λa
H
0 (1). If π(0, 1)

is such that
∑H−1
m=0 π(m, 0) +

∑∞
m=0 π(m, 1) = 1, that is, if

π(0, 1) =

(
H−1∑
m=0

aH0 (m) +

∞∑
m=0

a1(m)

)−1

,
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then π(m, 1) and π(m, 0) solve Equations (2) and (3).

Once we have obtained all π(m, 0) for all H−1 ≥ m ≥ 0,
and π(m, 1) for all m ≥ 0 we can proceed to compute the
mean number of jobs in the system under threshold policy
H , as well as the mean amount of time the set-up cost is
incurred. In the next section we show that this provides a
characterization of the optimal threshold.

VI. CHARACTERIZATION OF THE OPTIMAL THRESHOLD

In this section we characterize the optimal threshold policy
using the steady-state probabilities that we have computed
above. This characterization, as we will see, depends on the
set-up cost Cs. For the infinite service speed case (µ = ∞),
the characterization of the optimal threshold is explicit whose
solution we present in Proposition 3. In the finite service
speed case, the characterization of the optimal threshold is
determined by a function that is subject to optimization; see
Proposition 4.

From Proposition 1 we know that threshold policies are
optimal for Problem P. Then Problem P can be rewritten as

min
(
C̃E(NH) + CsP

H
b

)
,

recalling PHb = P (SH(NH) = 1). The properties of PHb
will play an important role in the characterization of the
optimal H . Therefore, in the following definition we provide
the expression of PHb according to the value of µ.

Definition 2 We denote by PHb the probability that the set-up
cost Cs is incurred under threshold policy H , i.e.:

• In the µ = ∞ case, it is the probability of being
in state H − 1 with the next event being an arrival.
Namely, PHb := πHH−1

λ
λ+θ(H−1) where πHH−1 is given

by (1) after adding the superscript H .

• In the µ <∞ case, it is the probability that the server
is busy. Namely, PHb :=

∑∞
m=0 π

H(m, 1) where
πH(m, 1) for all m ≥ 0 are given by Proposition 2
after adding the superscript H .

In the following proposition we propose an explicit repre-
sentation of the optimal threshold.

Proposition 3 Let us define α(H) such that

α(H) := C̃
E(NH)− E(NH−1)

PH−1
b − PHb

.

If α(H) is non-decreasing in H , PHb is non-increasing in
H , and if α(H) ≤ Cs < α(H + 1), then H is optimal for
Problem P.

Proof: We present here a sketch of the proof. We aim at
proving that for all H ′ 6= H , C̃E(NH)+CsP

H
b ≤ C̃E(NH′)+

CsP
H′

b . We assume H ′ < H , and the opposite can be handled
similarly. By assumption we have α(H − 1) ≤ α(H), for all
H ≥ 1, and then using simple algebra one can obtain

α(H − 1) ≤ C̃E(NH)− E(NH−2)

PH−2
b − PHb

≤ α(H) ≤ Cs,

We make the following induction assumption for a > 0

α(H − a+ 1) ≤ C̃E(NH)− E(NH−a)

PH−ab − PHb
≤ Cs. (4)

By assumption we have α(H−a) ≤ α(H−a+1), and hence,
using simple calculations, we obtain from (4)

C̃
E(NH)− E(NH−a−1)

PH−a−1
b − PHb

≤ C̃E(NH)− E(NH−a)

PH−ab − PHb
≤ Cs.

(5)

From (5) and some algebra we deduce that α(H − a) ≤
C̃ E(NH)−E(NH−a−1)

PH−a−1
b −PHb

. This together with (5) yields α(H−a) ≤

C̃ E(NH)−E(NH−a−1)

PH−a−1
b −PHb

≤ Cs, thus concluding the induction. For
all 0 < a ≤ H − 1 denote H ′ = H − a. We have then proven
that for all H ′ < H

C̃
E(NH)− E(NH′)

PH
′

b − PHb
≤ Cs

=⇒ C̃E(NH) + CsP
H
b ≤ C̃E(NH′) + CsP

H′

b ,

which concludes the proof.

In the following lemma we prove that the assumptions in
Proposition 3 hold in the case µ = ∞. The proof can be
found in [15].

Lemma 2 Let µ =∞, and πHm as given in Section V-A after
adding the superscript H . Then

• PHb = πHH−1λ/(λ+θ(H−1)), the probability at which
the set-up cost Cs is paid, is convex non-increasing.

• The function α(H), as defined in Proposition 3, is
non-decreasing.

Corollary 1 Assume µ = ∞ and define α(1) := −∞. Then,
if α(H) ≤ Cs < α(H + 1) for all H ≥ 1, H is the optimal
threshold policy for Problem P.

Proof: The proof follows from Proposition 3 and
Lemma 2.

In the case µ < ∞ we could not prove α to be non-
decreasing. The optimal threshold then has to be characterized
differently. This characterization is given in the following
proposition.

Proposition 4 Let Ni = N\{0, . . . ,Hi} for a given Hi, let
PHb be non-increasing, and define β(·) as follows:

Step i. Compute

β(Hi) := inf
H∈Ni−1

E(NH)− E(NHi−1)

P
Hi−1

b − PHb
, i ≥ 1, (6)

and denote by Hi the largest H ∈ Ni−1 such that (6) is
minimized. If Hi =∞ stop, otherwise jump to step i+ 1.

Then, β(Hi) is non-decreasing in Hi and if β(Hi) ≤ Cs <
β(Hi + 1), then Hi is optimal for Problem P. Moreover, if
Cs < β(H1), then it will be optimal to always serve.
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TABLE I: Example 1: Minimum set-up cost Cs such that H
is optimal.

H 1 2 3 4 5 6

Cs −∞ 0.6096 2.4359 6.2595 12.8192 22.5343

Proof: Let us first prove that β(Hi) is non-decreasing in
Hi. Recall that by definition

E(NHi)− E(NHi−1)

P
Hi−1

b − PHib

≤ E(NHi+1)− E(NHi−1)

P
Hi−1

b − PHi+1

b

,

and then (E(NHi) − E(NHi−1))(P
Hi−1

b − P
Hi+1

b ) ≤
(E(NHi+1) − E(NHi−1)))(P

Hi−1

b − PHib ). Upon adding and
subtracting E(NHi)(P

Hi−1

b −PHib ) on the RHS, and after some
algebra, we obtain β(Hi) ≤ β(Hi + 1).

Having proven that β(·) is non-decreasing, the optimality
of threshold Hi if β(Hi) ≤ Cs < β(Hi + 1) can be proven in
the same way as in Proposition 3.

The following lemma establishes the characterization proposed
in Proposition 4 to hold when µ <∞. The proof can be found
in [15].

Lemma 3 Assume µ < ∞ and πH(m, a) as given in Sec-
tion V-B, for all m ≥ 0 and a ∈ {0, 1}, after adding
the superscript H . Then, PHb = πH(0, 1)

∑∞
m=0 a1(m), the

probability of being active, is non-increasing.

We characterize the optimal solution by β(Hi) as defined
in Proposition 4 in the following corollary for the case µ <∞.

Corollary 2 Assume µ < ∞ and β(Hi) ≤ Cs < β(Hi + 1)
with β defined as in Proposition 4, then Hi is the optimal
threshold policy for Problem P. And if Cs < β(H1) then 0 is
the optimal threshold (always serve).

Proof: The proof follows from Proposition 4 and
Lemma 3.

In the next section we analyze the optimal threshold
policies in both frameworks.

VII. EXAMPLES

In this section we illustrate the features of the optimal
threshold policies that have been characterized in Section VI
through different examples. In Examples 1 and 2 we illustrate
the optimal threshold policy for different values of the set-
up cost Cs and we evaluate the performance of non-optimal
threshold policies in comparison with the optimal one for the
case µ = ∞ and µ < ∞, respectively. In Examples 3 and 4
we consider the influence on the optimal threshold policy for
varying values of θ in the case µ =∞ and for varying values
of θ and µ in the case µ <∞.

Example 1: Let us assume λ = 4, µ = ∞, θ = 1.5 and
C̃ = 1. Then the minimum value of Cs such that H is optimal
for Problem P is given by α(H), whose values are presented
in Table I. In Figure 2 (left) we illustrate this optimal solution,
where we plot the average cost E(NH) + CsP

H
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Fig. 2: On the left the average cost under different threshold
policies and varying value of Cs. On the right the relative
suboptimality gap of different threshold policies with respect
to the optimal threshold.

TABLE II: Example 2: Minimum set-up cost Cs such that H
is optimal.

H 0 1 2 3 4 5

Cs −∞ -2 -1.151 -0.2581 0.7157 1.7937

policy H , for different values of Cs. We only present the
solution up to H = 6, noting that a characterization for all H
can be found. In Figure 2 (right) we present the relative sub
optimality gap of non-optimal threshold policies with respect
to the optimal that we have just characterized. Observe that
their performance is very poor.

Example 2: Let us assume λ = 2, µ = 0.5, θ = 0.5 and
C̃ = 1. Then the minimum value of Cs such that H is optimal
for Problem P is given by β(Hi) which coincides with α(i)
in this case. The values of β(Hi) are presented in Table II
for Hi = i up to 5. We observe that under the assumption
Cs > 0 thresholds H = 0, 1, 2 are never optimal in this
particular example, which means that when there are 1 or 2
jobs waiting to be served the server will idle. These results are
illustrated in Figure 3 (left), where we plot the average cost
E(NH) + CsP

H
b incurred by policy H for different values

of Cs. In Figure 3 (right) we plot the relative sub optimality
gap of different threshold policies with respect to the optimal
threshold, and observe that non-optimal thresholds incur a huge
cost.
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the middle and on the right the case µ <∞ for varying values of θ and µ respectively.

In the following two examples we observe the policy
changes as θ and µ vary.

Example 3: Let us assume λ = 4, µ =∞ and Ch = Ca = 1
and let θ vary in the interval [0, 3.5]. We observe in Fig-
ure 4 (left) that the minimum value of Cs such that threshold
policy H is optimal increases as θ increases. This means
that for a fixed set-up cost and for increasing abandonment
rates, the system prescribes to activate service earlier to avoid
incurring the abandonment penalty.

Example 4: Let us assume λ = 2 and Ch = Ca = 1. We first
consider the case µ = 0.5 and let θ vary in the interval [0, 3.5];
see Figure 4 (middle). We observe that as θ grows large, β(H)
becomes constant. This phenomenon is explained by the fact
that abandonments happen both in the busy period and in the
idle period of the server, and hence for a fixed set-up cost
the threshold is maintained as θ grows. Secondly, we consider
θ = 0.5 and let µ vary in the interval [0, 3.5]. We observe
in Figure 4 (right) that the faster the service, the smaller the
optimal threshold for a fixed Cs.

VIII. CONCLUSION

We have considered a content delivery problem where
a single server decides when to multi-cast the content that
has been requested. We have obtained an optimal scheduling
policy, which turns out to have a very simple structure, and
we have characterized it with respect to the set-up cost.

We claim that this characterization is easily implementable
and allows future generalizations. For instance, one could
consider a multi-class single-server queue where different
classes of jobs request a different content. An easy heuristic
for this model would be to send the request to the class of jobs
with higher positive αk(Hk) or (β(·)), where Hk in this case
would represent the number of jobs waiting in the queue k.

Finally, one could investigate the fluid limit version of our
problem. Different from standard fluid limits, this process still
contains randomness due to the random service times that
do not disappear in the applied scaling, and hence becomes
mathematically very interesting.
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IX. APPENDIX

A. Proof of Proposition 1: the case µ <∞
Let us denote by V (m, a) the value function corresponding

to Problem P in the case µ < ∞, and let g be the average

7



cost incurred by an optimal policy. Recall that the state of the
system in this framework reduces to (m, a), where m is the
number of jobs waiting in the queue and a ∈ {0, 1} denotes
the state of the server, busy if a = 1 and available if a = 0.
The value function V (m, a) for all m ≥ 0 and a ∈ {0, 1}
satisfies the Bellman equation [13], namely

(λ+ µ+ θm)V (m, 0) + g

= C̃m+ min{λV (m+ 1, 0) + θmV ((m− 1)+, 0)

+ µV (m, 0), Cs + λV (1, 1) + θmV (0, 1) + µV (0, 0)},

and

(λ+ µ+ θm)V (m, 1) + g

= C̃m+ λV (m+ 1, 1) +mθV ((m− 1)+, 1) + µV (m, 0).

We will now prove that an optimal policy solving the Bellman
equation is of threshold type, that is, if active action is optimal
in m then active action is optimal in m′ ≥ m. In order to do
so, let us first define

f(m, 0) :=C̃m+ λV (m+ 1, 0) + µV (m, 0)

+ θmV (m− 1, 0),

f(m, 1) :=C̃m+ Cs + λV (1, 1) + θmV (0, 1) + µV (0, 0),

and ϕ(m) = min
(
b ∈ arg mina∈{0,1} f(m, a)

)
. Let m′ ≥ m

and a ≥ ϕ(m′). It then suffices to show that ϕ(m′) ≥ ϕ(m).
By definition of ϕ(·)

f(m′, ϕ(m′))− f(m′, a) ≤ 0. (7)

Let us now prove that V (m, 0) is supermodular [2], that is,
for all m′ ≥ m

f(m′, a) + f(m,ϕ(m′)) ≤ f(m′, ϕ(m′)) + f(m, a). (8)

Assuming first the case ϕ(m′) = 0 and a = 0, then (8)
is trivially satisfied; similarly (8) is satisfied in the case
ϕ(m′) = 1 and a = 1. We are left with the case ϕ(m′) = 0
and a = 1, for which (8) reduces to f(m, 0) − f(m, 1) ≤
f(m′, 0) − f(m′, 1). Since Problem P for µ < ∞ is non-
uniformizable, we use the SRT approach. We truncate the
system with the parameter L, and define smoothed arrival
transition rates, i.e., q(m,m+ 1) = λ

(
1− m

L

)
for all m ≤ L.

We denote by V L(·, ·) the value function of the truncated
system. By Lemma 1 and [2, Theorem 3.1], we have that
V L → V as L → ∞ and the value function maintains
its structural properties. Assume, without loss of generality,
λ+ µ+ θL = 1. Then, applying the Value Iteration algorithm
[13] to the truncated system, we have

V Lt+1(m, 0) = C̃m+ min{λ
(

1− m

L

)
V Lt (m+ 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0) + θmV Lt (m− 1, 0),

Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0)}, (9)

and

V Lt+1(m, 1) = C̃m+ λ
(

1− m

N

)
V Lt (m+ 1, 1) + µV Lt (m, 0)

+
(
λ
m

N
+ (N −m)θ

)
V Lt (m, 1) +mθV Lt (m− 1, 1),

since V Lt+1(m, a) − V Lt (m, a) = g. It suffices to prove that
fLt (m, 0)− fLt (m, 1) ≤ fLt (m′, 0)− fLt (m′, 1), where

fLt (m, 0) =λ
(

1− m

L

)
V Lt (m+ 1, 0) + θmV Lt (m− 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0),

fLt (m, 1) =C̃m+ Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0).

V L is a non-decreasing function and fLt (m, 0)− fLt (m, 1) ≤
fLt (m′, 0) − fLt (m′, 1) for all m′ ≥ m and all t, the proof
of both of which can be found in [15]. By the value iteration
argument fLt → fL as t → ∞, and from the SRT we have
that V L → V and fL → f component-wise. Therefore,
supermodularity of V L implies supermodularity of V . Having
proven (7) and (8), and upon combining them, we have that
for all a ≥ ϕ(m′) and m′ ≥ m

f(m,ϕ(m′)) ≤ f(m′, ϕ(m′))− f(m′, a) + f(m, a)

≤ f(m, a).

Hence ϕ(m) ≤ ϕ(m′), which concludes the proof.

B. Proof of Proposition 2

First we derive the expression of π(m, 1) and subsequently
the expression of π(m, 0).

1) Steady-state distribution in the busy period: We first
define the ordinary generating function that corresponds to
π(m, 1) for all m ∈ N0, that is, Π1(z) =

∑∞
m=0 z

mπ(m, 1),
and recall Equation (2) for all m ∈ N. Then, upon multiplying
Equation (2) for state m with zm, namely

zm(λ+mθ + µ)π(m, 1) = zmλπ(m− 1, 1)

+ zm(m+ 1)θπ(m+ 1, 1), ∀ m ∈ Z\{0},
and summing up the latter for all m ∈ {1, 2, . . .}, we obtain

(λ+ µ) (Π1(z)− π(0, 1)) + θz
d

dz
Π1(z)

= λzΠ1(z) + θ

(
d

dz
Π1(z)− π(1, 1)

)
.

After some algebra the latter reduces to
(λ(1− z) + µ)Π1(z)

−θ(1− z)
+

dΠ1(z)

dz
=

(λ+ µ)π(0, 1)− θπ(1, 1)

−θ(1− z)
.

(10)

We now solve this ordinary differential equation. To do so, let
us define ΠH

1 (z) = f1(z)g1(z) such that
df1(z)

dz

f1(z)
= −λ(1− z) + µ

−θ(1− z)
⇒ f1(z) = e

λz
θ (1− z)−

µ
θ . (11)

Substituting Π1(z) = f1(z)g1(z) = eλz/θ

(1−z)µ/θ g1(z) in Equa-
tion (10) and dividing both sides of the equality by −θ(1 −
z) eλz/θ

(1−z)µ/θ , we obtain dg1(z)
dz = (λ+µ)π(0,1)−θπ(1,1)

−θ(1−z)eλz/θ(1−z)−µ/θ . By
integrating this last equation, and noting that, since f1(0) = 1
and Π1(0) = π(0, 1), then g1(0) = π(0, 1) 6= 0, we devise

g1(z) = π(0, 1)−
∫ z

0

(λ+ µ)π(0, 1)− θπ(1, 1)

θeλx/θ(1− x)1−µ/θ dx,

=⇒ g1(z) = π(0, 1)

− (λ+ µ)π(0, 1)− θπ(1, 1)

θ

∫ z

0

(1− x)µ/θ

eλx/θ(1− x)
dx. (12)
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We now aim at deriving an explicit expression for π(m, 1) =
1
m!

dmΠ1(z)
dzm |z=0 for all m ≥ 0. From (11) and (12) we have

Π1(z) =
π(0, 1)e

λz
θ

(1− z)µθ
− ((λ+ µ)π(0, 1)− θπ(1, 1))

θ(1− z)µθ

· eλθ (z−1) · (−1)
µ
θ−1

(
θ

λ

)µ
θ
∫ −λθ (1−z)

−λθ
y
µ
θ−1e−ydy, (13)

where we have used a change of variable y = −λθ (1 − x)
in the integral. Observe that the integral that shows up in the
expression of Π1(z) is an incomplete gamma function [16,
Chap. 6]. Therefore, since µ/θ > 0,∫ −λθ (1−z)

−λθ
y
µ
θ−1e−ydy =

(
−λ
θ

)µ
θ
∞∑
i=0

(λθ )i((1− z)i+
µ
θ − 1)

i!(µθ + i)
.

(14)

Before deriving the probabilities π(m, 1) for all m ∈ N0, note
that Π1(z) is not well defined in z = 1, and therefore we force
limz→1 Π1(z) to be a 0/0 type of indeterminate. By letting the
limit as z → 1 of the numerator in (13) be 0 we obtain the
condition

π(0, 1)eλ/θ −
(
λ+ µ

θ
π(0, 1)− π(1, 1)

) ∞∑
i=0

(λθ )i

i!(µθ + i)
= 0.

Solving the latter equation we obtain the explicit expression
of π(1, 1) with respect to π(0, 1), namely

π(1, 1) = a1π(0, 1), a1 =
λ+ µ

θ
− eλ/θ∑∞

i=0
(λ/θ)i

i!(µ/θ+i)

.

After substituting π(1, 1) = a1π(0, 1) and (14) in (12),
from (11) and (12) we obtain

f1(z) = e
λz
θ (1− z)−

µ
θ ,

g1(z) = π(0, 1)

1 +

∑∞
j=0

(λθ )j((1−z)j+
µ
θ −1)

j!(µθ+j)∑∞
i=0

(λθ )i

i!(µθ+i)

 .

We can now proceed to compute the steady-state distribution
in the busy period, that is, π(m, 1) for all m ≥ 1. Let us
define `i(µ/θ) = µ/θ · . . . · (µ/θ + i − 1) for all i ≥ 1

and `0(µ/θ) = 1 and note that π(m, 1) = 1
m!

dmΠ1(z)
dzm |z=0 =

1
m!

∑m
k=0

(
m
k

)
f

(m−k)
1 g

(k)
1 , where

f
(k)
1 :=

dkf1(z)

dzk
|z=0 =

k∑
i=0

(
k

i

)(
λ

θ

)k−i e
λz
θ `i

(
µ
θ

)
(1− z)µθ+i

|z=0

=

k∑
i=0

(
k

i

)(
λ

θ

)k−i
`i

(µ
θ

)
, for all k ≥ 0,

g
(k)
1 :=

dkg1(z)

dzk
|z=0

= π(0, 1)

∑∞
j=0

(λθ )
j
`k(−µθ−j)(1−z)

j+
µ
θ
−k

j!(µθ+j)∑∞
i=0

(λθ )i

i!(µθ+i)

|z=0

= π(0, 1)

∑∞
j=0

(λθ )
j
`k(−µθ−j)
j!(µθ+j)∑∞

i=0
(λθ )i

i!(µθ+i)

, for all k ≥ 1,

and g
(0)
1 = π(0, 1). Define a1(0) := 1, a1(1) := a1 and

a1(m) := 1
m!

∑m
k=0

(
m
k

)
f

(m−k)
1 g

(k)
1 for all m ≥ 2. Then

we obtain π(m, 1) = a1(m)π(0, 1), with a1(m) given as in
Proposition 2.

2) Steady-state distribution in the idle period: We first
define the ordinary generating function that corresponds to
π(m, 0) for all 0 ≤ m ≤ H − 1, that is, Π0(z) =∑∞
m=0 z

mπ(m, 0) =
∑H−1
m=0 z

mπ(m, 0), where by definition
π(m, 0) = 0 for all m ≥ H , and recall Equation (3) for all
1 ≤ m ≤ H − 1. Upon multiplying Equation (3) in state m
with zm, namely

zm(λ+mθ)π(m, 0) =zmλπ(m− 1, 0) + zmµπ(m, 1)

+ zm(m+ 1)θπ(m+ 1, 0),

and summing the latter over all 1 ≤ m ≤ H − 1, we then
obtain

λ(Π0(z)− π(0, 0)) + θz
dΠ0(z)

dz
= θ

(
dΠ0(z)

dz
− π(1, 0)

)
+ λz(Π0(z)− π(H − 1, 0)) + µ

H−1∑
m=1

zmπ(m, 1).

Using (3) in the case m = 0, that is, λπ(0, 0) − θπ(1, 0) =
µπ(0, 1), and after some algebra, we derive

− λ

θ
Π0(z) +

dΠ0(z)

dz

=
λz

θ(1− z)
π(H − 1, 0)− µ

θ(1− z)

H−1∑
m=0

zmπ(m, 1). (15)

Observe in the latter equation that for Π0(z) to be well defined
in z = 1, which we know equals

∑H−1
m=0 π(m, 0) < 1, the

condition limz→1 λzπ(H−1, 0)−µ
∑H−1
m=0 π(m, 1) = 0 needs

to be satisfied. We then obtain the extra condition to the
problem

π(H − 1, 0) =
µ

λ

H−1∑
m=0

π(m, 1) =
µ

λ
π(0, 1)

H−1∑
m=0

a1(m),

with a1(m) as given by Proposition 2. This yields π(H −
1, 0) = aH0 (H−1)π(0, 1). To derive the expression of π(m, 0)
for all H − 2 ≥ m ≥ 1, we adopt the following balance
equations for all H − 2 ≥ m ≥ 1, which are equivalent to
those introduced in Equation (3):

λπ(m, 0) =θ(m+ 1)π(m+ 1, 0) + λπ(H − 1, 0)

− µ
H−1∑
j=m+1

π(j, 1).

This equation can be solved using similar arguments as those
used in Section V-A, since the first two terms on the RHS of the
equation correspond to the balance equations for the case µ =
∞. Having noticed this, the recursion can easily be solved to
obtain aH0 (m) for all H−2 ≥ m ≥ 1 as given in Proposition 2.
The calculations can be found in [15]. Finally, the expression
for aH0 (0) can be devised by solving π(0, 0) = µ

λπ(0, 1) +
θ
λa

H
0 (1)π(0, 1). Then, we obtain π(m, 0) = aH0 (m)π(0, 1).

9



C. Proof of Lemma 1

We prove that the two conditions in Lemma 1 are satisfied
by Problem P. Let E = N∪{0}, and define h(m) = eεm, then,
by Definition 1 h is a moment function. Let us first assume
µ = ∞, then, the first condition is equivalent to proving that
there exists ε > 0 and M > 0 such that

∞∑
m̃=0

qφ,L(m, m̃)eεm̃ ≤ −k1eεm, for all m ≥M,

where qφ,L(m, m̃) denotes the transition rate from state m to
m̃. After substitution of the corresponding values of qφ,L(·, ·),
we obtain for all m ≥M

λ
(

1− m

L

)
eε(m+1)(1− Sφ(m)) + θmeε(m−1)(1− Sφ(m))

+ λ
(

1− m

L

)
Sφ(m) + θmSφ(m)

−
(
λ
(

1− m

L

)
+ θm

)
eεm ≤ −k1eεm,

where the first two terms on the LHS correspond to the
evolution of the Markov process when the system is passive,
and the third and fourth to the active period of the server. After
some algebra the latter reduces to

λ
(

1− m

L

)
(eε − 1) + θm(e−ε − 1) + θmSφ(m)(e−εm − e−ε)

+ λ
(

1− m

L

)
Sφ(m)(e−εm − eε) ≤ −k1,

where λ
(
1− m

L

) (
eε − 1 + Sφ(m)(e−εm − eε)

)
is upper

bounded by a constant, say κ, and θm(e−ε−1+Sφ(m)(e−εm−
e−ε)) ≤ 0, hence, we can find M large enough so that
θm(e−ε − 1 + Sφ(m)(e−εm − e−ε)) ≤ −κ.

Continuity of qφ,L(·, ·) in Sφ(Nφ(t)) and L, follows by
construction.

Let us now assume µ < ∞ and k1 = (k11, k12), then the
first condition reduces to finding ε > 0 and M > 0 such that
for all m ≥M

λ
(

1− m

L

)
eε(m+1)(1− Sφ(m)) + θmeε(m−1)(1− Sφ(m))

+
(
λ
(

1− m

L

)
+ θm

)
Sφ(m)

−
(
λ
(

1− m

L

)
+ θm

)
eεm ≤ −k11eεm,

µeεm + λ
(

1− m

L

)
eε(m+1) + θmeε(m−1)

−
(
λ
(

1− m

L

)
+ µ+ θm

)
eεm ≤ −k12eεm,

where the first inequality corresponds to the state (m, 0) and
the second inequality to (m, 1). After some algebra these two
inequalities reduce to

λ
(

1− m

L

)
(eε − 1 + Sφ(m)(e−εm − eε))

θm(e−ε − 1 + Sφ(m)(e−εm − e−ε)) ≤ −k11,

using the same type of arguments as for the case µ = ∞ the
latter is true for a big enough M . The second inequality writes

λ
(

1− m

L

)
(eε − 1) + θm(e−ε − 1) ≤ −k12,

where λ
(
1− m

L

)
(eε − 1) is upper bounded and can be made

as negative as desired for a big enough M .

Continuity of qφ,L(·, ·) in Sφ(Nφ(t)) and L, follows by
construction.

D. Proof of Proposition 1

The µ = ∞ case: We prove that V∞,L(·) is a non-
decreasing function using the Value Iteration approach [13].
To do so we define V∞,L0 (m) = 0 for all m ≤ L. Given g∞
the optimal average cost, and assuming w.l.o.g λ+θL = 1 we
have for all t

V∞,Lt+1 (m) =C̃m+ min{λ
(

1− m

L

)
V∞,Lt (min{m+ 1, L})

+ θmV∞,Lt ((m− 1)+) + θ(L−m)V∞,Lt (m)

+ λ
m

L
V∞,Lt (m), Cs + (λ+ θL)V∞,Lt (0)}.

since, in the Value Iteration approach V∞,Lt+1 − V
∞,L
t = g∞.

Observe that V∞,L0 (·) is non-decreasing, and it implies that
V∞,L1 (m) = C̃m, which is non-decreasing given C̃, Cs ≥
0. Let us now use the induction argument and assume that
V∞,Lt (m) is non-decreasing, then we want to prove that

V∞,Lt+1 (m− 1) ≤ V∞,Lt+1 (m), (16)

for all m ≤ L.

Let us denote

f∞0 (m) =C̃m+ λ
(

1− m

L

)
V∞,Lt (min{m+ 1, L})

+ θmV∞,Lt ((m− 1)+) + θ(L−m)V∞,Lt (m),

f∞1 (m) =Cs + (λ+ θL)V∞,Lt (0).

To prove (16) we argue on all possible action combinations in
states m − 1 and m, that is, a ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},
where a1 is the action taken in state m− 1 and a2 the action
taken in state m. We prove that for all a and m (16) is satisfied.
Let us start with the case a = (1, 1), where, (16) reduces to

C̃(m− 1) + f∞1 (m− 1) ≤ C̃m+ f∞1 (m) =⇒ C̃ ≥ 0,

which is by assumption true. We proceed with case a = (0, 0),
where (16) writes

C̃(m− 1) + f∞0 (m− 1) ≤ C̃m+ f∞0 (m).

We denote ∆V∞,Lt (m) = V∞,Lt (m)−V∞,Lt ((m−1)+). Then,
after some algebra the latter simplifies to

C̃ + λ
(

1− m

L

)
∆V∞,Lt (m+ 1)

(λ
m

L
+ θ(L−m))∆V∞,Lt (m) + θm∆Vt(m− 1) ≥ 0,

which holds due to C̃ ≥ 0 and V∞,Lt (m) being non-
decreasing. We are left with the cases a = (0, 1) and
a = (1, 0), we will prove (16) for a = (0, 1), the other case
follows similarly. Since in state m − 1 the optimal action is
passive, we have that

C̃(m− 1) + f∞0 (m− 1) ≤ C̃(m− 1) + f∞1 (m− 1),
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and we have proven in the case a = (1, 1) that C̃(m − 1) +
f∞1 (m − 1) ≤ C̃m + f∞1 (m), hence, combining these two
results we obtain

C̃(m− 1) + f∞0 (m− 1) ≤ C̃ + f∞1 (m),

which proves Equation (16) in the case a = (0, 1).

Moreover, we have that limt→∞ V∞,Lt = V∞,L point-
wise, and therefore V∞,Lt being non-decreasing for all t
implies V∞,L being non-decreasing. This last argument con-
cludes the proof.

The µ < ∞ case: We first prove that V L(·, 0) is a non-
decreasing function using the Value Iteration approach [13] on
the truncated system. To do so we smooth the arrival rate such
that q(m− 1,m) = λ

(
1− m

L

)
.

1) V L(·, 0) is non-decreasing: To prove that V L(·, 0) is a
non-decreasing function we define V L0 (m) = 0 for all m ≤
L. Given g the optimal average cost, and assuming w.l.o.g
λ+ µ+ θL = 1 the Bellman equation writes

V Lt+1(m, 0)

= C̃m+ min

(
λ
(

1− m

L

)
V Lt (m+ 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0) + θmV Lt (m− 1, 0);

Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0)

)
, (17)

and

V Lt+1(m, 1) = C̃m+ λ
(

1− m

L

)
V Lt (m+ 1, 1) + µV Lt (m, 0)

+
(
λ
m

L
+ (L−m)θ

)
V Lt (m, 1) +mθV Lt (m− 1, 1), (18)

since V Lt+1(m, 0)− V Lt (m, 0) = g.

We will first prove that for all t, V Lt (m, 0) is non-
decreasing in m. We will argue by induction: first we show
that V L0 (m, 0) ≥ V L0 (m′, 0) for all m ≥ m′ ≥ 0 implies
that V L1 (m, 0) ≥ V L1 (m′, 0), and later on we will prove
that assuming that V Lt (m, a) is non-decreasing in m, implies
V Lt+1(m, 1) to be non-decreasing. By definition V L(m, a) is
the asymptotic difference in total reward from starting at state
m instead of starting at the reference state which, without loss
of generality ,we set at 0. We choose V L0 (m, a) = 0 for all
m ≥ 0 and a ∈ {0, 1}, then, from (17) and (18) we obtain
V L1 (m, a) = C̃m. Since C̃ > 0, V L1 (m, a) ≥ V L1 (m−1, a) for
all m ≥ 1. We now assume that V Lt (m, 0) is non-decreasing,
and we prove that V Lt+1(m, 0) ≥ V Lt+1(m − 1, 0) for all
L ≥ m ≥ 1, that is, after substitution of (17), equivalent

to proving

C̃m+ min

(
λ
(

1− m

L

)
V Lt (m+ 1, 0) + θmV Lt (m− 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0), Cs + λV Lt (1, 1)

+ θNV Lt (0, 1) + µV Lt (0, 0)

)
≥ C̃(m− 1) + min

(
λ

(
1− m− 1

L

)
V Lt (m, 0)

+

(
λ
m− 1

L
+ µ+ θ(L−m+ 1)

)
V Lt (m− 1, 0)

+ θ(m− 1)V Lt ((m− 2)+, 0), Cs + λV Lt (1, 1) + θLV Lt (0, 1)

+ µV Lt (0, 0)

)
. (19)

We will now prove that Inequality (19) is satisfied for all
possible action combinations in states m and m−1. Let us first
assume that in both m and m − 1 passive action is optimal,
then (19) reduces to

C̃m+ λ
(

1− m

L

)
V Lt (m+ 1, 0) + θmV Lt (m− 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0)

≥ C̃(m− 1) + λ

(
1− m− 1

L

)
V Lt (m, 0)

+

(
λ
m− 1

L
+ µ+ θ(L−m+ 1)

)
V Lt (m− 1, 0)

+ θ(m− 1)V Lt ((m− 2)+, 0),

which after some calculations writes

C̃ + λ
(

1− m

L

)
∆V Lt (m+ 1, 0) + θ(m− 1)∆V Lt (m− 1, 0)

+

(
λ
m− 1

L
+ µ+ θ(L−m)

)
∆V Lt (m, 0) ≥ 0,

for all L ≥ m ≥ 1 and ∆V Lt (m, 0) = V Lt (m, 0)− V Lt ((m−
1)+, 0). Due to ∆V Lt (m, 0) ≥ 0 for all L ≥ m ≥ 0, this
last inequality is satisfied. We now prove (19) for the case in
which active action is optimal in both m and m − 1, then,
Inequality (19) reduces to

C̃m+ Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0)

≥ C̃(m− 1) + Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0),

which simplifies to C̃ ≥ 0, and hence (19) is satisfied. Let us
now proceed with assuming that passive action is optimal in
m and active in m− 1, then the following holds,

C̃m+ λ
(

1− m

L

)
V Lt (m+ 1, 0) + θmV Lt (m− 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0)

≥ C̃(m− 1) + min

(
λ

(
1− m− 1

L

)
V Lt (m, 0)

+

(
λ
m− 1

L
+ µ+ θ(L−m+ 1)

)
V Lt (m− 1, 0)

≥ C̃(m− 1) + Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0),
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where the first inequality has been proven above, and the
second inequality follows from the fact that active action is
optimal in m. Therefore, Inequality (19) holds in case active
is optimal in m − 1 and passive in m. We are left with the
proof in the case where the optimal action is active in m and
passive in m− 1. We have

C̃m+ Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0)

≥ C̃(m− 1) + Cs + λV Lt (1, 1) + θLV Lt (0, 1) + µV Lt (0, 0)

≥ C̃(m− 1) + min

(
λ

(
1− m− 1

L

)
V Lt (m, 0)

+

(
λ
m− 1

L
+ µ+ θ(L−m+ 1)

)
V Lt (m− 1, 0)

+ θ(m− 1)V Lt ((m− 2)+, 0),

where the first inequality has been proven above and the second
inequality follows from the fact that passive action in optimal
in state m− 1. Therefore, Inequality (19) holds.

We have therefore proven that for any t, Vt(m, 0) is non-
decreasing in m. And V Lt (m, 0)→ V L(m, 0) point-wise, then,
V L(m, 0) is non-decreasing.

Let us now prove fLt (m, 0) − fLt (m, 1) ≤ fLt (m′, 0) −
fLt (m′, 1) where

fLt (m, 0) =λ
(

1− m

L

)
V Lt (m+ 1, 0) + θmV Lt (m− 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0),

fLt (m, 1) =C̃m+ Cs + λV Lt (1, 1) + θLV Lt (0, 1)

+ µV Lt (0, 0).

2) fLt (m, 0) − fLt (m, 1) ≤ fLt (m′, 0) − fLt (m′, 1) for
all m′ ≥ m: . Substituting the expression of fLt (m, a) the
inequality reduces to

C̃(m′ −m) ≤ C̃(m′ −m) + λ

(
1− m′

L

)
V Lt (m′ + 1, 0)

+

(
λ
m′

L
+ µ+ θ(L−m′)

)
V Lt (m′, 0) + θm′V Lt (m′ − 1, 0)

−
(
λ
(

1− m

L

)
V Lt (m+ 1, 0)

+
(
λ
m

L
+ µ+ θ(L−m)

)
V Lt (m, 0) + θmV Lt (m− 1, 0)

)
.

Let us now define m′ = m+u, with u ≥ 1, and then the latter
inequality writes

0 ≤λ
(

1− m′

L

)
(V Lt (m′ + 1, 0)− V Lt (m+ 1, 0))

− λ u
L

(V Lt (m+ 1, 0)− V Lt (m, 0))

+ λ
m′

L
(V Lt (m′, 0)− V Lt (m, 0))

+ µ(V Lt (m′, 0)− V Lt (m, 0))

+ θm(V Lt (m′ − 1, 0)− V Lt (m− 1, 0))

+ θu(V Lt (m′ − 1, 0)− V Lt (m, 0)),

which is satisfied due to V Lt (m, 0) being non-decreasing.

E. Expression of πm in the case µ =∞
We solve the balance equations in Section V-A, that is,

πm = (m+ 1)
θ

λ
πm+1 + πH−1

= πH−1 + (m+ 1)
θ

λ

(
(m+ 2)

θ

λ
πm+2 + πH−1

)
= πH−1

(
1 +

θ

λ
(m+ 1)

)
+ πm+2

(
θ

λ

)2

(m+ 1)(m+ 2)

= πH−1

(
1 +

θ

λ
(m+ 1) +

(
θ

λ

)2

(m+ 1)(m+ 2)

)

+ πm+3

(
θ

λ

)3

(m+ 1)(m+ 2)(m+ 3)

= . . .

= πH−1

(
1 +

H−1−m∑
i=1

(
θ

λ

)i
(m+ i)!

m!

)
.

F. How to deduce the expression of aH0 (m)

Recall Equation (3) and note that one can equivalently write
for all H − 2 ≥ m ≥ 1

λπ(m, 0) =θ(m+ 1)π(m+ 1, 0) + λπ(H − 1, 0)

− µ
H−1∑
j=m+1

π(j, 1).

Then,

π(m, 0) =
θ(m+ 1)

λ
π(m+ 1, 0) + π(H − 1, 0)

− µ

λ

H−1∑
j=m+1

π(j, 1),

=
θ(m+ 1)

λ

(
θ(m+ 2)

λ
π(m+ 2, 0) + π(H − 1, 0)

− µ

λ

H−1∑
j=m+2

π(j, 1)

)
+ π(H − 1, 0)

− µ

λ

H−1∑
j=m+1

π(j, 1)

=
θ2

λ2
(m+ 1)(m+ 2)π(m+ 2, 0)

+

(
1 +

θ

λ
(m+ 1)

)
π(H − 1, 0)

− µ

λ
π(m+ 1, 1)− µ

λ

H−1∑
j=m+2

(
1 +

θ(m+ 1)

λ

)
π(j, 1)

= . . .

=π(H − 1, 0)

H−1−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!

− µ

λ

H−1∑
j=m+1

π(r, 1)

r−m−1∑
i=0

(
θ

λ

)i
(m+ i)!

m!
.

This last expression is valid for all m ≥ 1.
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G. Proof of Proposition 3

We aim at proving that for all H ′ 6= H

C̃E(NH) + CsP
H
b ≤ C̃E(NH′) + CsP

H′

b .

We present here the proof in the case H ′ < H , the other case
can be done similarly. By assumption we have for all H ≥ 1,
α(H − 1) ≤ α(H), then

E(NH−1)− E(NH−2)

PH−2
b − PH−1

b

≤ E(NH)− E(NH−1)

PH−1
b − PHb

=⇒ (E(NH−1)− E(NH−2))(PH−1
b − PHb )

≤ (E(NH)− E(NH−1))(PH−2
b − PH−1

b ).

In the latter inequality we sum and subtract E(NH)(PH−1
b −

PHb ) on the left hand side, that is,

(E(NH−1)− E(NH) + E(NH)− E(NH−2))(PH−1
b − PHb )

≤ (E(NH)− E(NH−1))(PH−2
b − PH−1

b ),

after some algebra this last inequality reduces to

E(NH)− E(NH−2)

PH−2
b − PHb

≤ E(NH)− E(NH−1)

PH−1
b − PHb

≤ Cs.

Similarly, one can prove

α(H − 1) ≤ E(NH)− E(NH−2)

PH−2
b − PHb

.

We now make the following induction assumption for a given
a

α(H − a+ 1) ≤ E(NH)− E(NH−a)

PH−ab − PHb
≤ Cs.

By assumption on the statement we have α(H − a) ≤ α(H −
a+ 1), hence from the latter equation we obtain

α(H − a) ≤ E(NH)− E(NH−a)

PH−ab − PHb
=⇒ (E(NH−a)− E(NH−a−1))(PH−ab − PHb )

≤ (E(NH)− E(NH−a))(PH−a−1
b − PH−ab ),

adding and subtracting E(NH)(PH−ab −PHb ) on the left hand
side, and after some algebra, we obtain

E(NH)− E(NH−a−1)

PH−a−1
b − PHb

≤ E(NH)− E(NH−a)

PH−ab − PHb
≤ Cs. (20)

From the latter we observe that

(E(NH)− E(NH−a−1))(PH−ab − PHb + PH−a−1
b − PH−a−1

b )

≤ (E(NH)− E(NH−a))(PH−a−1
b − PHb ),

which after some algebra reduces to

α(H − a) ≤ E(NH)− E(NH−a−1)

PH−a−1
b − PHb

.

The latter together with (20) gives

α(H − a) ≤ E(NH)− E(NH−a−1)

PH−a−1
b − PHb

≤ Cs,

which concludes the induction. For all 0 ≤ a ≤ H − 1 denote
H ′ = H − 1− a. We have proven that for all H ′ < H

E(NH)− E(NH′)

PH
′

b − PHb
≤ Cs

=⇒ C̃E(NH) + CsP
H
b ≤ C̃E(NH′) + CsP

H′

b .

Which concludes the proof.

H. Proof of Lemma 2

Let us first proof that PHb is non-increasing. It suffices to
prove πHH−1 ≤ π

H−1
H−2 for all H ≥ 2. This inequality writes

H−2∑
m=0

H−2−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!
≤
H−1∑
m=0

H−1−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!

⇐⇒ 0 ≤
H−1∑
m=0

(
θ

λ

)H−1−m
(H − 1)!

m!
.

The RHS is positive for all H ≥ 2 and hence πHH−1 ≤ π
H−1
H−2 .

Having proven that πHH−1 is non-increasing in H , we now
proceed to prove the convexity of PHb . One can easily prove
that convexity of PHb is implied by πHH−1− π

H+1
H ≤ πH−1

H−2 −
πHH−1, which after substitution of the corresponding values
reduces to∑H+1

m=0

∑H+1−m
i=0

(
θ
λ

)i (m+i)!
m! −

∑H
m=0

∑H−m
i=0

(
θ
λ

)i (m+i)!
m!∑H+1

m=0

∑H+1−m
i=0

(
θ
λ

)i (m+i)!
m!

≤
∑H
m=0

∑H−m
i=0

(
θ
λ

)i (m+i)!
m! −

∑H−1
m=0

∑H−1−m
i=0

(
θ
λ

)i (m+i)!
m!∑H−1

m=0

∑H−1−m
i=0

(
θ
λ

)i (m+i)!
m!

.

(21)

After some algebra the latter reduces to(
H+1∑
m=0

(
θ

λ

)H+1−m
(H + 1)!

m!

)
H−1∑
m=0

H−1−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!

≤

(
H∑
m=0

(
θ

λ

)H−m
H!

m!

)
H+1∑
m=0

H+1−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!
,

which is satisfied for all H . Hence, PHb is convex in H .

Let us now prove that α(H) as defined in Proposition 3 is
non-decreasing, that is,

α(H) := C̃
E(NH)− E(NH−1)

PH−1
b − PHb

=

∑H−1
m=0 mπ

H
m −

∑H−2
m=0 mπ

H−1
m

PH−1
b − PHb

=

∑H−1
m=0 m

(∑H−1−m
i=0

(
θ
λ

)i (m+i)!
m!

)
πHH−1

PH−1
b − PHb

−

∑H−2
m=0 m

(∑H−2−m
i=0

(
θ
λ

)i (m+i)!
m!

)
πH−1
H−2

PH−1
b − PHb

.
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The latter after some algebra writes

α(H) =

∑H−1
m=0 m

(
θ
λ

)H−1−m (H−1)!
m! πHH−1

PH−1
b − PHb

+

H−2∑
m=0

m

H−2−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!

(
πHH−1 − π

H−1
H−2

PH−1
b − PHb

)
.

We now aim at proving α(H) ≤ α(H + 1) for all H , that is
if ∑H−1

m=0 m
(
θ
λ

)H−1−m (H−1)!
m! πHH−1

PH−1
b − PHb

+

H−2∑
m=0

m

H−2−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!

(
πHH−1 − π

H−1
H−2

PH−1
b − PHb

)

≤
∑H
m=0m

(
θ
λ

)H−m H!
m!π

H+1
H

PHb − P
H+1
b

+
H−1∑
m=0

m

H−1−m∑
i=0

(
θ

λ

)i
(m+ i)!

m!

(
πH+1
H − πHH−1

PHb − P
H+1
b

)
,

The second term in the LHS of the inequality being less than or
equal to the second term in the RHS of the inequality follows
from PHb and πHH−1 being convex non-increasing functions in
H . We are therefore left to proof

H−1∑
m=0

m

(
θ

λ

)H−1−m
(H − 1)!

m!
πHH−1

≤
H∑
m=0

m

(
θ

λ

)H−m
H!

m!
πH+1
H .

This concludes the proof.

I. Proof of Lemma 3

To prove that PHb is non-increasing it suffices to prove
πH(0, 1) ≥ πH+1(0, 1). Observe that πH(0, 1) ≥ πH+1(0, 1)
is implied by

∑H−1
m=0 a

H
0 (m) ≤

∑H
m=0 a

H+1
0 (m). Further-

more, after some algebra one can obtain that
H∑
m=0

aH+1
0 (m) =

H∑
m=0

aH0 (m) +
µ

λ

H∑
r=0

a1(r)

(
θ

λ

)H−m
H!

m!
,

therefore

0 ≤
H∑
m=0

aH+1
0 (m)−

H−1∑
m=0

aH0 (m)

⇐⇒ 0 ≤ aH0 (H) +
µ

λ

H∑
r=0

a1(r)

(
θ

λ

)H−m
H!

m!
.

The last inequality is satisfied since aH0 (m) > 0 for all m.
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