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Abstract—Traffic modeling is key to the capacity planning of
data networks. Usual models rely on the implicit assumption that
each user generates data flows in series, one after the other, the
ongoing flows sharing equitably the considered backhaul link.
We relax this assumption and consider the more realistic case
where users may generate several data flows in parallel, these
flows having to share the user’s access line as well. We derive
explicit user-level performance metrics like mean throughput and
congestion rate in this context, assuming balanced fair sharing
between ongoing flows. These results generalize existing ones in
that both match in the limit of an infinite number of access lines.

Index Terms—Flow-level model, mean throughput, congestion
rate, balanced fairness.

I. INTRODUCTION

Internet service providers need to predict the impact of traf-
fic load on the quality of service perceived by their customers.
This is increasingly important with the advent of high-speed
internet access that tends to move congestion from the access
to the backhaul, where resources are shared by several users.

Internet traffic is most often modeled at flow level1, as-
suming some ideal bandwidth sharing between ongoing flows
[13], [3], [2], [1], [16]. Modeling traffic at packet level proves
too complex and is hardly effective, given that users typically
perceive quality of service at flow level [10]. In fact, the
flow-level models of data networks can be considered as the
analogues for the Erlang model of telephone networks and its
extensions to multi-rate circuit-switched networks [4]. They
have proved essential for both dimensioning [3], [6], [21], [20],
[14] and traffic engineering [13], [19], [17].

These models rely on the implicit assumption that each
user generates data flows in series, one after the other, so
that bandwidth sharing occurs on the considered backhaul
link only, and not on the user’s access line. In this paper,
we relax this assumption and consider the more realistic case
where users may generate several data flows in parallel, these
flows having to share both the backhaul link and the user’s
access line. It is not obvious how bandwidth is shared by
end-to-end congestion control in this context. We assume
bandwidth sharing is balanced fair, which is the only allocation
yielding a closed-form stationary distribution of the network
state [7]. Balanced fairness in fact provides a very good
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1A flow is here defined as the set of packets having the same 5-tuple: IP

source and destination addresses, IP source and destination ports, protocol.

approximation of proportional fairness [5], which is considered
as representative of the way bandwidth is shared in the Internet
[15], [22], [18].

Existing models assume that flows are generated either
according to a Poisson process (the so-called infinite-source
model) or by n users, each alterning between the active state
and the idle state (the so-called finite-source model) [4]; in
both cases, each user has at most one flow in progress at any
given time. Our model consists of n users, each generating
data flows according to a Poisson process; in particular, there
is no limit on the number of flows in progress coming from the
same user. We refer to this model as the multi-source model,
since each user can now be viewed as an independent source
of flows.

Since the model allows each user to generate multiple flows
in parallel, it is not sufficient to focus on the flow level to
evaluate user-level performance. In particular, the throughput
of each user is the total throughput of her flows in progress.
The corresponding performance results can differ significantly
from those obtained under the infinite-source model and the
finite-source model. They coincide only in the limit of an
infinite number of access lines.

We consider a single backhaul link of fixed capacity (in
bit/s) shared by a population of n users. The total throughput
of each user is also constrained by the rate of her access line.
The models apply equally to the uplink (from the users to the
Internet) and to the downlink (from the Internet to the users).
All traffic is elastic, meaning that each flow generated by a user
corresponds to some data transfer and remains active as long
as the corresponding data have not been fully transferred. Due
to the insensitivity property, we do not specify the flow size
distribution beyond the mean, nor the distribution of the idle
times in the finite-source model [4]. We provide formulas that
can be used in planning tools or directly by network engineers
to get insights into the impact traffic on user-level performance
[14].

In the rest of the paper, we first review and extend the
results obtained with the infinite-source model and the finite-
source model, with a focus on two performance metrics: mean
throughput and congestion rate. We then present the multi-
source model and compare numerically the results derived
from the three models in some typical traffic scenarios.



II. INFINITE-SOURCE MODEL

Like the Erlang model for telephone networks, which relies
on the assumption of Poisson call arrivals [12], it is common
practice to assume Poisson flow arrivals in data networks. This
is referred to as the infinite-source model since it corresponds
to the finite-source model (presented in the next section) in the
limiting case where the number of users n grows to infinity.

A. No access rates

We start with the simplest case where there is no rate
limit at the access: each user has full access to the backhaul
link, which is assumed to be equitably shared by ongoing
flows. Flows arrive according to a Poisson process of intensity
λ and have i.i.d. sizes of mean σ bits, corresponding to a
traffic intensity of A = λσ bit/s. Denoting by C the capacity
of the backhaul link in bit/s, the link load is ρ = A/C.
Under the assumption of perfect fair sharing, the traffic model
corresponds to an M/G/1 processor-sharing queue of load ρ.
It is stable if and only if ρ < 1, in which case the stationary
distribution of the number of flows in progress X is given by:

π(x) = (1− ρ)ρx.

It turns out that the stationary distribution seen by a user
having a flow in progress is different. Since there are x flows
in progress in state x, which are assumed to be generated by
different users, each active user sees the size-biased probability
distribution of the random variable X ,

π′(x) ∝ xπ(x).

Observe that π′(0) = 0. We will denote by P ′ and E′ the cor-
responding probability measure and expectation, respectively.
We derive two key performance metrics on this basis.

Mean throughput: The first performance metric is the
mean throughput experienced by users. Assume there are x
ongoing flows, with x > 0. The throughput of each flow is
then C/x. Thus the mean throughput experienced by users,
normalized by the maximum throughput C, is given by

γ = E′
(

1

X

)
.

Replacing E′ by its expression, we obtain

γ =

∑
x>0 π(x)

E(X)
=

ρ

E(X)
,

that is
γ = 1− ρ. (1)

Observe that the mean throughput decreases linearly with the
link load.

Congestion rate: The second performance metric is the
congestion rate, defined as the probability that an active user
gets a throughput less than the maximum throughput C. Since
there is no rate limit at the access, the congestion rate is the
probability seen by an active user that there are other active
users:

η = P ′(X > 1).

Replacing E′ by its expression, we obtain

η =

∑
x>1 xπ(x)

E(X)
= 1− P (X = 1)

E(X)
,

that is
η = ρ(2− ρ). (2)

As expected, the congestion rate grows from 0 to 1 as the link
load grows from 0 to 1.

B. Same access rates

We now consider the practically interesting case where each
flow has a rate limit r < C corresponding to the capacity of
the user’s access line in bit/s. For convenience, we assume
that the capacity of the backhaul link is some multiple of this
access rate, that is C = mr for some integer m ≥ 1. We
denote by α = A/r the traffic intensity expressed in units of
the access rate. This would correspond to the mean number of
flows if the backhaul link were of infinite capacity. The model
corresponds to an M/G/m processor-sharing queue of load
ρ = A/C. Under the stability condition ρ < 1, the stationary
distribution of the number of flows X is given by:

π(x) =
1

G

{
αx

x! for x ≤ m,
αm

m! ρ
x−m for x > m,

where G denotes the normalization constant:

G =

m∑
x=0

αx

x!
+
αm

m!

ρ

1− ρ
.

Both performance metrics extend to this case. We still denote
by P ′ and E′ the corresponding size-biased probability mea-
sure and expectation.

Mean throughput: Assume there are x ongoing flows,
with x > 0. The throughput of each flow is then min(r, C/x).
We deduce the mean throughput seen by users, normalized by
the maximum throughput r,

γ = E′
(
min

(
1,
m

X

))
.

Replacing E′ by its expression, we obtain

γ =
E(min(X,m))

E(X)
=

α

E(X)
,

where the second equality follows from work conservation.
Finally, we get

γ =
m(1− ρ)2

π(m) +m(1− ρ)2
.

Congestion rate: The throughput of a flow is less than
its maximum r whenever the number of flows exceeds m. We
deduce the congestion rate

η = P ′(X > m),

that is

η =
π(m)(1 +m(1− ρ))
π(m) +m(1− ρ)2

.



C. Different access rates

Finally, we consider the general case of K different access
rates r1, . . . , rK . We denote by A1, . . . , AK the respective
traffic intensities in bit/s generated by each class of users,
and by α1 = A1/r1, . . . , αK = AK/rK the traffic intensities
expressed in multiples of the access rates; these would cor-
respond to the mean number of flows of each class if the
backhaul link were of infinite capacity. The corresponding
loads on the backhaul link are ρ1 = A1/C, . . . , ρK = AK/C,
and the total load is ρ = ρ1 + . . .+ ρK .

Let X be the K-dimensional vector of the number of flows
of each class in progress. Denote by φk(x) the total throughput
of class-k users in state x. The capacity constraints are

∀k = 1, . . . ,K, φk(x) ≤ xkrk

and
K∑
k=1

φk(x) ≤ C.

Now let r be the K-dimensional vector of access rates. Under
balanced fair sharing [9], all users get their maximum through-
put, in the sense that φk(x) = xkrk for all k = 1, . . . ,K, if
and only if x.r ≤ C (the access lines are limiting); otherwise,
no user gets her or his maximum throughput and the total
throughput is

∑K
k=1 φk(x) = C (the backhaul link is limiting).

The stability condition is ρ < 1 and the vector X has the
stationary distribution:

π(x) =

{
1
G
α

x1
1

x1!
. . .

α
xK
K

xK ! for x.r ≤ C,∑K
k=1 ρkπ(x− ek) for x.r > C,

where ek is the unit vector on component k and G denotes
the normalization constant. Here and in the rest of the paper,
we adopt the convention that π(x) = 0 for any x 6∈ NK .

Performance now depends on the user’s class. The stationary
distribution of X seen by class-k users is

π′k(x) ∝ xkπ(x).

We denote by P ′k and E′k the corresponding probability
measure and expectation, respectively.

Mean throughput: All class-k users get the same through-
put φk(x)/xk in any state x such that xk > 0. We deduce the
mean throughput of class-k users, normalized by the maximum
throughput rk,

γk = E′k

(
φk(X)

Xkrk

)
. (3)

Replacing E′k by its expression, we obtain

γk =
E(φk(X))

E(Xk)rk
=

αk
E(Xk)

,

where the second equality follows from work conservation.

Congestion rate: The throughput of a class-k user is less
than its maximum rk in any state x such that x.r > C. We
deduce:

ηk = P ′k(X.r > C). (4)

Both performance metrics can be computed through a recur-
sive formula [9], which is the analogue of the Kaufmann-
Roberts formula for circuit-switched networks.

D. Numerical results

Figure 1 shows the mean throughput and congestion rate as
a function of the link load ρ when all users have the same
access rate r and the backhaul link has capacity C = mr
with m = 1, 10, 100. For m = 1, there is actually no access
rate limit and users have full access to the backhaul link, as
considered in §II-A.

We observe that performance improves with m, as the
backhaul link becomes less constraining. For m = 100, the
mean throughput is approximately equal to the access rate
until a load of 85%, corresponding to a congestion rate smaller
than 5% (the impact of the backhaul link is negligible), then
decreases quickly to 0, with congestion rate larger than 5%
(the impact of the backhaul link becomes dominant).
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(a) Mean throughput for m = 1, 10, 100 (from bottom to top)
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(b) Congestion rate for m = 1, 10, 100 (from top to bottom)

Fig. 1. Performance metrics under the infinite-source model.



III. FINITE-SOURCE MODEL

When the user population is relatively small, flow arrivals
cannot be considered as Poisson. Each user is still assumed
to generate flows in series, with a random idle time between
the end of a flow and the beginning of the next flow. This is
the analogue of the Engset model used for telephone networks
[11]. We only give the stationary distribution of the number
of active users; the corresponding performance metrics can be
derived as for the infinite-source model.

A. No access rates

Consider n users having full access to the backhaul link.
Any idle user tends to become active at rate ν > 0, while any
active user tends to become idle at rate µ = C/σ when no
other users are active. We deduce that any user alone in the
system is active a fraction of time β/(1 + β), with β = ν/µ.

Now assume active users share the backhaul link in a fair
way. The stationary distribution of the number of active users
X is then given by

π(x) =
1

G

n!

(n− x)!
βx, x ≤ n,

where G is the normalization constant:

G =

n∑
x=0

n!

(n− x)!
βx.

The infinite-source model corresponds to the case n → ∞
and β → 0, with nβ → ρ. A key difference with the infinite-
source model is that traffic intensity is no longer an exogenous
parameter but given by A = CP (X > 0). We deduce the link
load:

ρ = P (X > 0) =
G− 1

G
.

B. Same access rates

Now assume all users have the same access rate r. The link
capacity is C = mr for some integer m ≥ 1, with n > m.
Any active user tends to become idle at rate µ = r/σ when
no other users are active. The stationary distribution of the
number of flows X becomes:

π(x) =
1

G

{ (
n
x

)
βx for x ≤ m,
n!

(n−x)!m!
βx

mx−m for m < x ≤ n,

where β = ν/µ and G is the normalization constant. Traffic
intensity is A = E(min(X,m))r, corresponding to load

ρ =
E(min(X,m))

m
.

C. Different access rates

Finally, consider the general case of K different access rates
r1, . . . , rK . There are nk users with access rate rk, mean flow
size σk and mean idle time 1/νk between two flows. Under

balanced fair sharing, the stationary distribution of the system
state X is given by:

π(x) ={
1
G

∏K
k=1

(
nk

xk

)
βxk

k for x.r ≤ C,∑K
k=1

βkrk
C (nk − xk + 1)π(x− ek) for x.r > C,

where βk = νk/µk, µk = rk/σk and G the normalization con-
stant. Traffic intensity is A = E(min(X.r, C)), corresponding
to load:

ρ =
E(min(X.r, C))

C
.

D. Numerical results

Figure 2 shows the mean throughput and the congestion rate
when all users have the same access rate r and the backhaul
link has capacity C = mr with m = 10; the number of users
is n = 20, 50, 100 and ∞, this last case corresponding to the
infinite-source model. We observe that, while the congestion
rate obtained with the finite-source model quickly tends to
that derived from the infinite-source model when n grows,
the convergence is much slower for the mean throughput: for
n = 100, the results still differ significantly.
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(a) Mean throughput for m = 10 and n = 20, 50, 100,∞ (from
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Fig. 2. Performance metrics under the finite-source model.



IV. MULTI-SOURCE MODEL

We now introduce the multi-source model where data flows
must share both the backhaul link and the user’s access line.
We consider n users, with user i generating flows according to
an independent Poisson process of intensity λi, corresponding
to the traffic intensity ai = λiσ in bit/s. We are interested in
the total throughput obtained by each user.

A. No access rates

As above, we first consider the case where each user has
full access to the backhaul link. Under fair sharing between
flows in progress, the model reduces to an M/G/1 multi-class
processor-sharing queue. Denoting by ρi = ai/C the load due
to user i and by ρ = ρ1+ . . .+ρn the total load, the stationary
distribution of the number of flows of each user X is given
by

π(x) = (1− ρ)
(
x1 + . . .+ xn
x1, . . . , xn

)
ρx1
1 . . . ρxn

n ,

under the stability condition ρ < 1.
Now user i sees the stationary distribution

πi(x) ∝ π(x)1xi>0

when active. We denote by Pi and Ei the corresponding
probability measure and expectation.

Mean throughput: The total throughput of user i is
proportional to the number of ongoing flows of this user, that
is (xi/

∑
j xj)×C in any state x such that xi > 0. We deduce

the mean throughput of user i, normalized by the maximum
throughput C,

γi = Ei

(
Xi∑
j Xj

)
.

By work conservation,

ρi = E

(
Xi∑
j Xj

1Xi>0

)
,

so that
γi =

ρi
P (Xi > 0)

.

Since
P (Xi > 0) =

ρi
1− ρ+ ρi

,

we obtain
γi = 1− ρ+ ρi.

Note that the mean throughput is larger than that obtained
with the infinite-source model, given by (1), with equality
when ρi → 0 (in which case user i generates flows in series,
as in the infinite-source model). Observe also that the mean
(normalized) throughput of user i is larger than the load ρi
generated by this user, with equality when ρ → 1 (in which
case the system is saturated and the throughput of each user
corresponds to her bandwidth share). For homogeneous traffic
distribution, all users get the same throughput,

γ = 1− ρ+ ρ

n
≥ 1

n
.

Congestion rate: The congestion rate seen by user i is
the probability that the total throughput of this user is less than
C, that is the probability that there are other active users:

ηi = Pi(
∑
j

Xj > Xi).

We get

ηi =
P (Xi > 0,

∑
j 6=iXj > 0)

P (Xi > 0)
.

Since

P (Xi > 0,
∑
j 6=i

Xj = 0) =
ρi(1− ρ)
1− ρi

,

we obtain

ηi = (2− ρ)ρ− ρi
1− ρi

.

This congestion rate is smaller than that obtained with the
infinite-source model, given by (2), with equality when ρi →
0.

B. Same access rates

Now assume all users have the same access rate r, with
C = mr for some integer m such that 1 ≤ m < n. We
denote by %i = ai/r the load of user-i access line. The load
of user i on the backhaul link is ρi = ai/C = %i/m.

Let φi(x) be the total throughput of user i in state x. The
capacity constraints are

∀i = 1, . . . , n, φi(x) ≤ r

and
n∑
i=1

φi(x) ≤ C.

Let n(x) =
∑n
i=1 1xi>0 be the number of active users in

state x. Under balanced fair sharing, all active users get their
maximum throughput, that is φi(x) = r for all i = 1, . . . , n
such that xi > 0, if and only if n(x)r ≤ C (the access lines
are limiting); otherwise, no user gets the maximum throughput
and the total throughput is

∑n
i=1 φi(x) = C (the backhaul link

is limiting). Under the stability condition ρ < 1 and %i < 1
for all i = 1, . . . , n, the stationary distribution of the network
state X is

π(x) =

{
1
G

∏n
i=1 %

xi
i for n(x) ≤ m,∑n

i=1 ρiπ(x− ei) otherwise,

where G is the normalization constant. Since the network has
a tree topology, we deduce from [8] that

G =
∑

I⊂{1,...,n},|I|≤m

∏
i∈I

%i
1− %i

+
∑

I⊂{1,...,n},|I|=m

∏
i∈I

%i
1− %i

∑
i6∈I %i

m−
∑n
i=1 %i

.



Mean throughput: The mean throughput of user i, nor-
malized by the maximum throughput r, is given by

γi = Ei

(
φi(X)

r

)
.

By work conservation, E(φi(X)) = ai so that

γi =
%i

P (Xi > 0)
.

Now
P (Xi = 0) =

Gi
G
,

where Gi denote the normalization constant in the absence of
user i,

Gi =
∑

I⊂{1,...,n}\{i},|I|≤m

∏
j∈I

%j
1− %j

+
∑

I⊂{1,...,n}\{i},|I|=m

∏
j∈I

%j
1− %j

∑
j 6∈I,j 6=i %j

m−
∑
j 6=i %j

.

We deduce
γi =

G%i
G−Gi

. (5)

Congestion rate: The congestion rate seen by user i is

ηi = Pi(φi(X) < r).

We get

ηi =
P (Xi > 0,

∑
j 1Xj>0 > m)

P (Xi > 0)
,

that is
ηi =

F − Fi
G−Gi

, (6)

with

F =
∑

I⊂{1,...,n},|I|=m

∏
j∈I

%j
1− %j

∑
j 6∈I %j

m−
∑n
j=1 %j

and

Fi =
∑

I⊂{1,...,n}\{i},|I|=m

∏
j∈I

%j
1− %j

∑
j 6∈I,j 6=i %j

m−
∑
j 6=i %j

.

C. Different access rates

We now consider the general case where user i has access
rate ri. The load of user-i access line becomes %i = ai/ri.
The capacity constraints are

∀i = 1, . . . , n, φi(x) ≤ ri
and

n∑
i=1

φi(x) ≤ C.

Under balanced fair sharing, all active users get their maxi-
mum throughput if and only if

∑n
i=1 ri1xi>0 ≤ C. Under the

stability condition ρ < 1 and %i < 1 for all i = 1, . . . , n, the
stationary distribution of the network state X is

π(x) =

{
1
G

∏n
i=1 %

xi
i for

∑n
i=1 ri1xi>0 ≤ C,∑n

i=1 ρiπ(x− ei) otherwise,

where G denotes the normalization constant [8]

G =
∑

I⊂{1,...,n},eI .r≤C

∏
i∈I

%i
1− %i

+
∑

I⊂{1,...,n},eI .r≤C

∏
i∈I

%i
1− %i

∑
i6∈I,ri+eI .r>C %iri

C −
∑n
i=1 %iri

,

with eI the vector of ones on all components i ∈ I and zeros
elsewhere.

Mean throughput: The mean throughput of user i nor-
malized by the maximum throughput ri of this user is

γi = Ei

(
φi(X)

ri

)
.

We obtain the same expression (5), with

Gi =
∑

I⊂{1,...,n},i6∈I,eI .r≤C

∏
j∈I

%j
1− %j

+
∑

I⊂{1,...,n},i6∈I,eI .r≤C

∏
j∈I

%j
1− %j

∑
j 6∈I,j 6=i,rj+eI .r>C %jrj

C −
∑
j 6=i %jrj

.

Congestion rate: The congestion rate seen by user i is

η = Pi(φi(X) < ri),

that is (6) with

F =
∑

I⊂{1,...,n},eI .r≤C

∏
j∈I

%j
1− %j

∑
j 6∈I,rj+eI .r>C %jrj

C −
∑
j %jrj

and

Fi = ∑
I⊂{1,...,n},i6∈I,eI .r≤C

∏
j∈I

%j
1− %j

∑
j 6∈I,j 6=i,rj+eI .r>C %jrj

C −
∑
j 6=i %jrj

.

D. Different user classes

The previous formulas have exponential complexity in n. To
keep the complexity polynomial in n, we need to group users
in some finite number of classes K, as in the infinite-source
model and the finite-source model. With some slight abuse of
notation, we denote respectively by rk and %k the rate and
the load of the access line of each class-k user. There are nk
class-k users and we denote by n the vector (n1, . . . , nK).
The normalization constant is then given by

G =
∑

`≤n:`.r≤C

K∏
k=1

(
nk
`k

)(
%k

1− %k

)`k
+

∑
`≤n:`.r≤C

K∏
k=1

(
nk
`k

)(
%k

1− %k

)`k
×
∑
j:`j<nj ,`.r+rj>C

(nj − `j)%jrj
C −

∑K
k=1 nk%krk

.

The mean throughput of each class-k user is

γk =
G%k

G−Gk
,



where Gk is the constant G with nk replaced by nk − 1.
Similarly, letting

F =
∑

`≤n:`.r≤C

K∏
k=1

(
nk
`k

)(
%k

1− %k

)`k
×
∑
j:`j<nj ,`.r+rj>C

(nj − `j)%jrj
C −

∑K
k=1 nk%krk

,

we obtain the congestion rate of class-k users

ηk =
F − Fk
G−Gk

,

where Fk is the constant F with nk replaced by nk − 1.
In the limit where the number of users tends to infinity with

traffic intensities n1%1r1, . . . , nK%KrK tending to some fixed
constants A1, . . . , AK such that A1 + . . . + AK < C, the
multi-source model reduces to the infinite-source model: there
is an infinite population of users, each user generating flows
according to a Poisson process of null intensity.

E. Numerical results

Figures 3 and 4 compare the performance metrics obtained
with the three considered models when all users have the same
access rate r, C = mr with m = 1, 10, 100, n = 2m and
n = 10m, respectively. Traffic distribution is homogeneous.
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Fig. 3. Performance metrics under the three models for n = 2m.
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Fig. 4. Performance metrics under the three models for n = 10m.

We observe that the infinite-source model is overly pes-
simistic while the finite-source model is overly optimistic
compared to the multi-source model, especially for the mean
throughput. For the congestion rate, the infinite-source model
is a good approximation of the multi-source model only for
n = 10m while the finite-source model is a very good
approximation in both cases.

Figure 5 shows the results obtained for two classes of users,
class-2 users generating 10 times more traffic than class-
1 users. There is the same number of class-1 and class-2
users. All users have the same access rate r, C = mr with
m = 1, 10, 100, and there is a total of n = 10m users.
We observe that class-1 performance is well approximated by
the infinite-source model while class-2 performance is better
approximated by the finite-source model. None of these two
models is satisfactory: the underlying assumption of flows
generated in series by each user does not allow a proper
evaluation of user-level performance.

The same conclusion can be drawn from Figure 6, showing
the results for two classes of users with different access rates,
r1 = 1 and r2 = 4. We take n1 = 4n2 and the same load for
all access lines so that the total traffic intensity is the same
for each class. Here m = C/r1 takes the values 5, 50, 500 and
the total number of users is n = 2m.
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Fig. 5. Mean throughput for m = 1, 10, 100 (from bottom to top) and
n1 = n2 = 5m.

V. CONCLUSION

We have proposed a new traffic model for evaluating user-
level performance in data networks. The key characteristic of
this model is to account for bandwidth sharing on the user’s
access line. The results turn out to be very different from those
obtained with usual models in practically interesting cases, like
n = 100 users having different traffic profiles or access rates.
They coincide only for large values of n, say n ≥ 1000.

One of the key benefits of the proposed multi-source model
is to account precisely for the number of access lines n without
the complexity of the finite-source model. For instance, traffic
intensity (and thus link load) is an exogenous parameter of
the multi-source model but an endogenous parameter of the
finite-source model. Moreover, the normalization constant is
explicit in the multi-source model, which greatly simplifies the
computation of the performance metrics.

A drawback of the multi-source model compared to the
infinite-source model is the lack of a recursive formula for
evaluating the normalization constant in the presence of a large
number of different access rates. We let this for future work.
Other interesting issues include the extensions of this model
to non-elastic traffic (for instance, adaptive streaming traffic)
and to several aggregation stages in the backhaul network.

0

0.2

0.4

0.6

0.8

1

 0  0.2  0.4  0.6  0.8  1

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Load

Infinite-source model
Finite-source model
Multi-source model

(a) Class1 (low access rate, r1 = 1)

0

0.2

0.4

0.6

0.8

1

 0  0.2  0.4  0.6  0.8  1

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Load

Infinite-source model
Finite-source model
Multi-source model

(b) Class 2 (high access rate, r2 = 4)

Fig. 6. Mean normalized throughput for m = 5, 50, 500 (from bottom to
top), n = 2m, n1 = 4n2.
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