
Real-Time QoS Control for Service Orchestration
Joost Bosman

CWI
Dept. of Stochastics

Amsterdam, The Netherlands

Hans van den Berg
TNO, Dept. Performance
of Network and Systems

The Hague, The Netherlands

University of Twente,
Dept. Computer Science

Enschede, The Netherlands

Rob van der Mei
CWI

Dept. of Stochastics
Amsterdam, The Netherlands

VU University Amsterdam
Dept. of Mathematics

Amsterdam, The Netherlands

Abstract—Service orchestration has become the predominant
paradigm that enables businesses to combine and integrate
services offered by third parties. For the commercial viability
of orchestrated services, it is crucial that they are offered at
sharp price-quality ratios. A complicating factor is that many
attractive third-party services often show highly variable service
quality. This raises the need for mechanisms that promptly adapt
the orchestration to changes in the quality delivered by third
party services.

In this paper, we propose a real-time QoS control mechanism
that dynamically optimizes service orchestration in real time by
learning and adapting to changes in third party service response
time behaviors. Our approach combines the power of learning
and adaptation with the power of dynamic programming. The re-
sults show that real-time service re-compositions lead to dramatic
savings of cost, while meeting the service quality requirements
of the end-users. The challenge here is to respond to significant
response-time changes in a timely manner, while not wasting
CPU cycles on unnecessary orchestration updates. Experimental
results performed in a test-lab environment demonstrate that a
few orchestration updates are sufficient to achieve this.

I. INTRODUCTION

The evolution towards a service-based economy is currently
boosted by the developments in information and commu-
nication technology and expected to influence our lifestyle
in the future. In particular, over the past years, service-
orchestration have become a predominant paradigm among
businesses for enabling more efficient and flexible business
processes, addressing some of the technological challenges
posed by the service-based economy. Service orchestration
enables the development of composite services that aggregate
services offered by third parties. The emergence of these
service chains has opened up tremendous possibilities for
creation of new services in many application areas, including
for example banking, health, entertainment and travel.

In the competitive market of information and communication
services, it is crucial for service providers to be able to offer
services at competitive price/quality ratios. Succeeding to do
so will attract customers and generate business, while failing
to do so will inevitably lead to customer dissatisfaction, churn

and loss of business. A complicating factor in controlling
quality-of-service (QoS) in service oriented architectures is
that the ownership of the services in the composition (sub-
services) is decentralized: a composite service makes use of
sub-services offered by third parties, each with their own
business incentives. As a consequence, the QoS experienced
by the (paying) end user of a composite service depends heav-
ily on the QoS levels realized by the individual sub-services
running on different underlying platforms with different per-
formance characteristics: a badly performing sub-service may
strongly degrade the end-to-end QoS of a composite service.
In practice, service providers tend to outsource responsibilities
by negotiating Service Level Agreements (SLAs) with third
parties. However, negotiating multiple SLAs in itself is not
sufficient to guarantee end-to-end QoS levels as SLAs in
practice often give probabilistic QoS guarantees and SLA
violations can still occur. Moreover probabilistic QoS guaran-
tees do not necessarily capture time-dependent behavior e.g.
short term service degradations. Therefore, the negotiation of
SLAs needs to be supplemented with run-time QoS-control
capabilities that give providers of composite services the
capability to properly respond to short-term QoS degradations
(real-time composite service adaptation). Motivated by this we
developed an approach that adapts to (temporary) third party
QoS degradations by tracking the response time behavior of
these third party services.

In order to demonstrate the effectiveness of our approach we
have developed an experimental test-lab environment (depicted
in Figure 3 in Section VI). The experimental environment
includes an actual HTTP implementation and is able to con-
currently orchestrate service requests.

The remainder of this paper is as follows. In Section II we
explain our service selection orchestration model. Section III
elaborates on literature and related work. We start in section IV
with the introduction of our real-time QoS control approach.
Next in Section V we introduce the tools for handling empiri-
cal distributions. Using the empirical distributions we define a
dynamic program that optimizes expected profit. Experiments
on our approach are performed in Section VI. Results are



presented and discussed in Section VII. Finally we conclude
in Section VIII.

II. ORCHESTRATION MODEL

We consider a composite service that comprises a sequential
workflow consisting of N tasks identified by T1, . . . , TN . The
tasks are executed one–by–one in the sense that each consecu-
tive task has to wait for the previous task to finish. Our solution
is applicable to any workflow that could be aggregated and
mapped into a sequential one. Basic rules for aggregation of
non–sequential workflows into sequential workflows have been
illustrated in, e.g. [14], [13], [5]. However, the aggregation
leads to coarser control, since decisions could not be taken
for a single service within the aggregated workflow, but rather
for the aggregated workflow patterns themselves.

Update 

Request Response

Task 1 Task 2 Task 3 Task 4

Update Update Update 

A B C D

Test Update Lookup Table
Significant 
change detected

CS
(3,1)

CS
(3,2)

CS
(3,3)

CS
(1,1)

CS
(2,3)

CS
(3,2)

CS
(4,3)

CS
(2,1)

CS
(2,2)

CS
(2,3)

CS
(3,1)

CS
(3,2)

CS
(3,3)

CS
(1,1)

CS
(1,2)

CS
(1,3)

Figure 1: Orchestrated composite web service depicted by a
sequential workflow. Dynamic run–time service composition
is based on a lookup table. Decisions are taken at points A–D.
For every used concrete service the response-time distribution
is updated with the new realization. In this example a sig-
nificant change is detected. As a result for the next request
concrete service 2 is selected at task 1.

The workflow is based on an unambiguous functionality
description of a service (“abstract service”), and several func-
tionally identical alternatives (“concrete services”) may exist
that match such a description [10]. Each task has an abstract
service description or interface which can be implemented by
external service providers.

The workflow in Fig. 1 consists of four abstract tasks, and
each task maps to three concrete services (alternatives), which
are deployed by (independent) third–party service providers.
For each task Ti there are Mi concrete service providers
CS(i,1), . . . ,CS(i,Mi) available that implement the function-
ality corresponding to task Ti. For each request processed

by CS(i,j) cost c(i,j) has to be paid. Furthermore there is
an end–to–end response-time deadline δp. If a request is
processed within δp a reward of R is received. However, for
all requests that are not processed within δp a penalty V
had to be paid. After the execution of a single task within
the workflow, the orchestrator decides on the next concrete
service to be executed, and composite service provider pays
to the third party provider per single invocation. The decision
points for given tasks are illustrated at Fig. 1 by A, B, C
and D. The decision taken is based on (1) execution costs,
and (2) the remaining time to meet the end–to–end deadline.
The response time of each concrete service provider CS(i,j)

is represented by the random variable D(i,j). After each
decision the observed response time is used for updating the
response time distribution information of the selected service.
Upon each lookup table update the corresponding distribution
information is stored as reference distribution. After each
response the reference distribution is compared against the
current up-to date response time distribution information.

In our approach response-time realizations are used for learn-
ing an updating the response-time distributions. The currently
known response-time distribution is compared against the
response-time distribution that was used for the last policy
update. Using well known statistical tests we are able to
identify if an significant change occurred and the policy has to
be recalculated. Our approach is based on fully dynamic, run–
time service selection and composition, taking into account
the response–time commitments from service providers and
information from response-time realizations. The main goal
of this run–time service selection and composition is profit
maximization for the composite service provider and ability
to adapt to changes in response-time behavior of third party
services.

By tracking response times the actual response-time behavior
can be captured in empirical distributions. In [14] we apply
a dynamic programming (DP) approach in order to derive a
service-selection policy based on response-time realizations.
With this approach it is assumed that the response-time
distributions are known or derived from historical data. This
results in a so called lookup table which determines what third
party alternative should be used based on actual response-time
realizations.

III. LITERATURE AND RELATED WORK

We extend our approach in [14] such that we can learn an
exploit response-time distributions on the fly. The use of
classical reinforcement-learning techniques would be a straight
forward approach. However, our model has a special structure
that complicates the use of the classical Temporal Difference
learning (TD) learning approaches. The solution of our DP
formulation searches the stochastic shortest path in a stochastic
activity network [5]. This DP can be characterized as a
hierarchical DP [8], [1]. Therefore classical Reinforcement



Learning (RL) is not suitable and hierarchical RL has to
be applied [1]. Also changes in response-time behavior are
likely to occur which complicates the problem even more.
Both the problem structure and volatility are challenging areas
of research in RL. Typically RL techniques solve complex
learning and optimization problems by using a simulator.
This involves a Q value that assigns utility to state–action
combinations. Most algorithms run off-line as a simulator is
used for optimization. RL has also been widely used in on–
line applications. In such applications, information becomes
available gradually with time. Most RL approaches are based
on environments that do not vary over time. We refer to [8]
for a good survey on reinforcement learning techniques.

In our approach we tackle both the hierarchical structure, and
time varying behavior challenges. To this end we are using em-
pirical distributions and updating the lookup table if significant
changes occur. As we are considering a sequence of tasks, the
number of possible response time realizations combinations
explodes. By discretizing the empirical distribution over fixed
intervals we overcome this issue.

In the literature the problem of QoS–aware optimal service
composition of Service Oriented Architecture (SOA) services
has been well–studied (see e.g. [2], [11]). The main problem
addressed in these papers is how to select one concrete service
per abstract service for a given workflow, in such a way that the
QoS of the composite service (as expressed by the respective
SLA) is guaranteed, while optimizing some cost function.
Once established, this composition would remain unchanged
the entire life–cycle of the composite web service. In reality,
SLA violations occur relatively often, leading to providers’
losses and customer dissatisfaction. To overcome this issue,
it is suggested in [3], [12], [9] that, based on observations
of the actually realised performance, re–composition of the
service may be triggered. During the re–composition phase,
new concrete service(s) may be chosen for the given workflow.
Once re–composition phase is over, the (new) composition
is used as long as there are no further SLA violations. In
particular, the authors of [3], [12], [9] describe when to trigger
such (re–composition) event, and which adaptation actions
may be used to improve overall performance.

A number of solutions have been proposed for the problem of
dynamic, run–time QoS–aware service selection and composi-
tion within SOA, [4], [7], [14], [6]. These (proactive) solutions
aim to adapt the service composition dynamically at run–time.
However, these papers do not consider the stochastic nature of
response time, but its expected value. Or they do not consider
the cost structure, revenue and penalty model as given in this
paper.

IV. REAL TIME QOS CONTROL

In this section we explain our real-time QoS control approach.
The main goal of this approach is profit maximization for the

composite service provider, and ability to adapt to changes
in response-time behavior of third party services. We real-
ize this by monitoring/tracking the observed response-time
realizations. The currently known empirical response-time
distribution is compared against the response-time distribution
that was used for the last policy update. Using well known
statistical tests we are able to identify if an significant change
occurred and the policy has to be recalculated. Our approach
is based on fully dynamic, run–time service selection and
composition, taking into account the response–time commit-
ments from service providers and information from response-
time realizations. We illustrate our approach using Figure
2. The execution starts with an initial lookup table at step
(1). This could be derived from initial measurements on the
system. After each execution of a request in step (2) the
empirical distribution is updated at step (3). A DP based
lookup table could leave out unattractive concrete service
providers. In that case we do not receive any information
about these providers. These could become attractive if the
response-time behavior changes. Therefore in step (4), if a
provider is not visited for a certain time, a probe request
will be sent at step (5b) and the corresponding empirical
distribution will be updated at step (6a). After each calculation
of the lookup table, the current set of empirical distributions
will be stored. These are the empirical distributions that were
used in the lookup table calculation and form a reference
response-time distribution. Calculating the lookup table for
every new sample is expensive and undesired. Therefore we
propose a strategy where the lookup table will be updated if
a significant change in one of the services is detected. For
this purpose the reference distribution is used for detection of
response-time distribution changes. In step (5a) and step (6a)
the reference distribution and current distribution are retrieved
and a statistical test is applied for detecting change in the
response-time distribution. If no change is detected then the
lookup table remains unchanged. Otherwise the lookup table
is updated using the DP. After a probe update in step (5b) and
step (6b) we immediately proceed to updating the lookup table
as probes are sent less frequently. In step (7) and step (8) the
lookup table is updated with the current empirical distributions
and these distributions are stored as new reference distribution.
By using empirical distributions we are directly able to learn
and adapt to (temporarily) changes in behavior of third party
services.

Using a lookup table based on empirical distributions could
result in the situation that certain alternatives are never in-
voked. When other alternatives break down this alternative
could become attractive. In order to deal with this issue we
use probes. A probe is a dummy request that will provide new
information about the response time for that alternative. As we
only receive updates from alternatives which are selected by
the dynamic program, we have to keep track of how long
ago a certain alternative has been used. For this purpose to
each concrete service provider a probe timer U (i,j) is assigned
with corresponding probe time–out t(i,j)p . If a provider is not



Yes

No

Yes

Execute DP
1

Send probe
4b

Update info with 
probe

5b

5a

Calculate DP
6

Store DP 
reference info

7

No

Response time 
realizations dn

(i,j)

Update response 
time info

2

Get DP reference 
& current info

4a

Probe 
time 

expired?

Significant 
distribution 

change?

Figure 2: Real-time QoS control approach.

visited in t(i,j)p requests (U (i,j) > t
(i,j)
p ) then the probe timer

has expired and a probe will be collected incurring probe cost
c
(k,j)
p . If for example, in Figure 1, the second alternative of

the third task has not been used in the last ten requests, the
probe timer for alternative two has value U (3,2) = 10. After a
probe we immediately update the corresponding distribution.
No test is applied here as probes are collected less frequent
compared to processed requests.

V. ALGORITHMS

In this section we elaborate on the algorithms and detection
mechanisms that are used in the closed loop control approach.
These include dynamic programming (DP) and the corre-
sponding empirical distribution discretization.

A. Empirical distribution discretization approach

A natural approach for tracking changes is that we define
a sliding window of W samples. Let Xn =

{
dn−W+1,

dn−W+2, . . . , xn
}

be the current set of samples in the sliding
window after inserting the nth sample dn. These sets are used
to determine the empirical distribution that serves as an input
for the dynamic program.

Let h be the discretization step size. Let T ∗ be the end
to end deadline: T ∗ =

⌈
δp
h

⌉
. Furthermore we define q

(i,j)
k

as the discretized empirical distribution of concrete service
alternative j at task j at remaining budget b = hk. Using
the discretization approach of [5] we discretized the empirical

distributions as follows for i = 1, . . . , N , j = 1, . . . ,Mi,
k = 0, . . . , T ∗:

q
(i,j)
k =


W∑
t=1

1{
h[k − 0.5] < d

(i,j)
n−t ≤ h[k + 0.5]

}, if k < T ∗,

W∑
t=1

1{
d
(i,j)
n−t > h[k − 0.5]

}, otherwise.

(1)

Here is d
(i,j)
t the t-th response-time realization for service

alternative j at task i,
and 1{

A
} is the indicator function over A which is 1 if A is

true and 0 otherwise.

Actually q(i,j)k is a histogram where kth bin is bounded by[
h(k−0.5);h(k+0.5)

)
and where the sum of the frequencies

is normalized to 1. There is a tradeoff in choosing the bin size.
When h has a small value the histogram will consist of many
bins. In the case that a few large bins are used, too much
information about sample location is lost.

B. DP formulation

Using the discretized empirical distributions backward recur-
sion formulas can be formulated. We start with the terminal
reward function for b = 0, . . . , T ∗:

P
(N+1,∗)
b =

{
R if b > 0,

−V otherwise.
(2a)



Using this function we iterate backwards using the follow-
ing equations for i = 1, . . . , N, j = 1, . . . ,Mi, b =
0, . . . , T ∗:

P
(i,∗)
b = max

j

{
− c(i,j) +R

(i,j)
b + V

(i,j)
b

}
, (2b)

R
(i,j)
b =

b∑
k=0

q
(i,j)
k P

(i+1,∗)
k−b , and (2c)

V
(i,j)
b =

T∗∑
k=b+1

q
(i,j)
k P

(i+1,∗)
0 . (2d)

Here, the term P
(i,∗)
b represents the expected profit per request

given time budget b at task i under the optimal dynamic
programming decision strategy. The term R

(i,j)
b represents the

expected reward, when concrete service j (assigned to task i)
is executed for the given time budget value b. Finally the term
V

(i,j)
b represents the expected penalty for exceeding the overall

deadline at task i while executing concrete service j for the
given time budget value b. The expected reward and penalty
functions take into account the impact of future decisions as
represented by terms relating to P (i+1,∗)

b in (2c) and (2d).

While applying formulas (2b)–(2d), the corresponding deci-
sions (actions) A(∗,i)

k can be obtained by storing the maxi-
mum arguments for i = 1, . . . , N, j = 1, . . . ,Mi, k =
0, . . . , T ∗:

A
(i,∗)
k = argmax

j

{
− c(i,j) +R

(i,j)
k + V

(i,j)
k

}
.

VI. EXPERIMENTAL SETUP

In this section we will first explain our test environment and
finally describe the experiments.

A. Test environment

Our test lab environment is based on Java 8 and NIO
(asynchronous IO) and consists of four types of componens,
depicted in Figure 3. (1) In the Orchestrator module there
are three components. The Dispatcher component receives
composite service requests from the Load generator and
orchestrates the corresponding sub-service requests. These
sub service requests are dispatched via the Service registry
interface. All sub services can register their functionality at
the Service registry interface. (2) A Sub service has a (HTTP
request) service interface and a Control interface. Requests
are served after a pre-configured random delay. Using the
Control interface any desired response-time distribution can be
configured. All our DP algorithms are implemented in Matlab.
(3) Matlab is connected using an Experiment Control Interface
(via TCP sockets) to the Load generator and Orchestrator
components. The Orchestrator forwards experiment setup re-
quests to the connected Sub services. (4) The Load generator
generates requests for the composite service (Orchestrator).
The requests are generated using a Poisson process.

Matlab

Orchestrator
(composite

service)

Dispatcher

Service registry 
+ interface

Control 
interface

Load generator

Control 
interface

Requestor

Control 
interface

Service 
interface

Control 
interface

Service 
interface

Control 
interface

HTTP Connection

Experiment Control 
Connection

Sub
Service 1

Sub
Service N

Figure 3: Test lab environment.

B. Experiments

To test the real-time QoS control approach defined in Section
IV we define an experimental workflow that can be used for
investigating the impact of the closed-loop control approach
parameters. We emphasize that this experimental set-up is
tailored for evaluating responsiveness of our real-time QoS
control approach with respect to response-time distributions
and does not limit us in tracking other systems with different
response-time models.

Update 

Request Response

Task 1 Task 2 Task 3 Task 4

Update Update Update 

A B C D

Test Update Lookup Table
Significant 
change detected

CS
(3,1)

CS
(3,2)

CS
(3,3)

CS
(1,1)

CS
(2,3)

CS
(3,2)

CS
(4,3)

CS
(2,1)

CS
(2,2)

CS
(2,3)

CS
(3,1)

CS
(3,2)

CS
(3,3)

CS
(1,1)

CS
(1,2)

CS
(1,3)

Figure 4: Experimental work flow.

Figure 4 represents our experimental work flow consisting of
four tasks. For each task three concrete service alternatives
are available. At each alternative j for task Ti the response-
time distribution is summarized in terms of mean µ(i,j) and
variance

(
σ(i,j)

)2
.

The parameters µ(i,j), σ(i,j), c(i,j) of our experiments are
summarized in Table I. There is one cheap reasonably slow
service, one faster but more expensive service and a equally
expensive service that has slow performance. The latter is
intattractive and therefore the algorithms should not include
this alternative in the lookup table.

We consider a run consisting of 10000 requests arriving
according to a Poisson process with a rate of 100 requests per
second. Furthermore, we consider a deadline of δp = 500ms.



Table I: Task concrete service alternatives

Task i
Concrete service↓ c µ σ
Alternative (i, 1) 1 250 40
Alternative (i, 2) 5 62.5 60
Alternative (i, 3) 5 300 40

The default setup is such that using DP at least 95% requests
can be served within the deadline. Each successful response
to a request will gain a reward of R = 25 money units while
for a failed request V = 40 money units has to be paid.

To test the effectiveness of our approach we interchange the
equally priced services (i, 2) and (i, 3) for i = {1, 2, 3, 4} after
5000 requests. We denote with Nswap the position in the work-
flow where services are interchanged. The interchange event is
represented by the red line in Figures 5-7. Our approach should
detect this and adopt the lookup table correspondingly. We
compare three approaches: (1) the sliding window approach
based on Kolmogorov Smirnov statistic for change detection,
(2) the empirical distribution based approach without change
point detection and (3) theoretical from the policy based on the
known in beforehand interchange of services and knowledge
of the actual response time distributions. We vary Wp in the
range {25, 50, 100}. The probe interval is fixed to tp = 50
requests. Furthermore we vary the test significance level with
α = {0.01, 0.05}.

VII. RESULTS

This section contains the results from the experiments as
described in Section VI. We demonstrate the impact of two
parameters the position where the alternatives interchange
Nswap and window size W . In all Figures 5-7 the vertical
axis represents the moving average over 600 request rev-
enues (monetary units). This approximately corresponds to 6
seconds. The horizontal axis represents the total number of
requests that has been served. Normally (after startup effects)
the moving average should be near to 5. However when sub-
service response times degrade the target deadline δp is more
likely to be violated. As a result revenues will drop due to
deadline violation penalties.

With Figure 5 we represent two benchmark cases. (1) In
Figure 5a the lookup table is not updated at all resulting in
a significant drop in revenue when services are interchanged
after 5000 requests. The orchestrator is not recovering at all as
the lookup table is not updated anymore. (2) The theoretical
known in beforehand case is represented in Figure 5b. Here
the interchange of services is not observable because of the
full response time behavior knowledge (at any time).

Figures 6 and 7 demonstrate the effectiveness of our real time
QoS control approach. When the interchange occurs a drop in
revenues can be observed. This drop lasts until the change has
been detected. After the lookup table has been adopted to the

(a) No updates

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

(b) Theoretical lookup table

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

Figure 5: Benchmark cases.

new situation the performance recovers to the level before the
services interchanged. The impact of parameter settings can be
observed from the width of the gap. Wider gaps correspond to
parameter settings that result in slower recovery from changes
in service behavior.

Regarding the effect of service interchange position Nswap
we observe that the gap is wider at the first position and last
position (depicted by Figures 6a and 6d). In the intermediate
positions (Figures 6b-6c) the gap is smaller. This is where
the lookup table approach mostly benefits from response time
information from previous service invocations. On the other
hand, at the start of the workflow no remaining response
time budget information is obtained for the current composite
request while after the last position a long response time can
not be compensated anymore.

In Figure 7 we observe the effect of window size on our
approach. In Figure 7a we observe a significantly wider gap
then in Figures 7b and 7c. As one could expect a larger
window size results in slower responses to deteriorations. A
larger window size requires more samples to fully change the
empirical distribution to the new situation.

VIII. DISCUSSION

We modeled and implemented a real-time QoS control ap-
proach where dynamic programming is applied on empirical
distributions resulting from the actual realized response-time
distributions of concrete service providers. Our approach is
robust to changes in the sense that it adapts to changes in
response-time distributions of concrete service alternatives.
To achieve this we use a sliding window approach on the
empirical distribution. When using our approach there is
a trade–off between parameters that we need to optimize.
These parameters are the sliding window W and the change
point detection test significance α. The constraints are here
determined by computational power and probe cost. Typically
we would like to update our lookup table every request and
probe frequently. However it takes time to compute a new
strategy. We should choose probe time–outs such that we can
exploit information about improved service without spending



(a) Swap at position 1

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

(b) Swap at position 2

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

(c) Swap at position 3

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

(d) Swap at position 4

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

Figure 6: Effect of service change position in the chain (W=50, α = 0.01). The vertical red line indicates the change in service
response time distributions.

(a) W=100

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

(b) W=50

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

(c) W=25

0 2000 4000 6000 8000 10000
−25

−20

−15

−10

−5

0

5

10

number of requests

re
v

e
n

u
e

Figure 7: Effect of window size W at position 1 with α = 0.01. The vertical red line indicates the change in service response
time distributions.

too much cost on probing and using too much computational
power. Experimental results indicate that in an environment
with changing response-time behavior our real-time QoS con-
trol approach has a significant advantage compared to a static
lookup table. Moreover our approach has the strong advantage
that it learns and exploits response-time behavior on the fly.

Tuning window size W and α creates a second layer of control
where these parameters are adapted to optimal values. The
update of these parameters is typically on a larger time scale
that is not in the scope of our experiments. Furthermore the
age of samples should be considered. A discounting approach
on the age of the samples could potentially improve the
responsiveness as newer samples have bigger impact. This is
a interesting direction for further research.

REFERENCES

[1] A. G. Barto and S. Mahadevan. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems, 13(4):341–
379, 2003.

[2] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An approach for
qos-aware service composition based on genetic algorithms. In Proceed-
ings of the 2005 conference on Genetic and evolutionary computation,
pages 1069–1075. ACM, 2005.

[3] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. A framework
for qos-aware binding and re-binding of composite web services. Journal
of Systems and Software, 81(10):1754–1769, 2008.

[4] V. Cardellini, E. Casalicchio, V. Grassi, and F. L. Presti. Adaptive
management of composite services under percentile-based service level

agreements. In Service-Oriented Computing: 8th International Confer-
ence, ICSOC 2010, San Francisco, CA, USA, December 7-10, 2010.
Proceedings, volume 6470, page 381. Springer-Verlag New York Inc,
2010.

[5] G. L. Choudhury and D. J. Houck. Combined queuing and activity
network based modeling of sojourn time distributions in distributed
telecommunication systems. The Fundamental Role of Teletraffic in the
Evolution of Telecommunications Networks (Eds. J. Labetoulle and JW
Roberts), Proc. ITC, 14:525–534, 1994.

[6] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma. Dynamic workflow
composition using markov decision processes. International Journal of
Web Services Research, 2(1):1–17, 2005.

[7] A. Gao, D. Yang, S. Tang, and M. Zhang. Web service composition
using markov decision processes. In Advances in Web-Age Information
Management: 6th International Conference, WAIM 2005, Hangzhou,
China, October 11-13, 2005, Proceedings, volume 3739, page 308.
Springer, 2005.

[8] A. Gosavi. Reinforcement learning: a tutorial survey and recent
advances. INFORMS Journal on Computing, 21(2):178–192, 2009.

[9] P. Leitner. Ensuring cost-optimal sla conformance for composite service
providers. In ICSOC/ServiceWave 2009 PhD Symposium, page 43, 2009.

[10] C. Preist. A conceptual architecture for semantic web services. The
Semantic Web–ISWC 2004, pages 395–409, 2004.

[11] T. Yu, Y. Zhang, and K. J. Lin. Efficient algorithms for web services
selection with end-to-end qos constraints. ACM Transactions on the Web
(TWEB), 1(1):6, 2007.

[12] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang. Event-driven quality
of service prediction. Service-Oriented Computing–ICSOC 2008, pages
147–161, 2008.

[13] H. Zheng, W. Zhao, J. Yang, and A. Bouguettaya. Qos analysis for
web service composition. In 2009 IEEE International Conference on
Services Computing, pages 235–242. IEEE, 2009.

[14] M. Živković, J. W. Bosman, J. L. van den Berg, R. D. van der Mei, H.B.
Meeuwissen, and R. Núnez-Queija. Run-time revenue maximization for
composite web services with response time commitments. In Advanced
Information Networking and Applications (AINA), 2012 IEEE 26th
International Conference on, pages 589–596. IEEE, 2012.


