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Referat 

Konventionelle, optische Transportnetze haben die Bereitstellung von High-Speed-Konnektivität in 

Form von langfristig installierten Verbindungen konstanter Bitrate ermöglicht. Die Einrichtungszeiten 

solcher Verbindungen liegen in der Größenordnung von Wochen, da in den meisten Fällen manuelle 

Eingriffe erforderlich sind. Nach der Installation bleiben die Verbindungen für Monate oder Jahre aktiv. 

Das Aufkommen von Grid Computing und Cloud-basierten Diensten bringt neue Anforderungen mit 

sich, die von heutigen optischen Transportnetzen nicht mehr erfüllt werden können. Dies begründet die 

Notwendigkeit einer Umstellung auf dynamische, optische Netze, welche die kurzfristige Bereitstellung 

von Bandbreite auf Nachfrage (Bandwidth on Demand - BoD) ermöglichen. Diese Netze müssen 

Verbindungen mit unterschiedlichen Bitratenanforderungen, mit zufälligen Ankunfts- und Haltezeiten 

und stringenten Einrichtungszeiten realisieren können. Grid Computing und Cloud-basierte Dienste 

führen in manchen Fällen zu Verbindungsanforderungen mit Haltezeiten im Bereich von Sekunden, 

wobei die Einrichtungszeiten im Extremfall in der Größenordnung von Millisekunden liegen können. 
Bei optischen Netzen für BoD muss der Verbindungsaufbau und -abbau, sowie das Netzmanagement 

ohne manuelle Eingriffe vonstattengehen. Die dafür notwendigen Technologien sind Flex-Grid-
Wellenlängenmultiplexing, rekonfigurierbare optische Add / Drop-Multiplexer (ROADMs) und 
bandbreitenvariable, abstimmbare Transponder. Weiterhin sind Online-
Ressourcenzuweisungsmechanismen erforderlich, um für jede eintreffende Verbindungsanforderung 
abhängig vom aktuellen Netzzustand entscheiden zu können, ob diese akzeptiert werden kann und welche 
Netzressourcen hierfür reserviert werden. Dies bedeutet, dass die Ressourcenzuteilung als Online-
Optimierungsproblem behandelt werden muss. Die Entscheidungen sollen so getroffen werden, dass auf 
lange Sicht ein vorgegebenes Optimierungsziel erreicht wird. Die Ressourcenzuweisung bei dynamischen 
optischen Netzen lässt sich in die Teilfunktionen Routing- und Spektrumszuteilung (RSA), 
Verbindungsannahmekontrolle (CAC) und Dienstgütesteuerung (GoS Control) untergliedern. 

In dieser Dissertation wird das Problem der Online-Ressourcenzuteilung in dynamischen optischen 
Netzen behandelt. Es wird die Theorie der Markov-Entscheidungsprozesse (MDP) angewendet, um die 
Ressourcenzuweisung als Online-Optimierungsproblem zu formulieren. Die MDP-basierte Formulierung 
hat zwei Vorteile. Zum einen lassen sich verschiedene Optimierungszielfunktionen realisieren (z.B. die 
Minimierung der Blockierungswahrscheinlichkeiten oder die Maximierung der wirtschaftlichen Erlöse). 
Zum anderen lässt sich die Dienstgüte von Gruppen von Verbindungen mit spezifischen 
Verkehrsparametern gezielt beeinflussen (und damit eine gewisse GoS-Steuerung realisieren). Um das 
Optimierungsproblem zu lösen, wird in der Dissertation ein schnelles, adaptives und zustandsabhängiges 
Verfahren vorgestellt, dass im realen Netzbetrieb rekursiv ausgeführt wird und die Teilfunktionen RSA 
und CAC umfasst. Damit ist das Netz in der Lage, für jede eintreffende Verbindungsanforderung eine 
optimale Ressourcenzuweisung zu bestimmen. Weiterhin wird in der Dissertation die Implementierung 
des Verfahrens unter Verwendung eines 3-Way-Handshake-Protokolls für den Verbindungsaufbau 
betrachtet und ein analytisches Modell vorgestellt, um die Verbindungsaufbauzeit abzuschätzen. Die 
Arbeit wird abgerundet durch eine Bewertung der Investitionskosten (CAPEX) von dynamischen 
optischen Netzen. Es werden die wichtigsten Kostenfaktoren und die Beziehung zwischen den Kosten und 
der Performanz des Netzes analysiert. Die Leistungsfähigkeit aller in der Arbeit vorgeschlagenen 
Verfahren sowie die Genauigkeit des analytischen Modells zur Bestimmung der Verbindungsaufbauzeit 
wird durch umfangreiche Simulationen nachgewiesen.  
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Abstract 

Conventional optical transport networks have leveraged the provisioning of high-speed connectivity in 

the form of long-term installed, constant bit-rate connections. The setup times of such connections are in 

the order of weeks, given that in most cases manual installation is required. Once installed, connections 

remain active for months or years. The advent of grid computing and cloud-based services brings new 

connectivity requirements which cannot be met by the present-day optical transport network. This has 

raised awareness on the need for a changeover to dynamic optical networks that enable the provisioning 

of bandwidth on demand (BoD) in the optical domain. These networks will have to serve connections 

with different bit-rate requirements, with random interarrival times and durations, and with stringent 

setup latencies. Ongoing research has shown that grid computing and cloud-based services may in some 

cases request connections with holding times ranging from seconds to hours, and with setup latencies 

that must be in the order of milliseconds. 
To provide BoD, dynamic optical networks must perform connection setup, maintenance and teardown 

without manual labour. For that, software-configurable networks are needed that are deployed with enough 
capacity to automatically establish connections. Recently, network architectures have been proposed for 
that purpose that embrace flex-grid wavelength division multiplexing, reconfigurable optical add/drop 
multiplexers, and bandwidth variable and tunable transponders as the main technology drivers. To exploit 
the benefits of these technologies, online resource allocation methods are necessary to ensure that during 
network operation the installed capacity is efficiently assigned to connections. As connections may arrive 
and depart randomly, the traffic matrix is unknown, and hence, each connection request submitted to the 
network has to be processed independently. This implies that resource allocation must be tackled as an 
online optimization problem which for each connection request, depending on the network state, decides 
whether the request is admitted or rejected. If admitted, a further decision is made on which resources are 
assigned to the connection. The decisions are so calculated that, in the long-run, a desired performance 
objective is optimized. To achieve its goal, resource allocation implements control functions for routing 
and spectrum allocation (RSA), connection admission control (CAC), and grade of service (GoS) control. 

In this dissertation we tackle the problem of online resource allocation in dynamic optical networks. 
For that, the theory of Markov decision processes (MDP) is applied to formulate resource allocation as an 
online optimization problem. An MDP-based formulation has two relevant advantages. First, the problem 
can be solved to optimize an arbitrarily defined performance objective (e.g. minimization of blocking 
probability or maximization of economic revenue). Secondly, it can provide GoS control for groups of 
connections with different statistical properties. To solve the optimization problem, a fast, adaptive and 
state-dependent online algorithm is proposed to calculate a resource allocation policy. The calculation is 
performed recursively during network operation, and uses algorithms for RSA and CAC. The resulting 
policy is a course of action that instructs the network how to process each connection request. Furthermore, 
an implementation of the method is proposed that uses a 3-way handshake protocol for connection setup, 
and an analytical performance evaluation model is derived to estimate the connection setup latency. Our 
study is complemented by an evaluation of the capital expenditures of dynamic optical networks. The 
main cost drivers are identified.  

The performance of the methods proposed in this thesis, including the accuracy of the analytical 
evaluation of the connection setup latency, were evaluated by simulations. The contributions from the 
thesis provide a novel approach that meets the requirements envisioned for resource allocation in dynamic 
optical networks. 
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Chapter 1 

Introduction and Motivation 

Current optical transport networks are circuit-switched systems that carry customer demands on optical 

connections. For that, fixed-grid Wavelength Division Multiplexing (WDM) is implemented in the 

optical layer. A connection is a lightpath that consists of an optical channel established on a route between 

two network nodes. Nowadays, setup times for optical connections are in the order of weeks as in most 

cases manual labour is required for the provisioning of resources. Once established, connections remain 

active for months or years. Most operators today deploy fixed-grid WDM networks that multiplex up to 

80 channels per fibre at a 50 GHz spacing. Each channel may carry a single connection with typical fixed 

bit-rates of 10, 40 and 100 Gbps. This inflexible and static design of the optical layer was conceived for 

the provisioning of constant bit-rate connections without stringent setup requirements. A typical use case 

of this type of connectivity is the transport of Internet protocol (IP) traffic. Operators overprovision 

capacity in the optical layer (by leasing/deploying high-speed, constant-bit rate connections) to cope with 

the burstiness of IP traffic. According to [Rob05, SS11], in 2005 it was observed that the lightpaths used 

to serve IP traffic had around 25 percent average utilization in the US Internet. This trend continues today, 

which evinces that optical capacity is not being used efficiently, as it is underutilized at the expense of 

high network deployment costs.  
The constant IP traffic growth together with the emergence of grid computing and cloud-based services 

are imposing new connectivity requirements on the optical layer. This is raising awareness on the need for 
a changeover to dynamic optical networks. As argued in [Sal06, Sal07, Sim14], besides capacity benefits, 
dynamic optical networking enables the provisioning of bandwidth on demand (BoD) in the optical layer. 
Hence, instead of supplying long-term installed, constant bit-rate connectivity, dynamic optical networks 
are expected to serve connections with different bit-rate requirements, and with random interarrival and 
holding times. Besides, connections may need to be set up and torn down rapidly. (According to [Sal06, 
Sal07], to cope with the connectivity needs of grid computing and cloud-based services, the optical 
network will have to serve connections with interarrival and holding times ranging from seconds to hours.) 
The scientific community is currently working on the definition of a network architecture that meets these 
connectivity requirements. In order provide fast BoD connectivity, this architecture must be software-
controlled so that connections are automatically configured without manual intervention. Ongoing efforts 
in this direction have embraced flex-grid WDM [ITU12], reconfigurable optical add/drop multiplexers 
(ROADMs) [PFRC11, PP12], and bandwidth variable & tunable transponders [SS12, TAS+14] as the key 
technology drivers. In particular, the Core Optical Networks program (CORONET) [Sal06] - one of the 
most visible initiatives that promoted the definition of a dynamic optical network architecture - has adopted 
these drivers to develop two contributions: a directionless/colorless ROADM architecture [WFJA10, 
SCG+12] that interworks with a shared pool of transponders [SW10, CCC+12, SCG+12], and a 3-way 
handshake (3WHS) protocol that enables setup times in the range of milliseconds to seconds [CCC+12, 
SCG+12, SN09, SGK+14].  The idea behind CORONET’s proposal is that the network must be installed 
with enough capacity to cope with an expected demand growth without manual labour. For that, the nodes 
are designed with ROADMs equipped with pools of shared transponders. Hence, instead of installing a 
dedicated pair of transponders for each point to point connection (like conventional networks do), the 
dimensioning, i.e. the estimation of the number of transponders, and the installation of pools is performed 
before the network gets operational. Then during operation, the customer signals are assigned - on demand 
- to transponders in the pool, thereby avoiding manual configurations. This implies that a connection 
request may get blocked if transponders are unavailable in the shared pools of the source/destination 
ROADMs. To minimize this effect, in [SW10, SCG+12] a pool dimensioning method was proposed that 
obtains low transponder-related blocking probabilities (e.g. less than 10-4). By having sufficient installed 
capacity in the nodes, the 3WHS protocol was then proposed as the most efficient strategy to perform fast 
connection setup. For a connection request, the 3WHS protocol - unlike the generalized multiprotocol 
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label switching (GMPLS) [Ber03, Man04] mechanisms for connection setup - simultaneously probes 
resources on different paths, and therefore, it provides the network with real time information for more 
efficient resource allocation. Another advantage, as seen in [SCG+12], is that the protocol performs well 
at minimizing backward blocking (i.e. the blocking arising from concurrent connection requests trying to 
seize the same resources on a given path). These capabilities render the 3WHS protocol more efficient 
than GMPLS. A thorough discussion of the advantages of the 3WHS protocol over GMPLS can be found 
in [CCC+12, SCG+12].  

The aforementioned innovations represent a first step towards the implementation of dynamic optical 
networks. However, further work is still needed for the definition of a control plane architecture, along 
with appropriate signalling mechanisms, that enable automatic multilayer/inter-domain interoperability. 
This is a prerequisite to automatically deliver BoD to higher technology layers such as IP. In this respect, 
ongoing research suggests that software defined networking (SDN) [ONF13, ONF14] can be the control 
plane solution for that purpose. For instance, in [Das12] an SDN-based framework was proposed for the 
convergence of packet and optical circuit-switched networks. This work forms the basis to start with the 
definition of SDN-based control mechanisms for dynamic optical networks. Such mechanisms include (to 
name a few): signalling procedures whereby higher technology layers (like IP) request BoD from the 
optical layer, signalling procedures for connection setup (for instance, those procedures should define how 
to realize protocols like the 3WHS in an SDN framework), and the definition of a flow control mechanism 
that supports the spectrum granularity of flex-grid WDM. (Note that a typical fixed-grid system supports 
spectrum grids with 50 GHz channels, whereas flex-grid defines a finer granularity with 6.25 GHz channel 
slots [ITU12].)  Besides these open research challenges, another problem to tackle is the development of 
strategies for optimum resource allocation. In dynamic optical networks, connections may arrive and 
depart randomly. Therefore, the network has to implement online control functions to efficiently assign 
the installed capacity on demand. This means that every connection request submitted to the network has 
to be processed independently. This problem is the main focus of this thesis and will be described in more 
detail in the following section. 

1.1. Problem Statement 

Offline network planning and online resource allocation play a relevant role in the design of efficient 
network infrastructures. In dynamic optical networks, offline planning relies on demand forecasting to 
perform the dimensioning of links, ROADMs and transponders (i.e. it guarantees that sufficient 
infrastructure is deployed to provide BoD without manual intervention). On the other hand, online resource 
allocation ensures that the installed capacity is efficiently assigned to the connections served in the 
network. This is achieved by implementing network control functions for routing and spectrum allocation 
(RSA), connection admission control (CAC) and grade of service (GoS) control. These functions aim at 
providing quality of service (QoS) guarantees while the resources are optimally exploited.  

Assuming an operational network with ROADMs equipped with pools of transponders, blocking of a 
connection request may occur either if transponders are unavailable in the shared pools of the source and 
destination ROADMs, or if a suitable lightpath cannot be found in the network. Low transponder-related 
blocking probabilities, as mentioned in the previous section, are achieved by a proper dimensioning of the 
transponder pools. On the other hand, the control of the blocking probability (i.e. the GoS) due to the 
unavailability of lightpaths is a task of online resource allocation. For a committed GoS, upon arrival of a 
connection request, resource allocation uses an online RSA algorithm to calculate candidate lightpaths. 
Then, based on admission decision rules, CAC determines the lightpath appropriate for the connection. 
Besides performing GoS control, resource allocation needs to fulfil at least three additional requirements 
to efficiently supply BoD. First, RSA and CAC algorithms must be fast, adaptive and state-dependent. 
Fast as resource allocation is performed on the time scale of connection interarrival times. Adaptive to 
varying traffic conditions, i.e. the criteria used to calculate lightpaths and to define the admission decision 
rules must dynamically change according to the statistical properties of the traffic. Also, admission control 
must take decisions that depend on the state, i.e. actual resource occupancy, of the network. Secondly, 
resource allocation algorithms must be designed to interwork with connection setup protocols. In reality, 
connection setup involves resource allocation. Thus, the design and implementation of network control 
functions for RSA and CAC needs to be aware of the signalling mechanisms whereby connections are 
established in the network. And thirdly, instead of solely minimizing blocking probabilities, the algorithms 
should allow optimization of other desired performance objectives, e.g. economic revenue maximization 
or cost minimization.  

 The design of online resource allocation algorithms that satisfy these requisites is an open problem. 
Today research on this field has focused on the design of online RSA algorithms. Existing approaches, 
e.g. [WWL10, CTV11b, PJJW11a, WWH+11, WZK+11, CVR+12, WZZ+12, ADB+13, CTV13], solely 
aim at minimizing the overall blocking probability, and do not allow GoS control of individual connection 
classes. (We adopt the term class to refer to a group of connections which have similar properties such as 
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the bandwidth requirements and holding times.) In reality a dynamic optical network must be able to serve 
different connection classes, each one with a committed GoS. Thus, online approaches that solely 
minimize overall blocking need to be extended to a multi-rate environment, and have to further satisfy the 
requisites envisioned for resource allocation in dynamic optical networks.  

1.2. Research Contributions 

In this thesis we tackle the problem of online resource allocation in dynamic optical networks. For that, 
we use the theory of Markov decision processes (MDP) [How60] to formulate resource allocation as a 
reward-based optimization problem. The idea behind the concept of reward is very simple: connections 
are categorized into classes, for each class, a reward parameter (whose meaning and actual value is defined 
by the network operator) is assigned. The reward parameter quantifies the benefit that a connection brings 
to the network if it is admitted. The goal is to find the resource allocation policy that maximizes the rate 
at which reward is earned from carried connections. (The term policy refers to the course of action used 
by the network to assign resources to connections depending on the network state.) The advantage of this 
approach is that the reward parameters can be set either to optimize any desired objective (e.g. blocking 
minimization, maximization of carried traffic or economic revenue) or to equalize or prioritize the GoS 
offered to different connection classes. MDP theory also provides the mathematical method to calculate 
the optimum policy. To apply this theory to the design of control algorithms for a specific type of network, 
it is mandatory to define first a stochastic model for the network. This includes a proper definition of the 
network state and the constraints of the optimization problem. With the model defined, the time evolution 
of the network state is represented as a stochastic process. Then MDP theory is used to control this process 
according to the desired optimization objective. This methodology was successfully applied to the design 
of adaptive and state-dependent routing in telephone and multiservice networks [DPKW88, DM89, DM92, 
DM94, Kri91, HKT00, Hwa93, Dzi97, Nor02]. However, those algorithms are not applicable to optical 
systems. The reason is that they describe stochastic networks with states and constraints that do not model 
the actual properties of the optical layer. In this thesis we therefore extend the applicability of MDP theory 
to the design of resource allocation methods for dynamic optical networks. The main contributions made 
to achieve this goal are: 
  

1. Formulation of an exact reward-based resource allocation algorithm: a method is proposed 
whereby dynamic flex-grid optical networks are modelled as large-scale stochastic loss systems. 
The network state is defined as the configuration of the optical spectrum over all network links. 
This configuration is determined by the connections carried in the network, and hence, the state 
is given by the spectrum configurations of lightpaths that fulfil the contiguity and continuity 
constraints. (In flex-grid systems, a lightpath consists of contiguous spectrum slots centered at 
the same frequency on each link used by the lightpath.) Given this definition of state, the time 
evolution of the network is modelled as a continuous-time stochastic process. By applying MDP 
theory to control this process, resource allocation is formulated as a reward-based optimization 
problem. The solution is calculated by an online iteration algorithm that determines the optimum 
resource allocation policy. This policy is a set of state-dependent decisions on RSA and CAC 
that tell the network how to process each connection request. The approach guarantees that if the 
policy is used to allocate resources, the network reward rate is maximized. Since the policy 
calculation is performed online, its decisions are adaptive to changing traffic conditions. Besides, 
the approach optimizes any desired objective (and if needed performs GoS control) by properly 
setting the reward parameters. The proposed algorithm extends the applicability of MDP theory 
to the control of stochastic systems subject to contiguity and continuity constraints. 
 

2. Formulation of an approximate reward-based resource allocation algorithm: a drawback of 
state-dependent control is that the computational complexity grows with the size of the network 
state-space. That is also the case of the exact reward-based algorithm, which is unsolvable for 
large-size networks. To circumvent this problem, a link decomposition approach is used whereby 
the rate of reward from the network is approximated as the sum of the link reward rates. By this 
strategy, the optimization problem is decomposed into separate problems (one for each link) by 
assuming statistical independence of the link state distributions. This approach reduces the 
computational effort required to calculate the resource allocation policy. In order to improve the 
adaptability to varying traffic conditions, the approach implements a method to estimate from 
online measurements the offered traffic. This allows the network to adapt the state-dependent 
policy decisions for each connection request. 
  

3. Definition of an implementation scenario for the approximate reward-based algorithm with 
the 3WHS protocol: online resource allocation is part of the connection setup procedure. In that 
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respect, the 3WHS protocol for connection setup is adapted to perform resource allocation with 
the approximate reward-based algorithm. In the proposed scenario, the node that receives the 
connection request triggers the connection setup process, whereas the destination node calculates 
the policy decisions on CAC and RSA, and starts the resource allocation procedure. A centralized 
control plane is responsible for coordinating the whole process. The signalling mechanism of the 
3WHS protocol guarantees setup latencies in the range of milliseconds to seconds. The proposed 
approach can be realized as an extension to GMPLS or as an SDN-based implementation. 
 

4. Analytical approach to evaluating connection setup latency in dynamic optical networks: 
an analytical method to estimate the connection setup latency of the 3WHS protocol is proposed. 
For that, the protocol is modelled as a task graph which represents the signalling latency during 
the connection establishment phase. By using reduction techniques, the graph is simplified so as 
to obtain a performance model that estimates the mean connection setup time. The analytical 
model provides precise estimates of the connection setup latencies. The advantage of the task 
graph approach is that it is applicable to any connection setup protocol operating with arbitrary 
resource allocation algorithms. Thus, the provided analysis can easily be extended to estimate 
latencies in different implementation scenarios for online resource allocation. 
 

5. Evaluation of infrastructure costs for dynamic optical networking: a comprehensive cost 
model to evaluate the capital expenditures (CAPEX) for dynamic optical networks is provided. 
Based on a given traffic demand, the cost model uses a bottom-up approach to dimensioning the 
directionless/colorless ROADMs and the shared pools of transponders in the network. Then the 
infrastructure costs are evaluated. The approach provides a framework to identify the main cost 
drivers. The model can further be applied to calculate the network operational expenses (OPEX) 
and the total cost of ownership (TCO). The work extends the scope of existing cost evaluation 
studies for flex-grid WDM networks, e.g. [LYL+12]. 
  

The performance of all methods proposed in this thesis, including the accuracy of the analytical evaluation 
of the connection setup latency, were evaluated by simulations. 

1.3. Publications 

The contributions to this thesis from the author are published in two journal papers [RB17a, RB17b] and 

nine conference papers [RB15, REB15, RB16a, RB16b, RB16c, RB16d, RB17c, RAB18, RB18a]. 

Another publication from the author related to the topic is [GREB17]. A synopsis of the thesis that 

summarizes relevant findings is published in [RB18b]. 

1.4. Thesis Outline 

The thesis is organized as follows. In Chapter 2 the architecture for dynamic optical networks is explained. 

Emphasis is given on the main technology drivers, the network planning challenges and the importance 

of modelling the network as a large-scale stochastic system. This chapter provides the main definitions 

and assumptions used in the remaining chapters of the thesis. Chapter 3 is focused on the formulation of 

the exact reward-based algorithm for resource allocation. For that, a stochastic loss model is defined for 

dynamic optical networks. Then the concept of policy is introduced, and MDP theory is applied to derive 

the reward-based optimization problem. An online policy iteration procedure is formulated to calculate 

the optimum resource allocation policy. In Chapter 4 a link independence assumption is applied to the 

derivation of an approximate reward-based algorithm. A simplified iteration procedure is proposed to 

calculate the resource allocation policy. The procedure uses an online estimation method that adapts the 

policy decisions to the stochastic properties of the traffic. Chapter 5 presents performance evaluation 

results obtained by simulations. First a performance comparison is made between the exact and the 

approximate reward-based algorithms. The purpose is to assess the accuracy of the approximate method. 

Besides, for different network topologies, a thorough performance analysis is made on the approximate 

algorithm. Chapter 6 describes a control plane implementation for the approximate approach with the 

3WHS protocol.  Furthermore, an analytical performance evaluation model is proposed to estimate the 

protocol latency. Simulations are used to assess the accuracy of the model. In Chapter 7 a bottom-up cost 

calculation framework is proposed to calculate the CAPEX in dynamic optical networks. In particular, 

the cost contributions from ROADMs and transponders to the network CAPEX is studied. Finally, 

Chapter 8 concludes the thesis and outlines future research challenges.  
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Chapter 2 

Dynamic Optical Networking 

This chapter describes an architecture envisioned for the design and implementation of dynamic optical 

networks. The architecture defines the network model used in the next chapters of this thesis. Section 2.1 

outlines the transport services and technology layers that are currently driving the emergence of dynamic 

optical networking.  In particular, a multilayer/multiservice transport network architecture is defined for 

the provisioning of bandwidth on demand over the photonic layer. In Section 2.2 we introduce the key 

technology enablers to dynamic optical networking, namely, the flexible spectrum grid (denoted as flex-

grid), the bandwidth variable and tunable transponders, and the flexible optical switches. Section 2.3 

discusses network design challenges that involve network control functions for online resource allocation. 

In Section 2.4 we argue on the importance of designing those control functions by modelling the network 

as a large-scale stochastic system. By this approach, it is possible to implement control mechanisms that 

guarantee optimum utilization of the network resources.  

2.1. Dynamic Optical Network Architecture 

Communication service providers (CSP) supply information, transport and passive infrastructure services. 

Information services provide mechanisms to generate, store, process and retrieve information [CW03]. 

Transport offers transparent transmission of information without modifying its content. On the other hand, 

passive infrastructure services provide the physical support for the provisioning of transport. To offer 

those services, CSPs deploy multiservice networks that integrate different technology layers [REB15, 

RB17b]. In particular, the photonic (or optical) layer plays a relevant role as it leverages the provisioning 

of high-speed connectivity over access, metro and core networks. In the following we focus on the core 

or transport network and outline an architecture that has been envisioned for a dynamic optical layer.  

2.1.1 Transport Services and Technology Layers 
Core networks may provide a variety of transport services by integrating packet and circuit switched 

networking technologies. Figure 2.1 gives an overview of such integration which derives in a multilayer 

and multiservice core network. At the bottom is the fibre layer which provides the physical support for 

the provisioning of transport. Upon this fibre-based layout, we have the WDM layer which provides 

high-speed (constant bit-rate and variable bit-rate) wavelength services. On top of this layer, the optical 

transport network (OTN) technology can be provisioned to supply sub-wavelength services such as 

Ethernet and time division multiplexing (TDM) private lines. (Synchronous digital hierarchy (SDH) and 

synchronous optical network (SONET) services can be provisioned over OTN as well.) At the top we 

find the Internet protocol/multiprotocol label switching (IP/MPLS) layer which provides the transport 

commonly offered by internet service providers. Unlike IP/MPLS and Ethernet, which are implemented 

by packet-switched technologies, WDM, OTN, TDM and SDH/SONET services are realized by circuit-

switched networking systems.  
The service classification in Fig. 2.1 points out the importance of WDM as the key technology enabler 

for the provisioning of high-speed transport at all upper layers. Optical transport networks are the circuit-
switched systems that implement the WDM layer. These networks carry client signals, e.g. wavelength 
services, IP/MPLS and OTN traffic streams, on optical connections provisioned as lightpaths, i.e. optical 
channels established on a route between two nodes. Today the WDM layer is static in the sense that the 
setup times for optical connections are in  the  order of weeks,  and once established,  connections remain 
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Figure 2.1: Transport services and technology layers that define the core network. 

active for months or years. With the emergence of cloud-based services and grid computing, it is expected 
an evolution towards a dynamic WDM layer capable of providing high-speed bandwidth on demand 
[BSBS08, JTK+09, MCD+11, AWY13, Sim14, CDF+15]. This implies a changeover to highly-dynamic 
networks where connections can be rapidly set up and torn down. In this future scenario, optical 
connections are expected to have random arrival times and different bandwidth requirements.   

2.1.2 Network Architecture for the Dynamic Optical WDM Layer 
In order to cope with the stringent connectivity requirements from applications such as those based on 

cloud services and grid computing, the WDM layer must be implemented as a dynamic optical network. 

We adopt the term “dynamic” to refer to an optical transport network which has the following attributes: 

 

 The network is able to provide BoD connectivity to the customers, i.e. optical connections can 

be established when and where needed. This has two relevant implications. First, the network 

must be installed with the infrastructure required to establish connections without involving 

manual intervention [CCC+12, SCG+12, Sim14]. Secondly, connections (if needed) can be 

rapidly set up and torn down. In [Sal06, Sal07] it is shown that connections might require setup 

times in the order of milliseconds to seconds (e.g. for inter-data centre networks). 

 

 The network performs resource allocation for connection requests which may arrive randomly 

and which may have different bandwidth requirements. Furthermore, these requests may need 

to be served either upon arrival or at some specific time - as defined by the customer - after the 

arrival (this is the case of scheduled traffic, where a request is submitted in advance for the 

reservation of resources [Sim14]). The connection holding times can be either random (i.e. the 

connections can arbitrarily be terminated by the customers) or deterministic. This implies that 

the network has to implement resource allocation algorithms to efficiently serve the traffic 

demand. 

 

To address these requirements, in Fig. 2.2 we present an architecture for dynamic optical networks which 

is based on the concepts developed in [Sal06, Sal07, SN09, SW10, WFJA10, MCD+11, SS11,  CCC+12, 

SCG+12, CDF+15].  The architecture is realized by three key technology drivers, namely, flex-grid WDM 

[TAS+14], bandwidth variable and tunable transponders and flexible ROADMs.  
Besides enabling an efficient utilization of the optical spectrum, flex-grid WDM makes possible the 

provisioning of connections with different bandwidth requirements. To implement this technology in a 
dynamic environment, the optical network is installed with nodes that integrate three components: a fibre 
crossconnect (FXC), a directionless and colorless flexible ROADM, and a shared pool of transponders 
[SW10, WFJA10, CCC+12, SCG+12]. As seen in Fig. 2.2 the fibre crossconnect interconnects (on demand) 
the client interfaces to transponders in the pool. The transponders must be bandwidth variable and tunable, 
so that they can dynamically be configured to provision the bandwidth requested by the connections. The 
pool of transponders connects to a ROADM which is responsible for adding/dropping and switching (in 
the optical domain) connections. 
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Figure 2.2: Dynamic optical network architecture. 

The customers of the dynamic optical network are higher technology layers such as OTN and IP/MPLS 
or clients that request high-speed (either constant or variable bit-rate) wavelength services. If the customers 
are far away from the nearest point of presence (POP) of the network provider, their customer premises 
equipment (CPE) may reach the POP via a dedicated channel over an access/metro network. Otherwise, 
if the CPE is collocated at the POP, a short-range interconnection, e.g. grey or coloured [RKD+13], can be 
used to reach the FXC of the optical node (see Fig. 2.2). 

2.2. Technology Drivers  

Conventional optical transport networks use fixed-grid WDM [ITU12] as the technology that multiplexes 

different connections onto a single optical fibre. With this technology, the optical spectrum is split into 

channels spaced at a fixed distance (expressed in GHz). For instance, most operators today deploy fixed-

grid systems that multiplex up to 80 channels per fibre at a 50 GHz spacing. This WDM variant is known 

as dense WDM (DWDM). Each channel may carry connections with typical (fixed) bit-rates of 10, 40 

and 100 Gbps. The major drawback of this technology is the inefficient usage of the spectrum resources. 

The emergence of advance multiplexing techniques, such as orthogonal frequency division multiplexing 

(OFDM) [ZDMM13] and Nyquist-WDM [BCC+11], have enabled the evolution of WDM towards flex-

grid WDM [ITU12]. This technology is the main driving force behind the dynamic network architecture 

depicted in Fig. 2.2. 

2.2.1 Flex-grid Wavelength Division Multiplexing 
The International Telecommunication Union – Telecommunication standardization sector (ITU-T) has 

defined in the recommendation G.694.1 [ITU12] the frequency plan for flex-grid WDM. Compared to 

fixed-grid, the flexible standard defines a spectrum grid that consists of frequency slots with a 6.25 GHz 

bandwidth. This finer granularity allows the provisioning of optical channels with different bandwidth 

requirements, which is accomplished by allocating the number of contiguous slots that guarantee the bit-

rates required by the connections. This number depends on the spectral efficiency of the modulation 

scheme used by the transponders. Figure 2.3 presents a comparison of the traditional fixed-grid DWDM 

system with flex-grid. As seen, the major advantage of a flexible grid is the capability of tailoring the 

optical bandwidth to the customer requirements, thereby saving spectrum resources. Fixed and flex-grid 

are defined in the C-band transmission window which spans the wavelength range 1530 nm-1565 nm. 
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Figure 2.3: Comparison between fixed-grid and flex-grid WDM. 

2.2.2 Flexible Node Architecture    
Let us take a closer look at the flexible node architecture depicted in Fig. 2.2. The transponders installed 

in the shared pool are bandwidth variable. This is accomplished by multiplexing sub-carrier frequencies 

(using techniques such as OFDM or Nyquist-WDM) into a single channel that provides the bit-rate of 

the client signal [JTK+08, KRM+10, GJLY12]. (The sub-carrier frequencies are defined in the flexible 

spectrum grid.) Besides providing bit-rate adaptability, the transponders are frequency-tunable, thereby 

the sub-carrier frequencies that conform a client lightpath can be centred at any standard frequency within 

the spectrum grid. Another attribute of the transponders is the transparent reach, which is the maximum 

achievable transmission distance before requiring signal regeneration. This distance is shortened as the 

signal bit-rate increases (and is dependent on the modulation scheme applied to the channel sub-carriers). 

For instance, typical values published in [RKD+13] show that flexible transponders can provide bit rates 

from 10 Gbps (with reach 2000 km) to 400 Gbps (with  reach 150 km).  
An important design issue is the dimensioning of the number of transponders to install in the pool of 

each network node. Notice that blocking of an optical connection request may occur either if transponders 
are unavailable in the shared pools of the source and destination ROADMs, or if a suitable lightpath cannot 
be found in the network (due to the unavailability of free spectrum slots). In [SW10, CCC+12, SCG+12] a 
dimensioning method has been proposed that obtains low transponder-related blocking probabilities (e.g. 
less than 10-4). In the method, a traffic forecast needs to be defined for the optical network. Then it is 
assumed that each node has an infinite number of transponders. Based on this assumption, simulations are 
run to determine the histograms of the transponder occupancies at each node. From the histograms, the 
number of transponders that guarantee a desired blocking is obtained for each pool. Although the method 
uses simulations, it has the advantage that is applicable to any arbitrarily defined traffic forecast, and thus, 
it is not limited by the traffic assumptions (e.g. Poisson arrivals) typically made by traditional queuing 
models used for capacity dimensioning. 

Flexible ROADMs [PFRC11] switch connections with different bandwidth requirements in the optical 
domain. Besides, they are the elements that add and drop connections in the network. In Fig. 2.4 we present 
three typical ROADM configurations, namely, basic, colorless, colorless & directionless, which are built 
by combining arrayed waveguide gratings (AWGs) - used to implement optical multiplexers (MUX)  and 
demultiplexers (DEMUX) - passive splitters, wavelength selective switches (WSS) and optical amplifiers 
(pre-amplifiers and booster amplifiers for incoming and outgoing WDM signals, respectively) [GBS+10].  
As seen in Fig. 2.4, all ROADM configurations (which are depicted for a two-degree node) have in 
common that and add/drop section is installed per node degree. The add/drop sections are connected to 
the transponders installed in the node. Before explaining the differences among the configurations, let us 
recall that an optical splitter is a passive device that replicates an incoming WDM signal on all its outgoing 
ports. On the other hand, the WSS takes an incoming WDM signal and individually switches each of its 
constituent channels to a selected output port [GBS+10].  

In the basic ROADM configuration (see Fig. 2.4), each transponder attached to an add/drop section 
(via the passive MUX/DEMUX) can only access a single ROADM link. Besides this limitation, this node 
configuration does not automatically react (i.e. without manual intervention) if a transponder re-tunes its 
carrier frequency. (This is understood by the fact that the MUX/DEMUX ports are coloured, i.e. they 
operate at a fixed frequency.) This limitation is overcome by the colorless ROADM configuration which 
replaces the MUX/DEMUX devices by WSSs. These switches have colorless ports, and therefore, they 
allow the transponders to automatically re-tune their carrier frequencies without restrictions. However, as 
with the basic ROADM, this solution (as seen in Fig 2.4) only allows the transponders to add/drop traffic 
from a fixed ROADM link. This restriction is avoided by implementing the add sections with WSSs that 
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Figure 2.4: Typical ROADM configurations (a two-degree node is depicted as an example). 

can connect to all the WSSs that feed the booster amplifiers. On the other hand, the drop sections are 
implemented by WSSs that can connect to all the ROADM splitters. This solution is the colorless & 
directionless ROADM seen in Fig. 2.4. It allows any transponder to access any link connected to the node. 
This configuration enhances the network resilience (as traffic can automatically be re-routed in case of 
failures). In Chapter 7 a thorough analysis of these three configurations will be presented. 

The colorless & directionless configuration together with the shared pools of transponders render the 
dynamic optical network in Fig. 2.2 implementable. However, this approach poses challenges for the 
design and operation of this type of networks. These issues will be discussed in the following section with 
special focus on the resource allocation problem and on selected control plane design challenges.  

2.3. Network Planning Challenges 

To supply their services at low costs in the telecommunications market, CSPs perform techno-economic 

analyses to decide on a suitable network deployment plan. These analyses consist of the formulation, 

modelling and evaluation of business cases for selected candidate network solutions. A business case is 

a study that projects into the future the financial consequences (i.e. costs, revenues, profits, risk, etc.) of 

a decision. It tells (by means of financial metrics) what is expected to happen if a candidate network 

solution is adopted [REB15]. It is the task of the decision makers to select and install the network solution 

that fits best to their business interests. After the initial deployment, the evolution of the network life-

cycle is determined by techno-economic evaluations of future network upgrades/migrations. The goal is 

to achieve optimal technical performance while yielding financial feasibility.  
Techno-economic analyses involve network planning and economic evaluation methods. To illustrate 

this within the context of the network life-cycle, assume that at time 𝑡𝑖 a CSP wants to install a network to 
cope with an expected service demand over an interval 𝑇𝑖 . To select a suitable network deployment plan, 
different candidate network solutions are defined. The financial feasibility of each  solution  is evaluated 
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Figure 2.5: Techno-economic analysis for network deployment planning [RB17b]. 

with the four-step model depicted in Fig. 2.5 [VCOL08, RB17b]. The grey and white boxes represent 
methods to perform technical and economic analysis, respectively. The green boxes are methods common 
to both analyses.  

At time 𝑡𝑖 the four steps in Fig. 2.5 are executed for each candidate network solution. The first step, 
namely, input information processing, is responsible for surveying and defining data regarding market 
information, competitors, the network architecture and technologies to use, equipment pricing, the services 
to be offered and their QoS requirements. With this information, service demands and equipment costs are 
forecast over 𝑇𝑖 . In the second step, the input information is used to design the network on the condition 
that the TCO is minimized while no capacity upgrades are needed in 𝑇𝑖 . For that, offline network planning 
optimization algorithms are used for topology design, demand routing, infrastructure dimensioning and 
resilience planning. With the resulting design, the TCO is calculated as the sum the CAPEX and OPEX. 
Besides, the costs are allocated to the services offered by the CSP [You85, CVM+06, REB15, RB17b] and 
the expected revenues are calculated. Hence, the second step defines a network deployment plan and its 
cash flow stream that states the timing and value of costs (cash outflows) and revenues (cash inflows) over 
𝑇𝑖 . In the third step, financial metrics such as the payback period (PB), the return on investment (ROI), the 
net present value (NPV) and the internal rate of return (IRR) are evaluated [VCOL08]. They provide 
information about the time it takes for revenues to cover costs, expected investment gains, risks, etc. The 
reliability of that information is assessed in the last step, namely, refinement. The purpose is to evaluate 
the impact of the model assumptions and the uncertainties of the input information on the financial metrics. 
Real options valuation [TVW+13] can be used as a method to identify and quantify the risks associated to 
uncertainties and unexpected events. 

Once the candidate network solutions are assessed, the most suitable alternative is chosen and installed 
at 𝑡𝑖 . In order to guarantee optimal operation within the planning period 𝑇𝑖 , configuration, management 
and performance evaluation functions are performed on the installed network (see in Fig. 2.5 the blocks 
that connect the fourth to the first step). These functions include online resource allocation algorithms 
whereby capacity is assigned to the service demands admitted over 𝑇𝑖 . Furthermore, these functions should 

recommend the time 𝑡𝑖
′ at which a network upgrade/migration is necessary. At this time, the four-steps of 

the techno-economic analysis are repeated so as to select a suitable solution for the upgrade/migration 
request. This process is sequentially executed over the network life-cycle (see Fig. 2.6, where the evolution 
of a typical network throughout different planning periods 𝑇𝑖  is shown - the periods need not have the 
same length). 

As seen in Fig. 2.6, offline network planning and online resource allocation play a relevant role in the 
design of efficient network infrastructures. Based on demand forecasting, offline planning guarantees that 
enough capacity is installed to cope with the expected demand growth. On the other hand, online resource 
allocation ensures that the installed capacity is efficiently used by the demands actually served in the 
network. In particular, for dynamic optical networks, offline planning includes the dimensioning of the 
colorless & directionless ROADMs and the sizing of shared pools of transponders (i.e. it  guarantees  that  
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Figure 2.6: The network life-cycle as driven by techno-economic evaluations. 

sufficient infrastructure is deployed to provide BoD without manual intervention). Online resource 
allocation, on the other hand, is responsible for the implementation of network control functions for CAC 
and RSA. These functions guarantee that lightpaths are allocated to connections in such a way that a 
desired performance is achieved. 

2.3.1 Online Resource Allocation 
Conventional fixed-grid WDM networks serve connections with setup times in the order of weeks (as in 
most cases manual labour is required) and once established, connections remain active for months or years. 
Given the static characteristics of this traffic, offline planning for capacity provisioning is performed by 
routing and wavelength assignment (RWA) algorithms. With the advent of flex-grid WDM, more efficient 
capacity dimensioning is attained by offline RSA schemes - see for example [CTV11a, KW11, KRV+13].  
Both RWA and RSA offline algorithms have in common that the traffic matrix is known. Besides, these 
algorithms can be formulated as integer linear programming (ILP) or mixed ILP (MILP) problems.  RWA 
and RSA differ in that RSA algorithms must calculate lightpaths that fulfil the contiguity and continuity 
constraints, i.e. the lightpath spectrum slots must be adjacent and centered at the same frequency on each 
link in the selected path. (In RWA algorithms there is no contiguity constraint as a single wavelength may 
suffice for a connection request.) 

In dynamic optical networks, offline RSA algorithms are only useful (based on demand forecasting) 
to estimate the capacity to deploy for any given planning period. However, for network operation (i.e. to 
perform online resource allocation) those algorithms are inapplicable as they tend to be slow. To provide 
GoS guarantees to their customers, the network needs to rely on resource allocation methods that integrate 
algorithms for online RSA and CAC. To carry a new connection, online RSA - based on an optimization 
objective - is responsible for calculating a set of candidate lightpaths. Then CAC applies decision rules to 
determine the lightpath on which the connection has to be carried. Although parts of the same problem, 
RSA and CAC can be solved separately to reduce modelling and implementation complexity [Dzi97]. In 
this context, for flex-grid WDM, a variety of online RSA schemes are proposed in the literature [WWL10, 
CTV11b, PJJW11a, WWH+11, WZK+11, CVR+12, WZZ+12, ADB+13, CTV13]. They mainly aim at 
minimizing the overall blocking probability. A drawback of these algorithms is that they do not allow 
individual control of the blocking probability (i.e. GoS) of different connection classes (i.e. connections 
that have different bandwidth requirements). However, these approaches represent a first step towards the 
design of efficient resource allocation algorithms in dynamic optical networks. In general, any online 
resource allocation algorithm should fulfil the following requirements: 
 

1. Since online resource allocation is performed on the time scale of connection interarrival times, 
the algorithms must be fast. Existing online RSA schemes tackle this issue by adopting heuristic 
methods to calculate lightpaths. For instance, some approaches [WWH+11, WZK+11, WZZ+12] 
resort to decomposition techniques that solve the routing and the spectrum allocation problems 
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separately. By adopting this decomposition, resource allocation can be realized as follows. For a 
connection request, a routing algorithm is run to calculate candidate paths. (Routing can be solved 
by considering the physical limitations imposed by the transparent reach of the transponders and 
the modulation formats.) For each candidate path, a spectrum allocation algorithm, such as first-
fit (FF) or random-fit (RF) [TAK+14], calculates an optical channel that meets the contiguity and 
continuity constraints. The resulting lightpaths are evaluated by a CAC algorithm so as to decide 
whether to admit or reject the connection. If admitted, a lightpath is chosen and provisioned for 
the connection. 
 

2. The algorithms must perform individual control of the blocking probability (i.e. GoS) of different 
connection classes. This is particularly important if BoD services are to be offered. This allows 
CSPs to provide service level agreements (SLA) to customers with distinct bandwidth needs. 
 

3. Although the blocking probability is the major performance objective, the algorithms should 
allow the optimization of objectives arbitrarily defined, e.g. economic revenue maximization or 
cost minimization. 
 

4. The algorithms must be state-dependent and adaptive to changing traffic load conditions. This 
means that the CAC decisions have to take into account the actual resource occupancy (i.e. the 
network state), and need to adapt to traffic fluctuations so as to meet the SLAs at its best.  
 

These requirements pose new challenges to the design of online resource allocation algorithms. Their 
performance is subject to the deployment of sufficient capacity at the beginning of each planning period 
within the network life-cycle (i.e. offline network planning should guarantee that the ROADMs, 
transponder pools and the fibre links are properly sized to cope with the traffic growth).  

Spectrum defragmentation is another challenge to online network planning. The random arrival and 

departure of optical connections renders the spectral resources prone to reach a so-called fragmentation 

state [ASMW11]. A fragmentation state means that, on each link, the spectrum contains idle and non-

contiguous spectrum slots which cannot be allocated to future connection requests. The increment in the 

connection blocking probability is a result of a fragmented spectrum. A strategy to solve this problem is 

to re-optimize the configuration of the lightpaths established in the network, i.e. their spectrum allocation 

and/or routing. By that, a spectrum defragmentation in the network is performed, whereby large blocks 

of empty and adjacent spectrum slots are made available for future connection requests. Online spectrum 

defragmentation involves three phases [GREB17]. First, on each link, the network tracks the spectrum 

fragmentation state so as to trigger the defragmentation process when deemed necessary. In the second 

phase, an optimization algorithm recalculates the spectrum allocation (or both the routing and spectrum 

allocation) for all carried lightpaths. In the last step, a strategy is adopted to migrate the lightpaths to the 

configuration calculated by the optimization algorithm. Such a strategy has to minimize the number of 

lightpath disruptions during the migration process. There is an increasing research interest in spectrum 

defragmentation strategies for flex-grid WDM networks. For example, [SP10, PJJW11b, THS+11] focus 

on spectrum defragmentation without migration of lightpaths. In [CVR+12] an online RSA scheme is 

introduced which re-allocates spectrum to established lightpaths when a connection request is blocked. 

A drawback of this scheme is that it may cause frequent reconfiguration processes (e.g. in high-traffic 

load scenarios). ILP-based defragmentation algorithms with integrated lightpath migration are introduced 

in [THT+14, TTHK15, TTHK16], where the defragmentation and the lightpath migration strategies are 

calculated simultaneously. These algorithms can be used to improve the resource allocation process in 

dynamic optical networks. For example, RSA schemes can be designed together with CAC decision rules 

to minimize the spectrum fragmentation. It is also important to investigate the extent to which a migration 

of lightpaths is recommended in a dynamic scenario, as migrations may lead to service disruptions that 

may impact the SLAs offered to the customers. 

2.3.2 Control Plane Challenges 
To unfold the potential of dynamic optical networks, a control plane architecture is needed that enables 

automatic multilayer/inter-domain interoperability. Moreover, given the circuit-switched nature of the 

optical network, novel signalling mechanisms are required for fast connection set up. 
Multilayer interoperability requires the definition of logical interfaces between higher technology 

layers (e.g. IP/MPLS, OTN) and the flex-grid WDM dynamic layer. These interfaces should specify the 
signalling procedures whereby BoD is automatically provisioned to the customers. Although efforts have 
been made to extend the GMPLS protocol suite to support flex-grid WDM (see for example [JTK+09, 
GCZ+13]), ongoing research shows that an SDN-based control plane would reduce complexity, thereby 
adding flexibility to the control of dynamic traffic flows [DPM12]. In particular, the work in [Das12] has 
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embraced SDN to propose an integration of packet (IP/MPLS) and optical circuit-switched networking 
technologies. As a result, SDN concepts have been extended to the optical domain [Col13, ONF13, 
SHS+14]. This has stimulated further research on the integration of GMPLS protocol functionalities with 
SDN/OpenFlow capabilities [ANE+11, CKE+12]. The experimental results reported in [CNF+12, LCT+12, 
YZZ+12, ZZY+13, ZZZ+13] indicate that by centralizing the network control with an SDN architecture, 
not only multilayer convergence, but inter-domain interoperability is attained.  However, additional effort 
is still required for the definition of an SDN-based dynamic optical network. In particular, this effort entails 
the standardization of the signalling procedures for the provisioning of capacity for multirate connections. 
(Note that currently, as defined by the fixed-grid WDM standard [ITU12], the GMPLS protocol handles 
connections at the granularity of wavelengths.  The extension to flex-grid WDM implies a finer spectrum 
granularity, which imposes stringent scalability requirements not yet handled by GMPLS [TAS+14].) 
Furthermore, as argued in [Sal06, Sal07] dynamic optical networks might need to serve connections with 
setup time requirements in the order of milliseconds to seconds. This evinces the need for faster connection 
establishment protocols that interwork with resource allocation algorithms. 

In [CCC+12, SCG+12, SN09, SGK+14] a 3-way handshake (3WHS) protocol was proposed to provide 
fast connection setup in dynamic optical networks. (A modified version of this protocol for multicarrier 
domain networks has been published in [WGK+15].) Originally, the 3WHS protocol was designed as an 
alternative (or extension) to GMPLS in order to cope with the stringent setup latencies of BoD services. 
Unlike GMPLS, upon arrival of a connection request, the 3WHS protocol is able to simultaneously probe 
resources on different paths, and therefore, it provides the network nodes with the information they need 
to perform more efficient resource allocation. Another advantage, as shown by the simulation results in 
[SCG+12], is that the protocol performs well at minimizing backward blocking (i.e. the blocking arising 
from concurrent connection requests trying to seize the same resources on a given path). These capabilities 
make the 3WHS protocol faster than GMPLS. An open issue is the definition of the implementation details 
of the protocol in an SDN-based environment. In this respect, a major challenge is the minimization of the 
delays of the signalling messages exchanged between the nodes and the SDN controller. As discussed in 
[Sim14], a purely centralized control plane implementation may result in large setup latencies. Therefore, 
a question to answer is whether a hybrid (i.e. centralized and distributed) or a purely centralized control 
plane is more suitable for fast connection setup.    

2.4. Modelling Dynamic Optical Networks as Large-

Scale Stochastic Systems 

Extrinsic and intrinsic factors determine the performance (e.g. the blocking probability, the connection 

setup latency) of dynamic optical networks. Among the extrinsic factors we have the statistical properties 

of the bandwidth requirements, the interarrival times and the durations of connections. These properties, 

in principle, are independent of - and unknown to - the network. On the other hand, intrinsic factors 

include online resource allocation algorithms whereby lightpaths are provisioned on demand. The 

network performance is the large-scale effect that emerges from the interaction between the extrinsic and 

intrinsic factors. Understanding the causal relationship responsible for the emergence of the large-scale 

effects is essential for the design of efficient network control. By having this knowledge, it is possible to 

handle (and learn from) the randomness of connections so that the network control attains a desired 

performance. Given the random nature of the traffic, dynamic optical networks behave as large-scale 

stochastic systems whose state (i.e. the network resource occupation) changes by following the decisions 

of the resource allocation algorithm.  
Having a suitable stochastic network model is key to the implementation of optimum control. A variety 

of models were successfully proposed in the past for packet and circuit switched networks (see for example 
[KY14]). In particular, circuit switched networks are modelled as stochastic loss systems. Relevant models 
for this type of networks such as [Kau81, Kel88, DM89, Hun89, Kel91, Hwa93, DM94, Ros95, HKT00, 
KY14] have succeeded in the design of adaptive/state-dependent routing and CAC. Unfortunately, these 
models are inapplicable to dynamic optical networks. The reason is that they describe stochastic systems 
with states which are not subject to continuity and contiguity constraints. A first step towards the definition 
of a stochastic model for dynamic optical networks is the work in [YZZ+14]. Therein a model is proposed 
for a flex-grid WDM link. The optical link is described as a continuous-time Markov chain with states that 
fulfil the spectrum contiguity constraint. From the Markovian model, the link performance metrics (e.g. 
the blocking probability, the spectrum fragmentation) can be derived analytically. The simulation results 
in [YZZ+14] show that, for different spectrum allocation schemes (e.g. first-fit, random-fit), the analytical 
model provides accurate estimates of the link performance.  

In order to design applicable network control algorithms, the stochastic link model in [YZZ+14] must 
be extended first to multi-link networks. This implies the generalization of the concept of state, which has 
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to consider the spectrum continuity constraint.  Having defined the network model, existing methods for 
the control of loss networks can be applied to design online RSA and CAC algorithms. For example, the 
strategies developed in [Kel88, DM89, Hun89, Kel91, Kri91, Ros95, ZRP00, CNDR01, Mei13] model 
resource allocation as an online optimization problem and propose solutions methods that are adaptive and 
state-dependent. In particular, the network control models in [Kel91, DM89, Ros95] suggest that, if an 
accurate stochastic network model is defined, efficient resource allocation algorithms can be designed and 
implemented for dynamic optical networks. 

2.5. Chapter Summary 

Dynamic optical networks are envisioned as multiservice infrastructures capable of providing bandwidth 

when and where needed. These networks can be built as circuit-switched systems that serve connections 

with different bandwidth requirements, random interarrival times and durations. The key technology 

drivers to dynamic optical networking are flex-grid WDM, bandwidth variable and tunable transponders 

and flexible ROADMs. With these technologies, the network design is performed by techno-economic 

analyses that involve offline network planning methods and economic evaluations. Based on demand 

forecasting, offline planning ensures that - before operation - the network nodes and links are installed 

with enough capacity to cope with the demand growth. For that, the optical nodes are designed with 

directionless & colorless ROADMs which are interconnected (via fibre crossconnects) with pools of 

transponders. By this node design, client interfaces are assigned (on demand) to transponders in the pool, 

thereby avoiding manual labour during the process of connection setup. During network operation, online 

resource allocation ensures that the installed capacity is efficiently used by the demands served in the 

network. For that, the network has to implement control functions for RSA and CAC. These functions 

guarantee that lightpaths are allocated to connections in such a way that a desired performance is achieved. 
The statistical characteristics of the traffic and the control logic of the resource allocation algorithms 

determine the performance of dynamic optical networks (e.g. the blocking probability). This performance 
is a large-scale effect that can be controlled by modelling the network as a stochastic loss system. In the 
next chapters we will elaborate on this idea with special focus on adaptive and state-dependent resource 
allocation strategies. For that, the concepts and models introduced in the remaining chapters make the 
following assumptions. First, that the network conforms to the architecture described in this chapter. 
Secondly, that the dimensioning of ROADMs, transponders pools and flex-grid links has been performed 
by offline network planning methods. Thus, the assumption is made that sufficient capacity is available to 
cope with an expected demand growth. Our focus will then be on how to efficiently allocate resources to 
connections during network operation.  
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Chapter 3 

Reward-based Resource Allocation in 

Dynamic Optical Networks  

Online resource allocation in dynamic optical networks involves network control functions for CAC and 
RSA. These functions aim at guaranteeing that lightpaths are allocated to connections in such a way that 
a desirable network performance is achieved. In this chapter we define the performance as the rate at which 
the network earns reward from carried connections. Within that context, resource allocation is modelled 
as a Markov decision process that provides a policy with decisions on admission, routing and spectrum 
allocation. Section 3.1 defines a stochastic model for dynamic optical networks. In Section 3.2 the network 
model is used to introduce the concept of policy as a mechanism for resource allocation. Section 3.3 
formulates the policy dependent reward-based optimization problem. Section 3.4 discusses a policy 
iteration algorithm that calculates an optimum policy for network reward maximization. To facilitate the 
readability of the concepts and mathematical models introduced in this chapter, in Table 3.1 we summarize 
the most relevant variables and parameters which are defined and used throughout all chapter sections. 
The content in this chapter includes results published by the author in [RB16a, RB16b].  

3.1. Stochastic Network Model 

Consider a dynamic flex-grid optical network with 𝑁 nodes and 𝐿 links. Each link 𝑙 has a capacity of 𝐶𝑙 
ordered spectrum slots and the nodes employ directionless/colorless ROADMs. Two types of nodes are 
distinguished: add/drop nodes and transit nodes. They differ only in that add/drop nodes have transponder 
pools to establish connections on demand. The connections served by the network are categorized into 𝐽 
distinct classes, with a class-j being a group of connections fully characterized by six parameters, namely 

(𝑜, 𝑑)𝑗 , 𝜆𝑗 , µ𝑗
−1, 𝑏𝑗 , Γ𝑗 , and 𝑟𝑗 . Specifically, class-j connections request connectivity between a pair of 

add/drop nodes (𝑜, 𝑑)𝑗, arrive at the network at a mean rate 𝜆𝑗, and have a mean holding time µ𝑗
−1. A 

carried class-j connection seizes a bandwidth of 𝑏𝑗 spectrum slots. This bandwidth is provisioned by a 

lightpath on a route 𝜌 selected from a set of feasible paths Γ𝑗. (In general, Γ𝑗 may contain either all feasible 

paths between the nodes (𝑜, 𝑑)𝑗, or a sub-set of 𝑘-shortest paths.) The lightpath fulfils the contiguity and 

continuity constraints, i.e. in addition to being adjacent, the 𝑏𝑗 spectrum slots are centered at the same 

frequency on each link in the selected path 𝜌. A class-j connection brings to the network 𝑟𝑗 reward units 

(ru). The meaning and value of the reward parameter 𝑟𝑗 is defined by the network operator and thus, 𝑟𝑗 

does not necessarily represent an economic revenue. Class-j connections offer to the pair of add/drop nodes 
(𝑜, 𝑑)𝑗 a traffic load of 𝐴𝑗 = 𝜆𝑗/µ𝑗 Erlangs. The rates 𝜆𝑗 and µ𝑗 have units of connections per unit of time 

(con/uot). Note that µ𝑗 is the rate at which a single carried class-j connection is terminated. 

Example 3.1 Consider the network depicted in Fig. 3.1, which consists of seven links, four add/drop 
nodes (A, D, E, F) and two transit nodes (B,C). The add/drop nodes define six node-pairs, each one serving 
two connection classes, one requesting two and the other four spectrum slots. Thus, the network serves 12 
classes, which are defined by the parameters shown in Fig. 3.1. For example, class-10 is the group of 
connections carried as lightpaths with a bandwidth of 𝑏10 = 4 adjacent slots provisioned between the 
nodes (𝑜, 𝑑)10 = (D, E). They arrive at a mean rate of 𝜆10 = 6 (con/uot) and have a mean holding time 
µ10

−1 = 1, thereby offering a traffic load of 𝐴10 = 6 Erlangs. The lightpaths are provisioned on routes 
selected from the set of paths Γ10 = {(D, C, E), (D, F, B, A, E)}. From a carried class-10 connection the 
network earns a reward of 𝑟10 = 8 (ru).  
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Table 3.1: Notation of relevant variables and parameters defined in Chapter 3. 

Symbol Units Description 

C𝑙 slots Capacity, in spectrum slots, of link 𝑙 with 𝑙 = 1,2, … , 𝐿 

𝐽 classes Number of connection classes served by the network 

(𝑜, 𝑑)𝑗 --------- Pair of nodes between which class-j connections are established 

𝜆𝑗 con/uot Exogenous mean rate at which class-j connections arrive at the network 

µ𝑗 con/uot Mean rate at which a single class-j connection is terminated 

𝑏𝑗 slots Number of contiguous slots requested by a class-j connection 

Γ𝑗 --------- 
Set of k-shortest paths that connect the nodes (𝑜, 𝑑)𝑗 . On these paths 

lightpaths with a bandwidth 𝑏𝑗 are provisioned to serve class-j traffic 

𝑟𝑗 ru/con Reward parameter of a class-j connection 

𝐴𝑗 Erlangs Mean class-j traffic offered to the network 

𝐴𝑐𝑗 Erlangs Mean class-j traffic carried by the network  

J𝑙 --------- J𝑙 = {𝑗: 𝑙 ∈ 𝜌 ∧ 𝜌 ∈ Γ𝑗} , classes which can be carried on link 𝑙 

𝐱𝑙 --------- 
𝐱𝑙 = (𝑥1

𝑙 , 𝑥2
𝑙 , … , 𝑥C𝑙

𝑙 ) is a C𝑙-dimensional vector, and represents the state 

of link 𝑙, where 𝑥𝑖
𝑙 ≥ 0 is the state of the ith link spectrum slot 

𝐱 --------- 𝐱 = (𝐱1, 𝐱2, … , 𝐱𝑙 , … , 𝐱𝐿) is the network state, 𝐱𝑙 is the state of link 𝑙 

Ω𝐱
𝑙 , Ω𝐱 --------- 

Link state-space and network state-space, respectively. These sets have 

cardinalities |Ω𝐱
𝑙 | and |Ω𝐱| 

𝐧𝑙  --------- 
𝐧𝑙 = (𝑛1

𝑙 , … , 𝑛𝑗
𝑙 , … , 𝑛𝐽

𝑙) is the macrostate of link  𝑙 , with 𝑛𝑗
𝑙  being the 

number of carried class-j connections  

Ω𝐧
𝑙  --------- Link macrostate-space. This set has cardinality |Ω𝐧

𝑙 |  

Π --------- 

Resource allocation policy. It is a matrix [Π(𝐱, 𝑗)], the element  Π(𝐱, 𝑗)  

is a decision that instructs the network the course of action to take when 

a class-j connection request arrives in network state 𝐱 

𝑅(Π) ru/uot Mean rate at which the network earns reward from carried connections 

𝐵𝑗  --------- Blocking probability of class-j connections 

𝑃𝐱𝐲(Π) --------- Probability that the network moves from state 𝐱 to state 𝐲, 𝐱 ≠ 𝐲 

𝑣(𝐱, Π) ru Transient reward earned by having set the network in state 𝐱 at 𝑡0 

𝑉(𝐱, Π, 𝑡) ru 
Expected reward at 𝑡 ≫ 𝑡0 , if the network were in state 𝐱 at 𝑡0 , this 

reward is earned at a constant rate 𝑅(Π) 

Γ𝐱
𝑗+

, Γ𝐱
𝑗−

 --------- 
Sets of network states which are reachable due to class-j connection 

admissions and departures in state 𝐱, respectively 

Λ𝐱
𝑗+

 --------- 

Set of decisions for a class-j request arriving in state 𝐱. An element 𝐲 in 

Λ𝐱
𝑗+

 is a state in Ω𝐱, and it represents the state reachable if the network 
makes the transition  𝐱 → 𝐲 

𝑔𝑗(𝐲, 𝐱, Π) ru 

State-dependent network reward gain 𝑔𝑗(𝐲, 𝐱, Π) = 𝑣(𝐲, Π) − 𝑣(𝐱, Π).  

It is the reward change, w.r.t. 𝑉(𝐱, Π, 𝑡),  incurred at 𝑡 ≫ 𝑡o if at 𝑡o the 

transition 𝐱 → 𝐲 is caused by admission of a class-j connection arriving 

in state x. It is also interpreted as the long-term reward obtained from a 

class-j connection accepted when the network is in state 𝐱 
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Figure 3.1: Example of a flex-grid optical network serving 12 classes. 

Table 3.2: Definition of possible states for the ith spectrum slot on a network link. 

3.1.1 Definition of the Network State 

As in [YZZ+14], let 𝐱𝑙 = (𝑥1
𝑙 , 𝑥2

𝑙 , … , 𝑥C𝑙

𝑙 ) be the state of link 𝑙, with 𝑥𝑖
𝑙 being the state of the ith spectrum 

slot (𝑖 = 1,2, … , 𝐶𝑙). Let us further define J𝑙 = {𝑗: 𝑙 ∈ 𝜌 ∧ 𝜌 ∈ Γ𝑗} as the set of class-j connections which 

can be carried on link 𝑙. From this, in Table 3.2 we define the possible states 𝑥𝑖
𝑙 for the ith spectrum slot. 

Any definable 𝐱𝑙 is an allowed configuration of the optical spectrum on link 𝑙 and therefore, 𝐱𝑙 has to 

fulfil the spectrum contiguity constraint which is defined as: 

If 𝑥𝑖
𝑙 = 𝑗, 𝑗 ∈ J𝑙 , then 𝑖 ≤ 𝐶𝑙 − 𝑏𝑗 + 1 and 𝑥𝑖+𝑘

𝑙 = ∞,  𝑘 = 1,2, . . , 𝑏𝑗 − 1           ,∀ 𝑙          (3.1) 

which means that when a class-j connection is carried on a path 𝜌 ∈ Γ𝑗, such that 𝑙 ∈ 𝜌  (i.e. 𝑗 ∈ J𝑙), the 

connection seizes an optical channel with a bandwidth of 𝑏𝑗 adjacent spectrum slots. If the first channel 

slot occupies the ith position in the optical grid, i.e. 𝑥𝑖
𝑙 = 𝑗, then the subsequent 𝑏𝑗 − 1 slots are allocated 

to the connection as well, i.e. 𝑥𝑖+𝑘
𝑙 = ∞  (𝑘 = 1, . . , 𝑏𝑗 − 1). This implies that the ith position in the link 

grid is such that  𝑖 ≤ 𝐶𝑙 − 𝑏𝑗 + 1. The set of states 𝐱𝑙  that fulfil Equation (3.1) is the link state-space Ω𝐱
𝑙 .  

Example 3.2 Assume that for the network in Fig. 3.1, 𝐶𝑙 = 6 slots, 𝑙 = 1, … . ,7. The state of link 𝑙 is 

𝐱𝑙 = (𝑥1
𝑙 , 𝑥2

𝑙 , 𝑥3
𝑙 , 𝑥4

𝑙 , 𝑥5
𝑙 , 𝑥6

𝑙 ). Consider the link 𝑙 = 2, i.e. that interconnecting the nodes B-C. This link is 

in the path 𝜌 = (A, B, C, E) ∈ Γ2, Γ8  and in the path 𝜌 = (D, C, B, F) ∈ Γ5, Γ11 (see Fig. 3.1). Thus, the link 
may solely carry connections of classes J2 = {2,5,8,11}. According to Table 3.2 and Equation (3.1), two 
possible states for this link are 𝐱2 = (0,5, ∞, 0,2, ∞) and 𝐱2 = (11, ∞, ∞, ∞, 5, ∞). In both states the link 
carries two connections: in the former, a class-5 connection that seizes slots 2-3 and a class-2 connection 
which occupies slots 5-6 (i.e. each connection uses two slots, as 𝑏2 = 𝑏5 = 2), whereas in the latter state, 
a class-11 connection seizes slots 1-4 (as 𝑏11 = 4) and a class-5 connection uses slots 5-6. An example of 
a non-valid state for this link is 𝐱2 = (0,3, ∞, 11, ∞, ∞). First, because the link cannot carry class-3 
connections (i.e. 𝑗 = 3 ∉ J2, and thus, no path in Γ3 contains link B-C). Secondly, because the spectrum 
configuration “ 11, ∞, ∞ ” violates Equation (3.1). Any class-11 connection must be configured as 

“11, ∞, ∞, ∞”, where the starting slot 𝑖  for which 𝑥𝑖
2 = 11 hast to fulfil 𝑖 ≤ 3 and 𝑥𝑖+𝑘

2 = ∞ for 𝑘 =
1,2,3. 

Let us further define 𝐱 = (𝐱1, 𝐱2, … , 𝐱𝑙 , … , 𝐱𝐿) as the network state, with 𝐱𝑙 being the state of link 𝑙 
which fulfils Equation (3.1). The state 𝐱 is a valid configuration of the optical spectrum in the network, 
i.e. 𝐱 represents the allocation of the spectrum slots (over all network links) to carried connections. Any 
definable state 𝐱 has to fulfil the spectrum continuity constraint which is defined as: 

 

Slot State Description 

𝑥𝑖
𝑙 = 0 The ith slot is free 

𝑥𝑖
𝑙 = 𝑗 

 

The ith slot is occupied and is the first one in an ordered sequence of 𝑏𝑗 adjacent spectrum 

slots, which are all allocated to a single class-j connection, with 𝑗 ∈ J𝑙  

𝑥𝑖
𝑙 = ∞ The slot is occupied and is not the first one in the group of adjacent spectrum slots allocated 

to the connection it belongs to  
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Figure 3.2: Example of a flex-grid optical network that serves two connection classes. 

 

If 𝑥𝑖
𝑙 = 𝑗, then 𝑥𝑖

𝑙′
= 𝑗 and 𝑥𝑖+𝑘

𝑙′
= ∞,  𝑘 = 1,2, . . , 𝑏𝑗 − 1           ,∀ 𝑙′ ∈ 𝜌: 𝑙 ∈ 𝜌, 𝜌 ∈ Γ𝑗       (3.2) 

which means that if a class-j connection seizes 𝑏𝑗 slots on a link 𝑙 in a path 𝜌 ∈ Γ𝑗, then on the remaining 

links 𝑙′ in the path, the 𝑏𝑗 slots are positioned as on link 𝑙 (i.e. tuned at the same frequency). The set of 

states 𝐱 that fulfil the contiguity and continuity constraints, i.e. Equations (3.1) and (3.2) is the network 
state-space Ω𝐱.     

Example 3.3 Assume that the network in Fig. 3.1, with 𝐶𝑙 = 6 slots, ∀ 𝑙, is in a state 𝐱 in which a 
class-9 connection is carried on the path 𝜌 = (A, B, F) ∈ Γ9. In this state, the two links in 𝜌, namely, link 
(A,B) denoted as 𝑙 = 1, and link (B,F) denoted as 𝑙 = 6, can be configured as 𝐱1 = (𝑥1

1, 𝑥2
1, 9, ∞, ∞, ∞) 

and 𝐱6 = (𝑥1
6, 𝑥2

6, 9, ∞, ∞, ∞), thereby the connection fulfils Equations (3.1) and (3.2) as it seizes slots 3-
6 in both links. The slots 𝑥1

1, 𝑥2
1 and 𝑥1

6, 𝑥2
6 can be in any state that does not violate the constraints. 

Example 3.4 Consider the network in Fig. 3.2a, with three add/drop nodes (A,B,C) and two links: link 
(A,B) denoted as 𝑙 = 1, and link (B,C) denoted as 𝑙 = 2, with capacities 𝐶1 = 6 and 𝐶2 = 6 slots. The 
network serves two classes defined by the parameters in Fig. 3.2b. Class-1 is the group of connections 
between the nodes (𝑜, 𝑑)1 = (A, C), with a bandwidth 𝑏1 = 2 provisioned on the path (A, B, C) in Γ1. A 
class-1 connection yields a reward of 𝑟1 = 2.5 (ru). Class-2 connections seize 𝑏2 = 4 slots between the 
pair of nodes (𝑜, 𝑑)2 = (B, C). These lightpaths are provisioned on the route (B, C), which is in the set Γ2. 
A class-2 connection yields a reward of 𝑟2 = 4 (ru). Links 1 and 2 serve, respectively, classes J1 = {1} 
and J2 = {1,2} . The network state is given by 𝐱 = (𝐱1, 𝐱2) , with the link states defined as 𝐱1 =
(𝑥1

1, 𝑥2
1, 𝑥3

1, 𝑥4
1, 𝑥5

1, 𝑥6
1) and 𝐱2 = (𝑥1

2, 𝑥2
2, 𝑥3

2, 𝑥4
2, 𝑥5

2, 𝑥6
2). Figure. 3.2c shows state-space Ω𝐱 of the network 

as derived from Equations (3.1) and (3.2). The space Ω𝐱 has 18 states, each one representing a feasible 
configuration of the optical spectrum in the network. (In Fig. 3.2c, each state 𝐱 is numbered as 𝐱𝑖, 𝑖 =
1,2, . . ,18.) For example, while in state 𝐱 = 𝐱17 = (0,0,0,0,1, ∞, 2, ∞, ∞, ∞, 1, ∞), which corresponds to 
the link states 𝐱1 = (0,0,0,0,1, ∞) and 𝐱2 = (2, ∞, ∞, ∞, 1, ∞), the network carries two connections: one 
of class-1 that seizes slots 5-6 on links 1 and 2, i.e. on the path (A,B,C), and a class-2 connection which 
occupies slots 1-4 on link 2, i.e. on the path (B,C). In Fig 3.2c, every carried connection fulfils the spectrum 
contiguity and continuity constraints.  

3.1.2 Definition of the Network Macrostate 

Let 𝐧𝑙 = (𝑛1
𝑙 , 𝑛2

𝑙 , … , 𝑛𝑗
𝑙 , … , 𝑛𝐽

𝑙) be the link macrostate, which is the instantaneous traffic carried on link 𝑙, 

with 𝑛𝑗
𝑙 and 𝐽 being the number of carried class-j connections and the total number of classes served by 

the network, respectively. Any definable macrostate 𝐧𝑙  has to fulfil the capacity constraint: 

∑ 𝑏𝑗 ∙ 𝑛𝑗
𝑙

𝑗∈J𝑙 ≤ C𝑙    ,∀ 𝑙                                                          (3.3) 
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Figure 3.3: Possible macrostates (carried traffics) for the network in Fig. 3.2. 

where the sum is over the classes 𝑗 which can be carried on link 𝑙. From this we have that 𝑛𝑗
𝑙 = 0, ∀ 𝑗 ∉

J𝑙. The set of macrostates that meet the capacity constraint is the macrostate-space Ω𝐧
𝑙 . Any macrostate 

𝐧𝑙  is explicitly defined by a sub-set of network states 𝐱. We denote such a sub-set as X𝐧
𝑙 , i.e. there can be 

more than one spectrum configuration 𝐱 that define the same macrostate (carried load) 𝐧𝑙 . Let us further 

define 𝐧 = 𝐧(𝐱) = (𝐧1, 𝐧2, … , 𝐧𝑙 , … , 𝐧𝐿) as the network macrostate, which represents the number of 

carried connections per class (over all network links) when the network is in state 𝐱. The set of all 

macrostates 𝐧 is the network macrostate-space Ω𝐧.     

Example 3.5 For the network in Fig. 3.2, the network macrostate is 𝐧 = (𝐧1, 𝐧2) with link macrostates 
𝐧1 = (𝑛1

1, 𝑛2
1) and 𝐧2 = (𝑛1

2, 𝑛2
2). The state-space Ω𝐱 in Fig. 3.2c defines the network macrostate-space 

Ω𝐧 = {(0,0,0,0), (1,0,1,0), (2,0,2,0), (3,0,3,0), (0,0,0,1), (1,0,1,1)}  with link macrostate-spaces given 
by Ω𝐧

1 = {(0,0), (1,0), (2,0), (3,0)} and Ω𝐧
2 = {(0,0), (1,0), (2,0), (3,0), (0,1), (1,1)}. Figure 3.3 shows 

the sets of states X𝐧
𝑙  which define each of these macrostates. For example, while in state 𝐱 = 𝐱17, the 

network is in the macrostate 𝐧 = 𝐧(𝐱17) = (1,0,1,1), where 𝐧1 = (1,0) and 𝐧2 = (1,1), i.e. the network 
carries a class-1 and a class-2 connection, where the traffic load is distributed between the links as defined 
in 𝐧1 and 𝐧2. However, as seen in Fig 3.3, the link macrostate 𝐧1 = (1,0) is also observable when the 

network is in any state 𝐱 ∈ X(1,0)
1 = {𝐱2, 𝐱3, 𝐱4, 𝐱5, 𝐱6, 𝐱17, 𝐱18}, whereas 𝐧2 = (1,1) when the state is 

𝐱 ∈ X(1,1)
2 = {𝐱17, 𝐱18}  and 𝐧 = (1,0,1,1)  when 𝐱 ∈ {𝐱17, 𝐱18} . This evinces the fact that different 

spectrum configurations 𝐱  may yield the same macrostates. 
In summary, an optical network serving 𝐽 connections classes, with class-j defined by the parameters 

(𝑜, 𝑑)𝑗, 𝜆𝑗, µ𝑗
−1, 𝑏𝑗, Γ𝑗, and 𝑟𝑗, can be represented by the states 𝐱 ∈ Ω𝐱, where 𝐱 is a valid configuration of 

the optical spectrum in the network. Each 𝐱 in Ω𝐱 fulfils the continuity and contiguity constrains, and 
defines a carried load 𝐧 = 𝐧(𝐱). In what follows we use this stochastic network model to study online 
resource allocation as a reward maximization problem. 

3.2. Policy-based Online Resource Allocation  

Dynamic optical networks allow class-j connections to be requested between a pair of nodes (𝑜, 𝑑)𝑗 on 

demand. For that, flex-grid WDM, directionless/colorless ROADMs and tunable transponders are used. 

Blocking of a class-j connection request occurs either if transponders are unavailable in the shared pools 

at the source and destination ROADMs, or if a suitable lightpath cannot be found within the network. 

Low transponder-related blocking probabilities (e.g. less than 10−4) can easily be achieved by a proper 

dimensioning of the transponder pools; see for example the method in [SCG+12, SW10]. On the other 

hand, to reduce the blocking probability due to the unavailability of lightpaths in the network, a suitable 

method for online resource allocation is needed. We refer to online resource allocation as the mechanism 

whereby the network assigns, on demand, spectrum resources to connections (besides link spectrum slots,  
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Figure 3.4: Example of two possible resource allocation policies for the network in Fig. 3.2. 

Figure 3.5: Resource allocation for class-1 and class-2 arrivals when two distinct policies are used. 

this includes transponders and ROADM resources as well). Such a mechanism is a decision making 

process whereby for every connection request, a decision is provided on admission, routing and spectrum 

assignment. The decision depends on two factors, namely, the class of the connection request and the 

network state at the time of the connection arrival. Based on this, let Π be a resource allocation policy 

that instructs the network the course of action to take when a class-j connection request arrives in network 

state 𝐱. We can thus visualize a policy Π as a two-dimensional matrix. The number of rows and columns 

equals the size of the network state-space Ω𝐱 and the total number 𝐽 of connection classes, respectively. 

A matrix entry represents a decision. Upon arrival of a connection request, the network retrieves from 

the matrix the entry that matches the current network state (row) and the connection class (column). That 

entry indicates whether to accept the request or not. In case of acceptance, the entry further specifies the 

configuration of the lightpath allocated to the connection (i.e. the route and the spectrum slots that make 

up the optical channel). Thus, any definable policy Π determines how to handle connection requests.  
Example 3.6 In Fig. 3.4, two possible policies Π are shown for the network in Fig. 3.2. Each policy 

consists of 36 decisions (18 per connection class). A policy decision Π(𝐱, 𝑗) tells the network what to do 
if a class-j connection request arrives in state 𝐱. For these two policies, consider the example in Fig 3.5. 
Assume that in state 𝐱 = 𝐱2 a class-1 arrival occurs. If policy Π1 is used, then the matrix entry Π1(𝐱2, 1) 
in Fig. 3.4 instructs the network to admit the connection, to establish it on the path 𝜌 = (A, B, C) ∈ Γ1, 
with an optical channel defined by the slots 3-4 (i.e. on links A-B and B-C these slots are allocated to the 
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connection). As a result of this decision, the state transition 𝐱2 → 𝐱7 occurs. On the contrary, if policy Π2 
is used to allocate resources, then the connection is admitted on the same path, but using on both links the 
slots 4-5. In this case, the state transition 𝐱2 → 𝐱8 occurs. Moreover, with Π1, if a class-2 arrival occurs in 
network state 𝐱 = 𝐱2, the connection seizes slots 3-6 in the path (B, C), thus eliciting a transition 𝐱2 →
𝐱18. With Π2 this request is rejected and thus, there is no state transition (see Fig. 3.5). 

3.2.1 Properties of a Resource Allocation Policy 
In an operational network two kinds of events may cause a state transition (i.e. a change on the spectrum 

configuration 𝐱), these are: the departure of a carried connection or the admission of a connection request. 

In the former event resources are released, whereas in the latter, resources are provisioned in accordance 

with a decision made by a policy Π. Regardless of the policy used by the network, we consider the case 

in which all decisions Π(𝐱, 𝑗) in a policy Π have the following properties: 

 

1. Every decision Π(𝐱, 𝑗) is time-independent and deterministic, i.e. given a class-j arrival in state 

𝐱, the decision Π(𝐱, 𝑗) is always the same and does not depend on the time instant at which the 

arrival occurs. 

 

2. Every decision Π(𝐱, 𝑗) which grants admission to a class-j request arriving in state 𝐱, causes a 

state transition 𝐱 → 𝐲 such that 𝐲 ∈ Ω𝐱. Therefore, any decision that grants admission has to 

produce a new spectrum configuration 𝐲 which meets the contiguity, continuity and capacity 

constraints, i.e. Equations (3.1)-(3.3). 

 

3. There can be policy decisions Π(𝐱, 𝑗) that deny admission despite the availability of resources 

to provision a lightpath for a connection request. 

 

Any definable policy Π has 𝐽 × |Ω𝐱| decisions that fulfil the aforementioned properties, where |Ω𝐱| is the 

cardinality of the network state-space. Once a network selects a policy Π to allocate resources, all future 

state transitions due to incoming requests are given by the decisions defined in the policy matrix Π. Those 

decisions determine the network performance.  
 Example 3.7 For the two policies in Fig. 3.4, their decisions produce state transitions 𝐱 → 𝐲 for which 

𝐲 ∈ Ω𝐱. On the other hand, for class-2 requests, there is a remarkable difference between both policies. As 
seen in Fig. 3.2, these requests could be admitted when they arrive in states 𝐱1, 𝐱2 or 𝐱6 (as in those states 
lightpaths can be found without violating the spectrum constraints), however, unlike Π1, policy Π2 only 
admits class-2 requests when they arrive in state 𝐱 = 𝐱1. This illustrates that policies can be defined that 
deny admission despite the availability of resources in the network.  

3.2.2 Policy Calculation as a Decision Making Process 
So far we have assumed that a network uses a policy Π to perform resource allocation. Yet an important 

issue remains to be clarified: the mechanism by which the policy Π is calculated and selected from the 

set of definable policies. By policy calculation we refer to the definition of all decisions Π(𝐱, 𝑗) that make 

up the policy matrix Π. The solution to this problem depends on the performance objective fixed by the 

network operator (e.g. minimization of total blocking probability, maximization of carried traffic or 

economic revenue). Given an objective, policy Π is then the resource allocation strategy that yields the 

best network performance. We can think of the calculation of that policy as a decision making process 

whereby for each pair (𝐱, 𝑗) an optimum decision Π(𝐱, 𝑗) is determined. The reason is that, for a class-j 

request arriving in state 𝐱, different courses of action can be available in the network. To evaluate and 

select one of those possibilities, online RSA and CAC algorithms are needed. The goal of RSA is to 

define all possible decisions (i.e. courses of action) available for a class-j request in state 𝐱. With this, 

admission control selects the optimum decision Π(𝐱, 𝑗). Thus, for a class-j request arriving in state 𝐱, the 

optimum decision is calculated as follows: 

 

1. An RSA algorithm calculates the set of candidate lightpaths available on all routes 𝜌 ∈ Γ𝑗. Each 

lightpath is a potential decision which, if selected, elicits a transition 𝐱 → 𝐲 such that 𝐲 ∈ Ω𝐱. If 

no candidate lightpaths are found, then resources are not available and the decision is made to 

reject the connection request (i.e. Π(𝐱, 𝑗) → Do not admit). 
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Figure 3.6: Possible decisions for a class-1 request arriving in state x2. 

Figure 3.7: Possible decisions when either a class-1 or a class-2 arrival occurs in state x6. 

2. Given the set of candidate lightpaths, admission control decides whether to accept or reject the 

connection. To make this decision, admission decision rules are used that aim at optimizing the 

network performance (based on the optimization objective). If the connection is accepted, then 

a candidate lightpath is selected. (Note that despite the availability of resources a possible course 

of action is to not accept the connection request.) The resulting decision is Π(𝐱, 𝑗).  

 

The policy calculation approach evinces that the optimization objective is attainable through the rules 

that make decisions. The definition of these rules will be discussed in Chapter 4. 
Example 3.8 For the network in Fig. 3.2, consider a class-1 arrival in state 𝐱2. The decision making 

process must select an optimum decision from the four possibilities shown in Fig. 3.6. The first three 
correspond to the candidate lightpaths calculated by solving the RSA problem (all of them are routed on 
the path 𝜌 = (A, B, C) ∈ Γ1); the last possibility is connection rejection. In Fig. 3.6, it is depicted the state 
transition that each decision would trigger, if selected. The optimization objective defines which option is 
the optimum. 

Example 3.9 The possible decisions available for a class-j request arriving in state 𝐱 can be represented 
by a state-transition diagram in which every transition defines a decision.  For the network in Fig. 3.2, the 
diagram in Fig. 3.7 depicts all possible decisions when either a class-1 or a class-2 request arrives in state 
𝐱6. Class-1 and class-2 have four and two courses of action, respectively (represented by the arrows in the 
diagram). For both classes the decision “reject connection” (depicted by the arrows connecting the current 
to the succeeding state 𝐱6, i.e. no state transition) is a possibility, as having resources available need not 
imply that the selection of a lightpath yields optimum performance. The succeeding states which are 
reachable when a request is accepted implicitly define a lightpath. To illustrate this, consider the transition 
𝐱6 → 𝐱11, which occurs when a class-1 request arrives in 𝐱6. In this case, the connection seizes slots 2-3 
on the path (A, B, C), and thus, the network undergoes a transition from  𝐱6 = (0,0,0,0,1, ∞, 0,0,0,0,1, ∞) 
to 𝐱11 = (0,1, ∞, 0,1, ∞, 0,1, ∞, 0,1, ∞). 

For a given performance objective, an ideal approach to calculating the optimum policy is to determine 
all its decisions before the network gets operational and store them in memory. However, in real networks, 
this approach is not appropriate as the policy decisions cannot adapt to changes in the parameters (𝑜, 𝑑)

𝑗
, 

𝜆𝑗, µ𝑗
−1, 𝑏𝑗, Γ𝑗, and 𝑟𝑗. Thus, to make the policy calculation adaptable, we consider an approach in which 

all policy decisions are calculated during network operation, with the optimization objective defined as 
the rate at which the network earns reward from carried connections. 

3.3. Network Reward Maximization Problem  

In this section we outline a reward-based approach to online resource allocation which aims maximizing 

the average reward carried by the network. For that, let us consider the case in which online resource 

allocation is performed in the network via a policy Π. The class-j blocking probability 𝐵𝑗  depends on the 

decisions defined in the policy. Therefore, if class-j offers to the network a traffic load of 𝐴𝑗 Erlangs, the 

policy dependent blocking 𝐵𝑗  yields a carried traffic of 𝐴𝑐𝑗 = 𝐴𝑗 ∙ (1 − 𝐵𝑗) Erlangs. The reward earned 

by the network stems from this carried traffic. To illustrate this, consider a class-j connection that gets 

admission. During its holding time µ𝑗
−1, it yields a reward of 𝑟𝑗 (ru), which means that from a carried 

 

 



Reward-based Resource Allocation in Dynamic Optical Networks 25 

 

class-j connection the network earns reward at a mean rate of 𝑟𝑗 µ𝑗
−1⁄ = 𝑟𝑗 ∙ 𝜇𝑗 reward units per unit of 

time (ru/uot). Since a carried traffic load of 𝐴𝑐𝑗 Erlangs means that on average 𝐴𝑐𝑗 class-j connections 

are carried simultaneously, then class-j brings reward at a rate of 𝑟𝑗 ∙ µ𝑗 ∙ 𝐴𝑐𝑗 (ru/uot). Thus, a network 

that serves 𝐽 classes earns reward at a mean rate 𝑅 given by: 

𝑅 = ∑ 𝑟𝑗 ∙ µ𝑗 ∙ 𝐴𝑐𝑗
𝐽
𝑗=1 = ∑ 𝑟𝑗 ∙ 𝜆𝑗 ∙ (1 − 𝐵𝑗)𝐽

𝑗=1                                         (3.4) 

Besides the policy Π and the link capacities 𝐶𝑙, the network reward rate 𝑅 depends on the parameters 𝜆𝑗, 

µ𝑗
−1, 𝑏𝑗, 𝑟𝑗 and Γ𝑗. (This dependence is further justified by the fact that, in addition to Π, the blocking 

probabilities 𝐵𝑗  depend on the capacities 𝐶𝑙 and on all the parameters defining the connection classes.) 

In an operational network, those parameters and the link capacities C𝑙 are known. With that, we have that 

𝑅 = 𝑅(Π). In particular, 𝜆𝑗 and µ𝑗
−1 stem from the statistical properties of class-j traffic, and thus, they 

can be estimated from online measurements. Moreover, 𝑏𝑗, 𝑟𝑗 and Γ𝑗 are defined by, and therefore known 

to, the network operator. Based on this knowledge, the online resource allocation problem is formulated 

as follows. Given a dynamic optical network serving 𝐽 classes defined by the parameters (𝑜, 𝑑)𝑗, 𝜆𝑗, µ𝑗
−1, 

𝑏𝑗, Γ𝑗, and 𝑟𝑗, calculate the policy Π which maximizes the network reward rate: 

𝑅∗ = max 
Π

𝑅(Π)                                                                 (3.5) 

The problem is formulated as an online optimization problem as the decisions Π(𝐱, 𝑗) that make up the 

policy matrix Π are calculated during network operation.  

3.3.1 Definition of Optimization Objectives 
Research on resource allocation for dynamic optical networks has primarily focused on the design of 

online RSA algorithms. In [TAK+14], a complete survey is presented on exisiting online RSA methods. 

The approaches therein surveyed, e.g. [WWH+11], [CVR+12], are limited in the sense that they solely 

aim at minimizing the overall blocking probability. This limitation is overcome by tackling resource 

allocation as reward-based problem. The advantage of this approach is that the reward parameters 𝑟𝑗 can 

be tuned to optimize an objective arbitrarily defined by the network operator. Furthermore, it allows GoS 

control for individual connection classes. 

If the reward parameters are defined as 𝑟𝑗 = 1, ∀ 𝑗, the network reward rate 𝑅 is interpreted as the rate 

at which the network accepts connections. (In this case 𝑅 is expressed in connections per time unit.) Thus, 
by maximizing 𝑅, the policy is found that minimizes the overall blocking. The objective function is:  

𝑅(Π) = ∑ 𝜆𝑗 ∙ (1 − 𝐵𝑗)𝐽
𝑗=1                                                                (3.6) 

Alternatively, If the reward parameters are defined as 𝑟𝑗 = 𝑏𝑗/µ𝑗, the reward rate 𝑅 represents the overall 

throughput. In this case the objective is: 

𝑅(Π) = ∑ 𝑏𝑗 ∙ 𝐴𝑐𝑗
𝐽
𝑗=1                                                                      (3.7) 

where the product 𝑏𝑗 ∙ 𝐴𝑐𝑗 denotes the mean number of spectrum slots seized by class-j traffic, i.e. the 

average class-j throughput. Another interesting case is revenue maximization. In a telecom market with 

a high degree of competition, the optimum price of a connection is that which is proportional to its 

bandwidth [CW03]. Thus, the network operator can set the price for a class-j connection as 𝑟𝑗 = 𝛼𝑗 ∙ 𝑏𝑗, 

where 𝛼𝑗 is a proportionality constant. Economic revenue is then maximized by defining the objective: 

𝑅(Π) = ∑ 𝛼𝑗 ∙ 𝑏𝑗 ∙ 𝜆𝑗 ∙ (1 − 𝐵𝑗)𝐽
𝑗=1                                                  (3.8) 

If 𝛼𝑗 = 1/µ𝑗, it is verified that Equation (3.7) is a special case of Equation (3.8). The aforementioned 

objective functions point out the flexibility of a reward-based approach.  In general, the objective function 

defined by Equation (3.4) can be tailored to different optimization objectives. 
Reward-based approaches have been proposed in the literature to tackle the routing problem for 

telephone and multiservice packet-switched networks. Relevant algorithms and performance evaluation 
results are expounded in [DPKW88, DM89, Kri91, DM92, Hwa93, DM94, Dzi97, HKT00, Nor02]. These 
approaches are not applicable to solve routing in dynamic optical networks as they do not consider the 
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spectrum continuity and contiguity constraints. In our approach, we include these constraints and apply 
the reward concept to calculate policies that solve Equation (3.5). The constraints are enforced by the 
definition of state-dependent policies which provide decisions Π(𝐱, 𝑗)  that cause state transitions 𝐱 → 𝐲 
such that 𝐲 ∈ Ω𝐱. To solve this optimization problem, we study the case in which the network exhibits the 
properties of a Markov stochastic process, thereby the theory of Markov decision processes [How60] is 
applied to calculate the policy that solves Equation (3.5). 

3.3.2 State-Dependent Network Reward Rate 
Let {𝐗𝑡

π, 𝑡 ≥ 0} be a continuous-time stochastic process that models the time evolution of the network 

state when a policy Π is used. Each random variable 𝐗𝑡
π takes its values from the state-space Ω𝐱 and 

thereby, 𝐗𝑡
π is the network state at time 𝑡 ∈ [0, ∞). Consider the case where class-j connections arrive at 

a rate 𝜆𝑗 following a Poisson process, and have negative exponentially distributed holding times with 

mean µ𝑗
−1. Thus, the stochastic process {𝐗𝑡

π, 𝑡 ≥ 0} is Markovian as for all 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝑡𝑛+1, 

and 𝐱0, 𝐱1, … , 𝐱𝑛, 𝐱𝑛+1 ∈ Ω𝐱, it satisfies:  

𝑃{𝐗𝑡𝑛+1
π = 𝐱𝑛+1|𝐗𝑡𝑛

π = 𝐱𝑛, 𝐗𝑡𝑛−1
π = 𝐱𝑛−1, … , 𝐗𝑡0

π = 𝐱0} = 𝑃{𝐗𝑡𝑛+1
π = 𝐱𝑛+1|𝐗𝑡𝑛

π = 𝐱𝑛}      (3.9)  

i.e. the probability of observing the network in state 𝐱𝑛+1 at time 𝑡𝑛+1 depends only on the present state 

𝐱𝑛 at time 𝑡𝑛. For this process, the sojourn time in state 𝐱 is a random variable exponentially distributed 

since the interarrival and holding times have the same distribution type. Therefore, due to the memoryless 

property of the exponential distribution, the sojourn time in state 𝐱 is independent from the states visited 

before entering the state 𝐱. We denote the mean sojourn time in state 𝐱 as 𝜏𝐱. 
Let us define 𝑃𝐱𝐲(Π) ≥ 0 as the probability that the process {𝐗𝑡

π, 𝑡 ≥ 0} moves from state 𝐱 to state 𝐲, 

with 𝐱, 𝐲 ∈ Ω𝐱, and 𝐱 ≠ 𝐲. These transition probabilities fulfil the condition: 

∑ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱 = 1      , ∀ 𝐱 ∈ Ω𝐱                                                 (3.10) 

Note that 𝑃𝐱𝐲(Π) is policy-dependent since in the case of transitions caused by admissions, the network 

moves to states 𝐲 defined by Π. When a transition 𝐱 → 𝐲 occurs, the network earns 𝑟𝐱𝐲(ru), the actual value 

of this reward depends on the type of transition. For instance, a transition that results from the admission 
of a class-j request arriving in state 𝐱, has a reward 𝑟𝐱𝐲 = 𝑟𝑗.   

To calculate the reward rate 𝑅 = 𝑅(Π), consider a network using a policy Π which at an arbitrary time 

𝑡0  is in state 𝐗𝑡0
π = 𝐱.  Let 𝑉(𝐱, Π, 𝑛), 𝑛 ∈ ℤ+ , be the average reward earned by the network after 𝑛 

subsequent transitions from state 𝐱 (each transition is caused either by a connection arrival or departure). 
To estimate 𝑉(𝐱, Π, 𝑛), consider the probabilistic trees in Fig. 3.8, where, for a given 𝑛, a tree depicts all 
possible state transitions starting from state 𝐱. In a tree, each node is a state in Ω𝐱, and the root node is the 
state 𝐱 at 𝑡0. A tree branch (or edge) depicts a transition between the two states it interconnects. A leaf in 
a tree represents a destination state reachable after 𝑛 transitions, and the leaf is connected to the root node 
by a path made up of a sequence of branches. The sum of the rewards from the branches in a path is the 
reward earned when the network follows the state transitions that define the path. Thus, 𝑉(𝐱, Π, 𝑛) is an 
average calculated over all the rewards from the paths that connect the root to the leaf states (i.e. to the 
possible destination states after 𝑛 transitions). To illustrate this better, consider the tree for 𝑛 = 1. This 
tree has |Ω𝐱| leaves, each one connected to the root node 𝐱 by a path with a single branch. The path 𝐱 → 𝐲 
is the one-step transition between states 𝐱 and 𝐲. This event occurs with a probability 𝑃𝐱𝐲(Π), and when it 

does, a reward  𝑟𝐱𝐲 is earned. Thus, if the network is in state 𝐱 at 𝑡0, the expected reward in one transition 

is: 

𝑉(𝐱, Π, 1) = ∑ 𝑟𝐱𝐲 ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱       , ∀ 𝐱 ∈ Ω𝐱                                       (3.11) 

which is a weighted average calculated over all rewards 𝑟𝐱𝐲. For 𝑛 = 2, we have that in the first transition 

the network may move from state 𝐱 to a state 𝐲 with a probability 𝑃𝐱𝐲(Π). If this event occurs, a reward  

𝑟𝐱𝐲 is earned, and the network is then set in state 𝐲. In the second transition, the reward contributions is 

that obtained when the network follows a one-step transition from state 𝐲, namely 𝑉(𝐲, Π, 1). Therefore, 
for 𝑛 = 2, if in the first move the transition 𝐱 → 𝐲 occurs, then a reward 𝑟𝐱𝐲 + 𝑉(𝐲, Π, 1) is expected at 

the end of the second move. This reward is earned with probability 𝑃𝐱𝐲(Π). Then, in two transitions, the 

reward is the weighted average over all transitions 𝐱 → 𝐲 which may occur in the first move (see Fig. 3.8): 

𝑉(𝐱, Π, 2) = ∑ [𝑟𝐱𝐲 + 𝑉(𝐲, Π, 1)] ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱       , ∀ 𝐱 ∈ Ω𝐱                          (3.12) 
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Figure 3.8: Probabilistic trees to calculate the rewards V(x,Π,n). 
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Similarly, for 𝑛 = 3 we have: 

𝑉(𝐱, Π, 3) = ∑ [𝑟𝐱𝐲 + 𝑉(𝐲, Π, 2)] ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱       , ∀ 𝐱 ∈ Ω𝐱                       (3.13) 

i.e. if the first transition is 𝐱 → 𝐲, then in three moves a mean reward 𝑟𝐱𝐲 + 𝑉(𝐲, Π, 2) is expected, where 

𝑟𝐱𝐲 (ru) comes from the first transition (which sets the network in state 𝐲), and 𝑉(𝐲, Π, 2) (ru) are earned 

through the remaining two moves starting in state 𝐲. By recursively applying Equations (3.11)-(3.13), if 

the network is in state 𝐱 at 𝑡0, then at time 𝑡 ≫ 𝑡0, after 𝑛 transitions, the expected earned reward is: 

𝑉(𝐱, Π, 𝑛) = ∑ [𝑟𝐱𝐲 + 𝑉(𝐲, Π, 𝑛 − 1)] ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱       , ∀ 𝐱 ∈ Ω𝐗                    (3.14) 

which is a form of the Bellman’s recurrence relation for dynamic programming shown in [Bel57, How60]. 

A caveat needs to be pointed out about Equation (3.14): it has been derived by intuitively using the 

concept of state transition. However, it must be clarified that each of the 𝑛 transitions occurs at instants 

of time which in general are not deterministic, i.e. they are random, unknown. The reason is that the 

process {𝐗𝑡
π, 𝑡 ≥ 0} is continuous-time. The implications of this are considered in the definition of the 

transition probabilities 𝑃𝐱𝐲(Π).  

If in 𝑛 transitions a reward 𝑉(𝐱, Π, n) is earned, the average reward per transition is therefore given by 
𝑉(𝐱, Π, n)/𝑛. As the number of transitions becomes very large, so that the network attains statistical 
equilibrium, the average reward earned per transition approaches a steady-state value 𝑔(Π) defined as: 

𝑙𝑖𝑚
𝑛→∞

𝑉(𝐱,Π,𝑛)

𝑛
= 𝑔(Π)                                                        (3.15) 

which fulfils: 

𝑔(Π) ≤ 𝑚𝑎𝑥
𝐱,𝐲

𝑟𝐱𝐲                                                                       (3.16) 

which follows from the fact that in one transition, the maximum actual reward is that obtained from the 
transition 𝐱 → 𝐲 with the highest value 𝑟𝐱𝐲. In [How60] it is proved that, for large 𝑛 (and therefore, for 

𝑡 ≫ 𝑡0) a recurrence relation like Equation (3.14) can be approximated by the linear equation: 

𝑉(𝐱, Π, 𝑛) = 𝑔(Π) ∙ 𝑛 + 𝑣(𝐱, Π)    , ∀ 𝐱 ∈ Ω𝐱                                       (3.17) 

The product 𝑔(Π) ∙ 𝑛 is interpreted as the steady-state reward earned over 𝑛 transitions (this reward is 

obtained when 𝑛 is very large, where per move, 𝑔(Π) (ru) are earned). The term 𝑣(𝐱, Π) is the transient 

reward earned by having set the network in state 𝐱 at 𝑡0. Equation (3.17) states that the network state 𝐱 

at 𝑡0 determines the total reward earned at 𝑡 ≫ 𝑡0 (i.e. after 𝑛 transitions). Thus, different states 𝐱 may 

lead to different rewards 𝑉(𝐱, Π, 𝑛). For each 𝐱 ∈ Ω𝐱, Equation (3.17) describes a straight line with slope 

𝑔(Π) and intercept 𝑣(𝐱, Π). By plotting the lines describable by all states in Ω𝐱, as depicted in Fig. 3.9, 

we obtain a family of parallel lines, which means that regardless of the state 𝐱 at 𝑡0, the network always 

earns reward at the same mean rate 𝑔(Π) per transition. For 𝑡 ≫ 𝑡0, the reward 𝑉(𝐱, Π, 𝑛) only differs 

from other states in the transient value 𝑣(𝐱, Π). Therefore, any pair of states 𝐱 and 𝐲 can be compared by 

calculating from Equation (3.17) the difference: 

𝑉(𝐲, Π, 𝑛) − 𝑉(𝐱, Π, 𝑛) = 𝑣(𝐲, Π) − 𝑣(𝐱, Π)                                       (3.18) 

which is interpreted as: if the network is in state 𝐱 at 𝑡0, a reward 𝑉(𝐱, Π, 𝑛) would be earned at 𝑡 ≫ 𝑡0. 
But, if the network had been in state 𝐲 at 𝑡0 instead, the reward 𝑉(𝐲, Π, 𝑛) at 𝑡 ≫ 𝑡0 is expected to differ 
in 𝑣(𝐲, Π) − 𝑣(𝐱, Π) (ru) with respect to 𝑉(𝐱, Π, 𝑛). The striking property of this result, as shown by the 
right hand side of Equation (3.18), is that the reward difference for 𝑡 ≫ 𝑡0 is independent of 𝑛. This 
evinces that, for a given policy Π, there can be states more valuable than others. For example, in Fig. 3.9, 
we have that 𝑣(𝐳, Π) > 𝑣(𝐲, Π) > 𝑣(𝐱, Π). As a result of this, if at 𝑡0 the network is in state 𝐳, at 𝑡 ≫ 𝑡0, 
the reward 𝑉(𝐳, Π, 𝑛) is higher than that obtained if the network had been in state 𝐲 or 𝐱 at 𝑡0. This implies 
that 𝑉(𝐳, Π, 𝑛) > 𝑉(𝐲, Π, 𝑛) > 𝑉(𝐱, Π, 𝑛).  

From Equation (3.17), the reward 𝑉(𝐱, Π, 𝑛 − 1) obtained in 𝑛 − 1 transitions is:  

𝑉(𝐱, Π, 𝑛 − 1) = 𝑔(Π) ∙ (𝑛 − 1) + 𝑣(𝐱, Π)    , ∀ 𝐱 ∈ Ω𝐱                             (3.19) 



Reward-based Resource Allocation in Dynamic Optical Networks 29 

 

Figure 3.9: Expected reward V(x,Π,n) earned by a network until time t >> t0 after n state transitions. 

By plugging Equations (3.17) and (3.19) into Equation (3.14) we have that 𝑉(𝐱, Π, 𝑛) is: 

𝑔(Π) ∙ 𝑛 + 𝑣(𝐱, Π) = ∑ [𝑟𝐱𝐲 + 𝑔(Π) ∙ (𝑛 − 1) + 𝑣(𝐲, Π)] ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱    , ∀ 𝐱 ∈ Ω𝐱          (3.20) 

which equals to: 

𝑔(Π) ∙ 𝑛 + 𝑣(𝐱, Π) = ∑ [𝑟𝐱𝐲 + 𝑣(𝐲, Π)] ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱 + 𝑔(Π) ∙ (𝑛 − 1) ∙ ∑ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱 , ∀ 𝐱 ∈ Ω𝐱  (3.21)  

Since ∑ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱 = 1, from Equation (3.21), the reward 𝑔(Π) is given by:  

𝑔(Π) = ∑ 𝑟𝐱𝐲 ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱 + ∑ 𝑣(𝐲, Π) ∙ 𝑃𝐱𝐲(Π)𝐲:𝐲≠𝐱 − 𝑣(𝐱, Π)      , ∀ 𝐱 ∈ Ω𝐱               (3.22) 

The probabilities 𝑃𝐱𝐲(Π) are defined by the transition matrix 𝐐(Π) = [𝑞𝐱𝐲(Π)] of the continuous-time 

Markov process {𝐗𝑡
π, 𝑡 ≥ 0}, where 𝑞𝐱𝐲(Π) ≥ 0, 𝐱 ≠ 𝐲, is the rate at which the network moves from state 

𝐱 to state 𝐲. The diagonal elements 𝑞𝐱𝐱(Π) are given by [Kel11, KY14, Nor97]: 

𝜏𝐱
−1 = −𝑞𝐱𝐱(Π) = ∑ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱         , ∀ 𝐱 ∈ Ω𝐱                                    (3.23) 

which means that the inverse of the sojourn time in state 𝐱, i.e. 𝜏𝐱
−1, is the rate at which the network 

moves from 𝐱 to another state in Ω𝐱. The transition probabilities 𝑃𝐱𝐲(Π) are defined as [KY14, Nor97]: 

𝑃𝐱𝐲(Π) = 𝑞𝐱𝐲(𝛱) ∙ 𝜏𝐱                                                               (3.24) 

From this, Equation (3.22) is expressed as:    

𝑔(Π) = 𝜏𝐱 ∙ ∑ 𝑟𝐱𝐲 ∙ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱 + 𝜏𝐱 ∙ ∑ 𝑣(𝐲, Π) ∙ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱 − 𝑣(𝐱, Π)      , ∀ 𝐱 ∈ Ω𝐱        (3.25) 

by dividing Equation (3.25) by 𝜏𝐱:  

𝑔(Π)

𝜏𝐱
= ∑ 𝑟𝐱𝐲 ∙ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱 + ∑ 𝑣(𝐲, Π) ∙ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱 −

𝑣(𝐱,Π)

𝜏𝐱
      , ∀ 𝐱 ∈ Ω𝐱                  (3.26)    

Observe that by using Equation (3.23) we have that 𝑣(𝐱, Π)/𝜏𝐱 = ∑ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱 ∙ 𝑣(𝐱, Π), and therefore: 

𝑔(Π)

𝜏𝐱
= ∑ 𝑟𝐱𝐲 ∙ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱 + ∑ [𝑣(𝐲, Π) − 𝑣(𝐱, Π)] ∙ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱       , ∀ 𝐱 ∈ Ω𝐱              (3.27) 

Notice that the ratio 𝑔(Π)/𝜏𝐱 is the average reward earned by the network per unit of time, which is the 

network reward rate 𝑅(Π). To further simplify Equation (3.27), let us analyse the transition rates 𝑞𝐱𝐲(Π) 

for a network in state 𝐱. Recall that while in this state, the network moves to a state 𝐲 ∈ Ω𝐱, if and only 

if either an arrival or departure occurs. Based on this, in Equation (3.27) the rates 𝑞𝐱𝐲(Π) are defined as: 

 



Reward-based Resource Allocation in Dynamic Optical Networks 30 

 

 

𝑞𝐱𝐲(Π) = {

𝜆𝑗(𝐱, Π),     if 𝐱 → 𝐲 is caused by a class𝑗 arrival accepted by policy Π 

𝜇𝑗 ,               if 𝐱 → 𝐲 is caused by a class𝑗 departure                                   

0,                 if the transition 𝐱 → 𝐲 is not feasible                                        

    (3.28) 

Thus, for class-j connections accepted by policy Π in state 𝐱, we have that 𝑞𝐱𝐲(Π) = 𝜆𝑗(𝐱, Π) (con/uot), 

i.e. 𝑞𝐱𝐲(Π) is the mean number of class-j request arrivals per unit of time when the network is in state 𝐱. 

For class-j departures, we have that 𝑞𝐱𝐲(Π) = 𝜇𝑗 (con/uot), i.e. 𝑞𝐱𝐲(Π) is the mean rate at which a class-

j connection is terminated in state 𝐱. Furthermore, we have 𝑞𝐱𝐲(Π) = 0, for all transitions 𝐱 → 𝐲 which 

either violate the contiguity/continuity constraints or represent moves not allowed by Π. Let Γ𝐱
𝑗+

 and Γ𝐱
𝑗−

 

be the sets of network states which are reachable due to class-j connection admissions and departures in 

state 𝐱, respectively. Based on these definitions, Equation (3.27) is expressed as: 

𝑅(Π) = 𝑞(𝐱) + ∑ ∑ 𝜆𝑗(𝐱, Π) ∙ [𝑣(𝐲, Π) − 𝑣(𝐱, Π)]
𝐲∈Γ𝐱

𝑗+ +𝐽
𝑗=1   

 

 ∑ ∑ 𝜇𝑗 ∙ [𝑣(𝐲, Π) − 𝑣(𝐱, Π)]
𝐲∈Γ𝐱

𝑗−
𝐽
𝑗=1               , 𝐱 ∈ Ω𝐱          (3.29a) 

with:                    

𝑞(𝐱) = ∑ 𝑟𝐱𝐲 ∙ 𝑞𝐱𝐲(Π)𝐲:𝐲≠𝐱 = ∑ 𝑟𝑗 ∙ 𝜇𝑗(𝐱)𝐽
𝑗=1                                    (3.29b) 

which is the rate at which the network yields reward in state 𝐱, with 𝜇𝑗(𝐱) being the termination rate of 

carried class-j connections in that state. It is calculated as: 

𝜇𝑗(𝐱) = 𝜇𝑗 ∙ 𝑛𝑗(𝐱)                                                        (3.29c) 

where n𝑗(𝐱) ≥ 0 is the number of class-j connections carried in state 𝐱. The first double summation in 

Equation (3.29a) is the network reward rate due to connection arrivals, whereas the second summation 

is the network reward rate due to departures. Having defined 𝑅(Π) as a function of 𝐱, Equations (3.17) 

and (3.18) can respectively be re-written as: 

𝑉(𝐱, Π, 𝑡) = 𝑅(Π) ∙ 𝑡 + 𝑣(𝐱, Π)    , ∀ 𝐱 ∈ Ω𝐱                                      (3.29d) 

𝑉(𝐲, Π, 𝑡) − 𝑉(𝐱, Π, 𝑡) = 𝑣(𝐲, Π) − 𝑣(𝐱, Π)                                       (3.29e) 

with 𝑉(𝐱, Π, 𝑡) being the reward expected at 𝑡 ≫ 𝑡0, if the network were in state 𝐱 at 𝑡0. As with Equation 

(3.17), Equation (3.29d) states that in steady state, the network earns reward at a rate 𝑅(Π) regardless of 

the state 𝐱. Likewise, Equation (3.29e) shows that the difference 𝑉(𝐲, Π, 𝑡) − 𝑉(𝐱, Π, 𝑡) is independent 

of 𝑡, and thus, it has the same interpretation given for Equation (3.18).   
Example 3.10 Consider the network in Fig. 3.2 in state 𝐱 = 𝐱8 = (1, ∞, 0,1, ∞, 0,1, ∞, 0,1, ∞, 0). The 

network uses the policy Π1 defined in Fig. 3.4. In this state neither class-1 nor class-2 arrivals are admitted, 
as resources are not available. Thus, Γ𝐱8

1+ = {𝜙}, Γ𝐱8
2+ = {𝜙} which implies 𝜆1(𝐱8, Π1) = 𝜆2(𝐱8, Π1) = 0. 

In state 𝐱8 the network is carrying two connections of class-1, the termination of either of them causes a 
state transition. These two transitions are defined as: 𝐱8 → 𝐱2 = (1, ∞, 0,0,0,0,1, ∞, 0,0,0,0) and 𝐱8 →
𝐱5 = (0,0,0,1, ∞, 0,0,0,0,1, ∞, 0) . Hence for class-1 departures Γ𝐱8

1− = {𝐱2, 𝐱5} , whereas for class-2, 

Γ𝐱8
2− = {𝜙}, as class-2 traffic is not being carried. In state 𝐱8, the network yields reward at a rate 𝑞(𝐱8) =

∑ 𝑟𝑗 ∙ 𝜇𝑗(𝐱8) =2
𝑗=1 𝑟1 ∙ 2 ∙ 𝜇1  (ru/uot). Moreover, the first double sum in Equation (3.29a) is given by 

∑ 𝜆1(𝐱8, Π1) ∙ [𝑣(𝐲, Π1) − 𝑣(𝐱8, Π1)] + ∑ 𝜆2(𝐱8, Π1) ∙ [𝑣(𝐲, Π) − 𝑣(𝐱8, Π1)] =𝐲∈Γ𝐱8
2+ 0𝐲∈Γ𝐱8

1+ . The second 

double summation is ∑ 𝜇1 ∙ [𝑣(𝐲, Π1) − 𝑣(𝐱8, Π1)]𝐲∈Γ𝐱8
1− + ∑ 𝜇2 ∙ [𝑣(𝐲, Π1) − 𝑣(𝐱8, Π1)]𝐲∈Γ𝐱8

2− , where the 

summation over the set  Γ𝐱8
2− is zero (as it is an empty set), and thus, ∑ 𝜇1 ∙ [𝑣(𝐲, Π1) − 𝑣(𝐱8, Π1)]𝐲∈Γ𝐱8

1− =

𝜇1 ∙ [𝑣(𝐱2, Π1) − 𝑣(𝐱8, Π1)] + 𝜇1 ∙ [𝑣(𝐱5, Π1) − 𝑣(𝐱8, Π1)]. Therefore, for state 𝐱8 , Equation (3.29a) 
reads as 𝑅(Π1) = 𝑟1 ∙ 2 ∙ 𝜇1 + 𝜇1 ∙ [𝑣(𝐱2, Π1) − 𝑣(𝐱8, Π1)] + 𝜇1 ∙ [𝑣(𝐱5, Π1) − 𝑣(𝐱8, Π1)].  

Example 3.11 Consider again the network in Fig. 3.2 in state 𝐱 = 𝐱2. For class-1 and class-2 arrivals, 
we have explained in Example 3.6 all feasible state transitions when policies Π1 and Π2 allocate resources 
in this state (see Fig. 3.5). In Fig. 3.10, we show the state transition diagrams, the transition rates and 
probabilities which are defined by these policies when the network is in state  𝐱2. Furthermore, Fig. 3.10 
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Figure 3.10: Calculation of the network reward rates R(Π1) and R(Π2) in Example 3.11. 
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defines Equation (3.29a) for 𝑅(Π1) and 𝑅(Π2). When the network uses policy Π1, a class-1 and a class-2 

arrival cause the transitions 𝐱2 → 𝐱7 and 𝐱2 → 𝐱18, respectively. Therefore, for 𝐱2, we have that Γ𝐱2
1+ =

{𝐱7} and Γ𝐱2
2+ = {𝐱18}. (Notice that these transitions are defined by the policy decisions in Fig. 3.4.) 

However, while in state 𝐱2, the network is carrying a single class-1 connection, thereby defining another 

possible transition 𝐱2 → 𝐱1, which takes place when the connection is terminated. Thus Γ𝐱2
1− = {𝐱1} and 

Γ𝐱2
2− = {𝜙}. Then we have that 𝑛1(𝐱2) = 1 and 𝑛2(𝐱2) = 0, which implies: 𝜇1(𝐱2) = 𝜇1, 𝜇2(𝐱2) = 0, 

and therefore, the reward rate in state 𝐱2 is 𝑞(𝐱2) = 𝑟1 ∙ 𝜇1. As a result, from state 𝐱2, and provided that 
policy Π1 is used, only three state transitions are possible. For 𝑅(Π1), these transitions define the Equation 
(3.29a) as seen in Fig. 3.10. The same analysis can be followed to interpret the case for policy Π2 depicted 
in the figure. Suffice it to say that for this policy, class-2 arrivals are rejected, and thereby, only two 
transitions define 𝑅(Π2), namely 𝐱2 → 𝐱8, due to a class-1 admission, and 𝐱2 → 𝐱1, due to departure of 
the carried class-1 connection. This example shows that different resource allocation policies yield 
different network reward rates, i.e. 𝑅(Π1) ≠ 𝑅(Π2). 

Equations (3.29) fully describe the dependence of the network reward rate 𝑅(Π) on each state 𝐱 ∈ Ω𝐱. 
For every 𝐱, Equation (3.29a) has the following properties: 

 

1. The equation is linear in the transient reward values 𝑣(𝐱, Π) and 𝑣(𝐲, Π). These values together 

with 𝑅(Π) are the variables or unknowns of the equation. Observe that the values 𝑣(𝐲, Π) are 

the transient reward values of the network states 𝐲 which are reachable from transitions 𝐱 → 𝐲. 

These transitions originate from connection arrivals or departures. 

 

2. The parameters 𝑞(𝐱), 𝜆𝑗(𝐱, Π) and 𝜇𝑗  are known. By knowing 𝐱, it follows that 𝑛𝑗(𝐱), 𝜇𝑗(𝐱) 

and 𝑞(𝐱) are known as well. The rates 𝜆𝑗(𝐱, Π) can be estimated from online measurements 

taken during network operation. 

 

3. The right hand side of the equation shows that the network reward rate 𝑅(Π) depends on the 

differences 𝑣(𝐲, Π) − 𝑣(𝐱, Π). According to Equations (3.18) and (3.29e), these differences are 

interpreted as the reward change, with respect to 𝑉(𝐱, Π, 𝑡), expected if instead of 𝐱, the network 

was in state 𝐲 at 𝑡0. Therefore, the reward 𝑉(𝐲, Π, 𝑡) at 𝑡 ≫ 𝑡0 is expected to differ in 𝑣(𝐲, Π) −
𝑣(𝐱, Π) (ru) with respect to 𝑉(𝐱, Π, 𝑡). As it will be shown later, this property forms the basis 

for the implementation of an optimization algorithm that finds the policy that maximizes the 

network reward rate 𝑅(Π).  

 

Since each 𝐱 ∈ Ω𝐱 must fulfil Equation (3.29a), it follows that for a network that allocates resources with 

a policy Π, the reward rate 𝑅(Π) is a solution of the system of |Ω𝐱| linear equations defined by all states 

in Ω𝐱. Given that for all 𝐱 the parameters 𝑞(𝐱), 𝜆𝑗(𝐱, Π) and 𝜇𝑗 are known, the linear system must be 

solved for 𝑅(Π) and the |Ω𝐱| values 𝑣(𝐱, Π). Therefore, Equation (3.29a) implicitly defines a system of 

|Ω𝐱| linear equations with |Ω𝐱| + 1 unknowns. A unique solution to the linear system can be calculated 

by arbitrarily setting one the |Ω𝐱| transient values 𝑣(𝐱, Π) to zero. The resulting system of |Ω𝐱| equations 

and |Ω𝐱| unknowns is then solved for 𝑅(Π) and the remaining |Ω𝐱|  − 1 values 𝑣(𝐱, Π). This approach 

is valid as the third property of Equation (3.29a) emphasizes that 𝑅(Π) only depends on the differences 

𝑣(𝐲, Π) − 𝑣(𝐱, Π). To prove this, let us add a constant 𝑘 to all values 𝑣(𝐱, Π). Then we have that the 

values change as: 𝑣′(𝐲, Π) = 𝑣(𝐲, Π) + 𝑘 and 𝑣′(𝐱, Π) = 𝑣(𝐱, Π) + 𝑘, thereby Equation (3.29a) is now 

written (for a state 𝐱)  as: 𝑅(Π) = 𝑞(𝐱) + ∑ ∑ 𝜆𝑗(𝐱, Π) ∙ [𝑣′(𝐲, Π) − 𝑣′(𝐱, Π)]
𝐲∈Γ𝐱

𝑗+ + ∑ ∑ 𝜇𝑗 ∙
𝐲∈Γ𝐱

𝑗−
𝐽
𝑗=1

𝐽
𝑗=1

[𝑣′(𝐲, Π) − 𝑣′(𝐱, Π)]. However, note that 𝑣′(𝐲, Π) − 𝑣′(𝐱, Π) = 𝑣(𝐲, Π) + 𝑘 − 𝑣(𝐱, Π) − 𝑘 = 𝑣(𝐲, Π) −
𝑣(𝐱, Π). Therefore, adding the same constant to all values 𝑣(𝐱, Π) leaves Equation (3.29a) unchanged. In 

particular, if we define that constant as 𝑘 = −𝑣(𝐱𝒓, Π), where 𝑣(𝐱𝒓, Π) is the transient value of an 

arbitrarily selected state 𝐱𝒓 ∈ Ω𝐱 , we have that 𝑣′(𝐲, Π) = 𝑣(𝐲, Π) − 𝑣(𝐱𝒓, Π) , and for all 𝐱 ≠ 𝐱𝒓 : 

𝑣′(𝐱, Π) = 𝑣(𝐱, Π) − 𝑣(𝐱𝒓, Π). Furthermore, 𝑣′(𝐱𝒓, Π) = 𝑣(𝐱𝒓, Π) − 𝑣(𝐱𝒓, Π) = 0. Hence, the statement 

“the linear system is solved by arbitrarily setting one the transient values to zero” implies that in Equation 

(3.29), for an arbitrarily chosen state 𝐱𝒓, we set 𝑣′(𝐱𝒓, Π) = 0, and then, the remaining |Ω𝐱|  − 1 values 

are of the form 𝑣′(𝐱, Π) = 𝑣(𝐱, Π) − 𝑣(𝐱𝒓, Π). This renders the linear system solvable with a solution 

that is unique, and the same, regardless of the chosen state  𝐱𝒓, as the differences 𝑣(𝐲, Π) − 𝑣(𝐱, Π) are 

independent of 𝑣(𝐱𝒓, Π). This result has been proved in [How60] as well, and algorithms proposed to 

solve this type of linear system can be found in [Tij86].  
 Example 3.12 Fig. 3.11 shows the linear system defined by Equation (3.29a) for the network in Fig. 

3.2 when policy Π1 is used. For this network |Ω𝐱| = 18, and therefore, by arbitrarily setting one of the 18 
values to zero, the system if solved for 𝑅(Π1) and the remaining 17 values 𝑣(𝐱𝑖, Π1).  
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Figure 3.11: Linear system for the network in Fig. 3.2 when policy Π1 is used. 

3.4. Network Reward Maximization as a Markov 

Decision Process 

By modelling the problem of online resource allocation as a Markov decision process, we can use the 

linear system defined by Equation (3.29a) to calculate an optimum policy Π = Π∗ that maximizes the 

network reward rate 𝑅, i.e. Equation (3.5). This is achieved by the policy iteration algorithm (PIA) 

proposed in [How60], which is applicable to systems that behave as Markov stochastic processes. In Fig. 

3.12, we present an online version of the PIA for the case of resource allocation in dynamic optical 

networks. By initializing the network with an arbitrarily defined policy Π0, the PIA performs an iteration 

cycle every ∆T time units. An iteration consists of two steps, namely, the value determination operation 

(VDO) and the policy improvement routine (PIR). Both steps work together to calculate a policy which 

has a reward rate higher than that obtained by the policy found in the previous iteration. The algorithm 

stops when the policies calculated in two successive iterations have the same performance, i.e. the same 

reward rate 𝑅. The validity of this stopping criterion and of the fact that the optimum policy is always 

found (regardless of the policy that initializes the PIA) is the focus of the work expounded in [How60]. 

Therein it is also proved that before finding the optimum policy Π∗, an iteration always yields a policy 

that outperforms all previously calculated policies. Based on these results, we propose the algorithm in 

Fig. 3.12 which will be explained in the following. 

3.4.1 The Value Determination Operation (VDO) 
For a network allocating resources with a policy Π, the value determination operation is the calculation 

of the solution to the linear system defined by Equation (3.29a). The solution consists of the reward rate 

𝑅(Π) and the values 𝑣(𝐱, Π). Thus, the goal of the VDO is to calculate the performance of the policy Π. 
Consider an optical network that initially uses an arbitrarily defined policy Π = Π0 - see Fig. 3.12. (In 

the flowchart depicted in the figure, we refer to an event as either the arrival or departure of a connection.) 
Within the first iteration cycle of length ∆T, the network uses this policy to allocate resources for any 
connection request arriving in the interval ∆T. At the end of this interval, the VDO step is executed so as 
to calculate 𝑅(Π0)  and the values 𝑣(𝐱, Π0) . For this, the arrival rates 𝜆𝑗(𝐱, Π0)  are estimated from 

measurements taken during the cycle period ∆T. The known parameters 𝑞(𝐱), 𝜇𝑗 and 𝜆𝑗(𝐱, Π0) are used 

to solve the linear system. The solution is then used as input to the second step of the PIA, i.e. the policy 
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Figure 3.12: Flow chart for the policy iteration algorithm (PIA). 
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Figure 3.13: Temporal diagram for the policy iteration algorithm (PIA). 

improvement routine, whose purpose is to calculate a policy Π1 that outperforms Π0. Having determined 
Π1, the network enters a new iteration cycle of length ∆T within which resources are allocated based on 
the decisions defined in Π1. In this cycle, online measurements are taken to estimate 𝜆𝑗(𝐱, Π1). These 

measurements are used (at the end of the cycle) to execute the VDO step to estimate 𝑅(Π1) and the values 
𝑣(𝐱, Π1) for Π1 . With this information, the PIR calculates a policy Π2  that improves Π1 , and a new 
iteration cycle is then entered. This process is repeated so as to calculate a sequence of policies 
Π1, Π2,…, Π𝑖,…, Π∗, which result, respectively, in reward rates 𝑅(Π0) < 𝑅(Π1) < ⋯ < 𝑅(Π𝑖) < ⋯ ≤
𝑅(Π∗). The iterations are stopped when the policies obtained in two consecutive cycles attain the same 
network reward rate. This process is summarized in the diagram shown in Fig. 3.13.  

Cycle periods with length ∆T are used in order to measure the impact that the policy in use has on the 
network performance. This is accomplished by the measurements taken to estimate the rates 𝜆𝑗(𝐱, Π). The 

estimation of this rates has also the advantage that they reflect changes in the exogenous per-class arrival 
rates 𝜆𝑗, thereby the PIA adapts the policy calculation to varying traffic loads. Recall that any policy Π 

determines the transitions 𝐱 → 𝐲 caused by arrivals in state 𝐱. Therefore, the estimation from online 
measurements (at the end of every cycle) of the rates 𝜆𝑗(𝐱, Π), implies the calculation of the transition 

rates 𝜆𝑗(𝐱, Π) = 𝑞𝐱𝐲(Π)  that define the probabilities 𝑃𝐱𝐲(Π)  implicitly involved in Equation (3.29a). 

Without an online estimation of 𝜆𝑗(𝐱, Π), the VDO step would be unable to solve the linear system, as no 

information would be available about the policy performance. We defer to Chapter 4 the discussion on 
how the measurements are defined and how they are employed to estimate the transition rates 𝜆𝑗(𝐱, Π). 

3.4.2 The Policy Improvement Routine (PIR) 
Assume that in the ith iteration cycle the network executes a policy Π𝑖. At the end of the cycle, the VDO 
calculates the rate 𝑅(Π𝑖) and the values 𝑣(𝐱, Π𝑖) that characterize the policy. With that information, the 
PIR in Fig. 3.12 is executed so as to calculate a policy Π𝑖+1, such that 𝑅(Π𝑖) ≤ 𝑅(Π𝑖+1). This calculation 
involves, for each pair (𝐱, 𝑗), the determination of the matrix element Π𝑖+1(𝐱, 𝑗) that improves Π𝑖(𝐱, 𝑗). 
This is accomplished by maximizing the right hand side of Equation (3.29a) with the transient values 
𝑣(𝐱, Π𝑖) calculated in the VDO step. For a matrix element Π𝑖+1(𝐱, 𝑗), we phrase the optimization problem 
as follows: for a class-j connection request arriving in state 𝐱, select from the set of possible decisions that 

for which 𝑅(Π𝑖+1(𝐱, 𝑗)) ≥ 𝑅(Π𝑖(𝐱, 𝑗)). We denote the set of possible decisions as Λ𝐱
𝑗+

, where an element 

in Λ𝐱
𝑗+

 is a state in Ω𝐱, and therefore, Λ𝐱
𝑗+

⊆ Ω𝐱. 

Before calculating the decision Π𝑖+1(𝐱, 𝑗), the PIR has to define the set Λ𝐱
𝑗+

. This definition follows 
the procedure outlined in Section 3.2.2: an RSA algorithm is used to calculate the set of candidate 

lightpaths for a class-j arrival in state 𝐱, each lightpath represents a decision. In Λ𝐱
𝑗+

 a decision is then 
represented by the state that a candidate lightpath would configure if it is assigned to the request that 

arrives in state 𝐱. Besides the candidate lightpaths, Λ𝐱
𝑗+

 contains the state 𝐱 as well. The reason is that the 
decision can be made that the class-j request is rejected, and thus, no transition occurs. 

Example 3.13 For the network in Fig. 3.2, in Example 3.8 we have shown that class-1 arrivals in state 
𝐱2 have the four possible decisions summarized in Fig. 3.6. They define the set Λ𝐱2

1+ = {𝐱2, 𝐱7, 𝐱8, 𝐱9}, 

where if the decision 𝐱2 is selected, then there is no state transition, meaning that the connection request 

is rejected. The remaining three states in Λ𝐱2
1+ represent the states reachable when a lightpath is assigned 

to the connection request. For instance if 𝐱9 is selected, then the transition 𝐱2 → 𝐱9 occurs, which implies 
that the connection is admitted on a lightpath that seizes slots 5-6 on the path 𝜌 = (A, B, C) (see “Decision 

3”  in Fig 3.6). Moreover, for class-2, we have that Λ𝐱2
2+ = {𝐱2, 𝐱18}, i.e. a class-2 arrival in state 𝐱2 can 
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be either rejected (if 𝐱2 is selected) or admitted on a lightpath that seizes slots 3-6 on the path 𝜌 = (B, C). 
In this case the transition 𝐱2 → 𝐱18 takes place (see Fig. 3.5). 

To solve the maximization problem for the pair (𝐱, 𝑗), note that any definable policy provides decisions 
that solely cause state transitions which stem from connection arrivals, but not departures. This means that 

in Equation (3.29a), any possible decision in Λ𝐱
𝑗+

 solely influences the network reward rate through the 
double summation that represents changes due to arrivals. For a class-j connection request arriving in state 
𝐱, the maximization problem is then defined from Equation (3.29a) as: 

𝑅(Π𝑖+1(𝐱, 𝑗)) = max
𝐲∈Λ𝐱

𝑗+
{𝑞(𝐱) + ∑ ∑ 𝜆𝑗(𝐱, Π𝑖) ∙ [𝑣(𝐲, Π𝑖) − 𝑣(𝐱, Π𝑖)]

𝐲∈Γ𝐱
𝑗+ +𝐽

𝑗=1   

  ∑ ∑ 𝜇𝑗 ∙ [𝑣(𝐲, Π𝑖) − 𝑣(𝐱, Π𝑖)]
𝐲∈Γ𝐱

𝑗−
𝐽
𝑗=1 }                       (3.30) 

which means that from the set Λ𝐱
𝑗+

we are interested in the decision 𝐲∗ that satisfies:  

𝐲∗ = argmax
𝐲∈Λ𝐱

𝑗+
{𝜆𝑗(𝐱, Π𝑖) ∙ [𝑣(𝐲, Π𝑖) − 𝑣(𝐱, Π𝑖)]}                                  (3.31) 

i.e. Equation (3.30) is maximized by selecting the state (or equivalently the decision) 𝐲∗ ∈ Λ𝐱
𝑗+

 that 

maximizes the jth term in the double summation that represents reward changes due to arrivals. Since 

𝜆𝑗(𝐱, Π𝑖) does not depend on 𝐲 ∈ Λ𝐱
𝑗+

, then we can further simplify Equation (3.31) as:         

𝐲∗ = argmax
𝐲∈Λ𝐱

𝑗+
{𝑔𝑗(𝐲, 𝐱, Π𝑖)}                                                    (3.32) 

where 

𝑔𝑗(𝐲, 𝐱, Π𝑖) = 𝑣(𝐲, Π𝑖) − 𝑣(𝐱, Π𝑖)                                              (3.33) 

with  

−∞ < 𝑔𝑗(𝐲, 𝐱, Π𝑖) < +∞                                                     (3.34) 

The difference 𝑔𝑗(𝐲, 𝐱, Π𝑖) = 𝑣(𝐲, Π𝑖) − 𝑣(𝐱, Π𝑖) corresponds to Equation (3.29e), and we denote it as 

the state-dependent network reward gain. It is the long-term reward that a connection of class-j brings if 

it is admitted in state 𝐱 causing the transition 𝐱 → 𝐲. To understand this, assume that at 𝑡0 the network is 

in state 𝐱 and a class-j connection request arrives, gets admission, and seizes a lightpath that causes the 

transition 𝐱 → 𝐲. The admission of this connection has a short-term and a long-term effect on the reward 

earned by the network. The short-term effect is that during the connection holding time a reward of 𝑟𝑗 

(ru) is obtained. However, since at 𝑡0 the connection sets the network in state 𝐲, then at 𝑡 ≫ 𝑡o, i.e. as a 

long-term effect, the network is expected to earn a reward of 𝑉(𝐲, Π𝑖 , 𝑡) (ru). From Equation (3.29e), this 

reward is given by 𝑉(𝐲, Π𝑖 , 𝑡) = 𝑣(𝐲, Π𝑖) − 𝑣(𝐱, Π𝑖) + 𝑉(𝐱, Π𝑖 , 𝑡) , which is equal to 𝑉(𝐲, Π𝑖 , 𝑡) =
𝑔𝑗(𝐲, 𝐱, Π𝑖) + 𝑉(𝐱, Π𝑖 , 𝑡). Therefore, with respect to 𝑉(𝐱, Π𝑖 , 𝑡), i.e. the reward that would be expected at 

𝑡 ≫ 𝑡o if the connection had been rejected in state 𝐱, the reward 𝑉(𝐲, Π𝑖 , 𝑡) differs in 𝑔𝑗(𝐲, 𝐱, Π𝑖) (ru). If 

𝑔𝑗(𝐲, 𝐱, Π𝑖) < 0 , then at 𝑡 ≫ 𝑡0  the reward 𝑉(𝐲, Π𝑖 , 𝑡)  is expected to be 𝑔𝑗(𝐲, 𝐱, Π𝑖)  (ru) less than 

𝑉(𝐱, Π𝑖 , 𝑡), otherwise (i.e. positive gain) an increment 𝑔𝑗(𝐲, 𝐱, Π𝑖) is expected over 𝑉(𝐱, Π𝑖 , 𝑡). Then, 

𝑔𝑗(𝐲, 𝐱, Π𝑖) is the long-term reward that a class-j connection brings if it gets admission in state 𝐱. Ideally, 

it would be desirable that 𝑟𝑗 = 𝑔𝑗(𝐲, 𝐱, Π𝑖), however, in most cases, 𝑔𝑗(𝐲, 𝐱, Π𝑖) ≤ 𝑟𝑗. The reason is that 

for the network to earn a short-term reward 𝑟𝑗, it has to allocate to the connection 𝑏𝑗 slots on a path 

selected from the set of routes Γ𝑗. These resources are then unavailable for connection requests arriving 

within the connection holding time µ𝑗
−1, which might prevent the admission of connections with higher 

rewards. Therefore, the gain 𝑔𝑗(𝐲, 𝐱, Π𝑖) takes into account the future reward losses (i.e. the long-term 

effect) that the connection has on the reward earned by the network. A negative gain then means that the 

connection (in the long-term) decreases the reward by 𝑔𝑗(𝐲, 𝐱, Π𝑖) (ru) owing to the losses it causes; 

otherwise, a reward increment is expected. In Equation (3.32), the optimum decision Π𝑖+1(𝐱, 𝑗) is then 

given by the state 𝐲∗ ∈ Λ𝐱
𝑗+

 that yields the maximum long-term reward. The PIR calculates the policy  

Π𝑖+1 by solving Equation (3.32) for all 𝐱 ∈ Ω𝐱, 𝑗 = 1,2, … , 𝐽. 
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𝑣(𝐱, Π1), 𝑅(Π1)    

Total Offered Traffic A (Erlangs) 

0.01 0.1 1.0 10 

𝑣(𝐱1, Π1) 0.000 0.000 0.000 0.000 

𝑣(𝐱2, Π1) 2.500 2.500 2.472 2.243 

𝑣(𝐱3, Π1) 2.496 2.466 2.301 2.335 

𝑣(𝐱4, Π1) 2.496 2.467 2.318 2.840 

𝑣(𝐱𝟓, Π1) 2.496 2.467 2.308 2.313 

𝑣(𝐱6, Π1) 2.500 2.500 2.478 2.152 

𝑣(𝐱7, Π1) 4.996 4.966 4.799 5.050 

𝑣(𝐱8, Π1) 4.995 4.955 4.686 3.943 

𝑣(𝐱9, Π1) 4.998 4.983 4.876 4.813 

𝑣(𝐱10, Π1) 4.993 4.938 4.601 3.989 

𝑣(𝐱11, Π1) 4.995 4.955 4.685 3.909 

𝑣(𝐱12, Π1) 4.996 4.966 4.802 5.018 

𝑣(𝐱13, Π1) 7.495 7.453 7.190 6.904 

𝑣(𝐱14, Π1) 3.964 3.665 2.017 -0.407 

𝑣(𝐱15, Π1) 3.941 3.440 -0.080 -12.693 

𝑣(𝐱16, Π1) 3.964 3.665 2.017 -0.366 

𝑣(𝐱17, Π1) 6.462 6.145 4.324 0.945 

𝑣(𝐱18, Π1) 6.462 6.144 4.323 0.990 

𝑅(Π1) 0.0059 0.0560 0.4080 1.6693 

Table 3.3: Solution to the linear system in Fig. 3.11 for different traffic loads. 

Example 3.14 Assume that in a cycle period ΔT, the network in Fig. 3.2 allocates resources with the 
policy Π1 that is defined in Fig. 3.4. In Table 3.3, we present the transient reward values 𝑣(𝐱, Π1) and the 
rate 𝑅(Π1) calculated by the VDO under different offered traffic loads 𝐴. This offered traffic is given by 
A = 𝜆1/µ1 + 𝜆2/µ2, where µ1 = 1.0, µ2 = 0.1 and 𝜆1 = 𝜆2 = 𝜆 (con/uot). (Note that for a given traffic 
load 𝐴, we have that 𝜆 = 𝐴/(𝜇1

−1 + 𝜇2
−1). For example, the column 𝐴 = 0.1 in Table 3.3 is obtained when 

the exogenous arrival rates are 𝜆1 = 𝜆2 = 0.009 (con/uot).) Furthermore, we define 𝑟1 = 2.5 (ru) and 
𝑟2 = 4.0 (ru). With that, for each traffic load, the 18 values and the rate 𝑅(Π1) are obtained by solving 
linear system defined in Fig. 3.11, where we set 𝑣(𝐱1, Π1) = 0 (ru), with the state-dependent rates defined 
as  𝜆1(𝐱, Π1) = 𝜆1  and 𝜆2(𝐱, Π1) = 𝜆2. The results in Table 3.3 show that the policy performance depends 
on the traffic load offered to the network during the cycle period ΔT. That load defines the rates 𝜆𝑗(𝐱, Π1) 

used by the PIA to solve the linear system. This illustrates the importance of knowing these rates as they 
quantify the performance attainable by a policy under actual traffic conditions. 

Example 3.15 Let us use the values 𝑣(𝐱, Π1) in Table 3.3 to execute the PIR to calculate the decisions 

for class-1 and class-2 requests arriving in state 𝐱2. In Example 3.13 we defined the sets of decisions Λ𝐱2
1+ 

and Λ𝐱2
2+. In the PIR, these sets define the network reward gains (or long-term rewards) shown in Table 

3.4 (for class-1 and class-2, there are four gains 𝑔1(𝐲, 𝐱2, Π1) and two gains 𝑔2(𝐲, 𝐱2, Π1), respectively). 

By solving Equation (3.32), for class-1, the best decision is the state 𝐲∗ in   Λ𝐱2
1+ = {𝐱2, 𝐱7, 𝐱8, 𝐱9} for 

which 𝑔1(𝐲∗, 𝐱2, Π1) = 𝑚𝑎𝑥{𝑔1(𝐱2, 𝐱2, Π1), 𝑔1(𝐱7, 𝐱2, Π1), 𝑔1(𝐱8, 𝐱2, Π1), 𝑔1(𝐱9, 𝐱2, Π1)} . In a similar 

way, for class-2 connections, the best decision is defined by the network state 𝐲∗ in Λ𝐱2
2+ = {𝐱2, 𝐱18} for 

which 𝑔2(𝐲∗, 𝐱2, Π1) = 𝑚𝑎𝑥{𝑔2(𝐱2, 𝐱2, Π1), 𝑔2(𝐱18, 𝐱2, Π1)}. Table 3.5 summarizes the solutions to this 
maximization problem for each traffic load, and in Fig 3.14 we show the lightpaths that each decision 
defines. For example, consider the case 𝐴 = 1.0 Erlangs. The new policy decision Π(𝐱2, 1) instructs the 
network that class-1 requests arriving in state 𝐱2 must be admitted and routed on the path 𝜌 = (A, B, C), 
seizing the slots 5-6 (see Fig. 3.14). This decision, when executed, causes the state transition  𝐱2 → 𝐱9, 
thereby yielding a gain of 𝑔1(𝐱9, 𝐱2, Π1) = 2.404 (ru) as seen in Table 3.5. An interesting case occurs 
with the decision calculated for class-2 when 𝐴 = 10 Erlangs. Note that in Table 3.4, 𝑔2(𝐲∗, 𝐱2, Π1) = 
𝑚𝑎𝑥{𝑔2(𝐱2, 𝐱2, Π1) = 0, 𝑔2(𝐱18, 𝐱2, Π1) = −1.253} = 0, and hence, although resources are available, 
the connection request must be rejected. The reason is that, if admitted, the connection would bring a 
reward loss of  𝑔2(𝐱18, 𝐱2, Π1) = −1.253 (ru). 

Example 3.16 For low traffic loads, i.e. 𝐴 = 0.01 and  𝐴 = 0.1, the gains in Table 3.4 tend to equal 
the reward parameters 𝑟𝑗, i.e. 𝑟𝑗 ≈ 𝑔𝑗(𝐲, 𝐱2, Π1), as the network is not overloaded, and thus, the admission 

of a connection does not likely prevent the network from accepting more “profitable” traffic. (Recall that, 
as defined in Example 3.14, 𝑟1 = 2.5 and 𝑟2 = 4.0.) However, as the offered load increases, i.e. 𝐴 = 1.0  
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Network Reward Gain (ru) 

Total Offered Traffic A (Erlangs) 

0.01 0.1 1.0 10 

𝑔1(𝐱2, 𝐱2, Π1) = 𝑣(𝐱2, Π1) − 𝑣(𝐱2, Π1) 0.000 0.000 0.000 0.000 

𝑔1(𝐱7, 𝐱2, Π1) = 𝑣(𝐱7, Π1) − 𝑣(𝐱2, Π1) 2.496 2.466 2.327 2.807 

𝑔1(𝐱8, 𝐱2, Π1) = 𝑣(𝐱8, Π1) − 𝑣(𝐱2, Π1) 2.495 2.455 2.214 1.700 

𝑔1(𝐱9, 𝐱2, Π1) = 𝑣(𝐱9, Π1) − 𝑣(𝐱2, Π1) 2.498 2.483 2.404 2.570 

𝑔2(𝐱2, 𝐱2, Π1) = 𝑣(𝐱2, Π1) − 𝑣(𝐱2, Π1) 0.000 0.000 0.000 0.000 

𝑔2(𝐱18, 𝐱2, Π1) = 𝑣(𝐱18, Π1) − 𝑣(𝐱2, Π1) 3.962 3.644 1.851 -1.253 

Table 3.4: Network reward gains used to calculate a decision for class-1/class-2 arrivals in state x2. 

 Optimum Decision  

Total Offered Traffic A (Erlangs) 

0.01 0.1 1.0 10 

Class-1 Decision 𝐲∗ 𝐱9 𝐱9 𝐱9 𝐱7 

Gain 𝑔1(𝐲∗, 𝐱2, Π1) 2.498 2.483 2.404 2.807 

Class-2 Decision 𝐲∗ 𝐱18 𝐱18 𝐱18 𝐱2 

Gain 𝑔2(𝐲∗, 𝐱2, Π1) 3.962 3.644 1.851 0.000 

Table 3.5: Decisions calculated by the PIR for class-1 and class-2 arrivals in state x2. 

Figure 3.14: Lightpaths defined by the decisions in Table 3.5. 

and  𝐴 = 10, in some cases 𝑔𝑗(𝐲, 𝐱2, Π1) < 𝑟𝑗, which means that connections admitted may cause reward 

losses. For example, consider the case 𝐴 = 10 Erlangs in Table 3.4. If a class-2 request gets admission 

in state 𝐱2 at 𝑡0, it causes the transition 𝐱2 → 𝐱18, and brings an immediate reward of 𝑟2 = 4.0 (ru) with 

a reward gain of 𝑔2(𝐱18, 𝐱2, Π1) = −1.253 (ru). The long-term effect of this decision is that at 𝑡 ≫ 𝑡o 

the expected reward earned by the network would be 𝑉(𝐱18, Π, 𝑡) = 𝑔2(𝐱18, 𝐱2, Π1) + 𝑉(𝐱2, Π1, 𝑡) =
 𝑉(𝐱2, Π1, 𝑡) − 1.253 (ru). This means that the connection brings a loss of −1.253 (ru), and therefore, 

the best decision (as seen in Fig. 3.14) is to reject the connection. 
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3.4.3 Further Remarks on the Policy Iteration Algorithm 
The PIR step implements the policy calculation procedure outlined in Section 3.2. First, the determination 

of the sets of decisions Λ𝐱
𝑗+

 involves the calculation of candidate lightpaths via an RSA algorithm. Second, 

connection admission control is implemented when Equation (3.32) is solved. The admission decision 

rule follows from the definition of the maximization problem: select the decision in Λ𝐱
𝑗+

 which yields the 

maximum gain 𝑔𝑗(𝐲, 𝐱, Π𝑖). Note that this rule guarantees that 𝑅(Π𝑖+1(𝐱, 𝑗)) ≥ 𝑅(Π𝑖(𝐱, 𝑗)). The reason 

is that the set Λ𝐱
𝑗+

 always contains the state implicitly defined by the decision Π𝑖(𝐱, 𝑗), and therefore, in 

the worst case we have that Π𝑖+1(𝐱, 𝑗) = Π𝑖(𝐱, 𝑗). The importance of calculating the values 𝑣(𝐱, Π𝑖) at 

the end of the ith iteration cycle is that they allow the PIR to estimate the long-term rewards 𝑔𝑗(𝐲, 𝐱, Π𝑖). 

With this information, the PIR may determine from the sets Λ𝐱
𝑗+

 the decisions in Π𝑖+1 that outperform 

Π𝑖 . Observe that Π𝑖+1(𝐱, 𝑗) outperforms Π𝑖(𝐱, 𝑗) if and only if, Π𝑖+1(𝐱, 𝑗) yields a long-term reward 

higher than Π𝑖(𝐱, 𝑗). 
Example 3.17 For the network in Fig. 3.2, the policy decision Π1(𝐱2, 1) causes the transition  𝐱2 →

𝐱7. Note that 𝐱7 is in the set Λ𝐱2
1+ = {𝐱2, 𝐱7, 𝐱8, 𝐱9}. If the PIA executes the PIR to solve Equation (3.32), 

it has to calculate 𝑔1(𝐱7, 𝐱2, Π1) = 𝑣(𝐱7, Π1) − 𝑣(𝐱2, Π1), which is the long-term reward that quantifies 
the performance of the decision Π1(𝐱2, 1). This decision would be selected again by the PIR, i.e. Π(𝐱, 𝑗) =
Π1(𝐱, 𝑗), if and only if, 𝑔1(𝐱7, 𝐱2, Π1) yields the maximum reward. Otherwise, the best option is chosen 
from {𝐱2, 𝐱8, 𝐱9}, thereby guaranteeing that 𝑅(Π(𝐱2, 1)) ≥ 𝑅(Π1(𝐱2, 1)). 

The linear system described by Equation (3.29a) defines, for the stochastic process {𝐗𝑡
π, 𝑡 ≥ 0}, an 

exact state-dependent model that relates the network reward rate 𝑅(Π)  with all states 𝐱 ∈ Ω𝐱 . The 
advantage of this state-dependent description is that for any class-j arrival in state 𝐱, the PIA improves the 
network reward rate by maximizing 𝑔𝑗(𝐲, 𝐱, Π). The PIA guarantees that the optimum policy is always 

found [How60]. However, in most real networks, an online execution of the PIA is infeasible owing to the 
size |Ω𝐱| of the network state-space, which may be large enough as to preclude the calculations performed 
by both the VDO and the PIR.  This is even the case for large capacity single-link networks. This fact is 
studied in [YZZ+14], where a thorough analysis is presented that calculates the number of states for a flex-
grid link. Therein it is shown that the calculation of the state-space itself may be infeasible. A large state-
space demands stringent memory requirements and computation times which are not realizable by current 
computational resources. Therefore, to circumvent this drawback, and to render the policy calculation 
feasible, a simplified model is needed that reduces the cardinality |Ω𝐱| of the network state-space. That 
model is proposed and discussed to the detail in Chapter 4, where it is shown that the process {𝐗𝑡

π, 𝑡 ≥ 0} 

can be described by linear systems formulated in the macrostate-spaces Ω𝐧
𝑙  of the network links.  

Example 3.18 Consider a single-link network with a capacity of 𝐶𝑙 = 128 slots which serves three 
connections classes with 𝑏1 = 2, 𝑏2 = 8 and 𝑏3 = 16. By using the formulae in [YZZ+14] (we skip the 
presentation of those formulas here as they are too voluminous and are not relevant for the forthcoming 
discussions), we have that |Ω𝐱| = 2.27 ∙ 1027 states. For this network, the solution to the linear system is 
computationally infeasible.  

3.5. Chapter Summary 

In this chapter a stochastic network model has been proposed for dynamic optical networks. The model 

was used to introduce four fundamental concepts. First, the concept of network state, which is defined as 

a valid configuration of the optical spectrum in the network. A spectrum configuration corresponds to 

the spectrum seized by the lightpaths allocated to carried connections, those lightpaths fulfil the spectrum 

continuity and contiguity constraints. Second, the concept of network macrostate, which is the traffic 

carried by the network at a given instant of time. It was shown that a macrostate can be represented by 

different network states. Third, the concept of connection reward, which is the benefit that the network 

receives from an admitted connection. And last, the concept of resource allocation policy, which is a 

collection of state-dependent decisions that dictate the course of action to take for any connection request. 

A policy decision instructs the network whether to accept or reject a connection request. In case of 

admission, it further defines a lightpath for the connection. Based on these concepts, an algorithm was 

proposed for online resource allocation that is suitable for stochastic networks which are Markovian. The 

algorithm tackles the problem of policy calculation as a Markov decision process, and uses an iteration 

procedure that finds the policy (i.e. the collection of decisions on resource allocation) that maximizes the 

rate at which the network earns reward. Although for networks with large state-spaces the algorithm may 

not be computationally feasible, a reward-based approach is advantageous, as by a proper definition of 

the reward parameters different optimization objectives can be achieved. In Chapter 4 it will be discussed 

a simplified version of the algorithm that renders the optimization problem solvable.   
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Chapter 4 

Approximate Approach to Online 

Resource Allocation 

In this chapter we formulate a simplified version of the policy iteration algorithm outlined in Chapter 3. 
The proposed algorithm is based on a link decomposition approach, whereby the rate of reward from the 
network is approximated as the sum of the link reward rates. Therefore, the problem is decomposed into 
separate link problems by assuming statistical independence of the link state distributions. This approach 
not only simplifies mathematical complexity, but the computational effort required to calculate decisions. 
Section 4.1 defines the network reward maximization problem based on the link independence assumption. 
To solve this problem, in Section 4.2 we formulate an approximate macrostate-dependent network reward 
model, whereby the link reward rates are calculated from linear systems defined in the link macrostate-
spaces. Section 4.3 presents a method to estimate policy and macrostate-dependent link arrival rates from 
online measurements. The proposed method renders the macrostate-dependent network model adaptive to 
changing traffic conditions. In Section 4.4 the approximate policy iteration algorithm is formulated based 
on the macrostate-dependent model. In order to improve the accuracy of the algorithm, admission control 
rules are defined that mitigate at their best the correlations among links. To facilitate the presentation of 
the concepts introduced in this chapter, in Table 4.1 we summarize relevant variables and parameters 
defined throughout all chapter sections. The content in this chapter includes results published by the author 
in [RB16a, RB16b, RB16c, RB16d, RB17a]. 

4.1. Approximate Reward Maximization Problem 

A topic of interest in the field of stochastic networks has been to find approximate models that circumvent 

the computational complexity involved in exact (state-dependent) network models.  For loss or circuit-

switched networks, an approach which has been proved to be suitable under certain limiting regimes is 

the reduced load approximation [Kel91, KY14, CR93]. It is based on the link independence assumption 

which supposes statistical independence of the link state distributions. In this section we derive the state-

dependent network reward model that this assumption defines. Then in the subsequent sections we use 

the model to formulate an approximate approach to online resource allocation. 

4.1.1 The Link Independence Assumption 
A stochastic optical network is said to fulfil the link independence property if the there are no correlations 
(i.e. no mutual relationships) among the state distributions of the network links. In this case, each link 

blocks independently, and thus, the probability 𝐵𝑗

𝜌
 that a path 𝜌 ∈ Γ𝑗 blocks a class-j connection is:     

𝐵𝑗

𝜌
= 1 − ∏ (1 − 𝐵𝑗

𝑙)𝑙∈𝜌                                                        (4.1a) 

where 𝐵𝑗
𝑙  is the probability that a class-j connection gets blocked by the link 𝑙 in 𝜌. Since the class-j traffic 

is offered to all paths in Γ𝑗, the probability that the network blocks a class-j connection is: 

𝐵𝑗 = ∏ 𝐵𝑗
𝜌

𝜌∈Γ𝑗
                                                               (4.1b) 
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Table 4.1: Notation for relevant variables and parameters defined in Chapter 4. 

Symbol Units Description 

 𝑅𝑙(Π) ru/uot Mean rate at which link 𝑙 earns reward from carried connections 

𝑟𝑗
𝑙  ru/con Reward parameter of class-j connections on link  𝑙   

𝜆𝑗
𝑙(Π) con/uot Mean rate at which class-j connections arrive at link 𝑙 

𝐴𝑗
𝑙  Erlangs Mean class-j traffic offered to link 𝑙 

𝐴c𝑗

𝑙  Erlangs Mean class-j traffic carried over link 𝑙 

𝐵𝑗
𝑙  --------- Blocking probability of class-j connections on link 𝑙 

𝜆𝑗
𝑙(𝐱𝑙, Π) con/uot 

Mean rate at which class-j connection arrivals cause the link state transition 

𝐱𝑙 → 𝐲𝑙 

𝑣(𝐱𝑙 , Π) ru Transient reward earned by having set link 𝑙 in state 𝐱𝑙 at 𝑡0 

𝑉(𝐱𝑙 , Π, 𝑡) ru 
Reward expected at 𝑡 ≫ 𝑡0, if  link 𝑙 were set in state 𝐱𝑙 at 𝑡0. This reward 

is earned at a constant link reward rate  𝑅𝑙(Π) 

Γ
𝐱𝑙
𝑗+

, Γ
𝐱𝑙
𝑗−

 --------- 
Sets of link states reachable due to class-j connection admissions and 

departures in link state 𝐱𝑙, respectively 

𝑔
𝑗
𝑙(𝐲𝑙, 𝐱𝑙, Π) ru 

State-dependent link reward gain 𝑔
𝑗
𝑙(𝐲𝑙, 𝐱𝑙, Π) = 𝑣(𝐲𝑙, Π) − 𝑣(𝐱𝑙, Π).  It is 

the long-term reward earned by link 𝑙 at 𝑡 ≫ 𝑡o  from a class-j connection 

arriving in state 𝐱𝑙 that causes the link state transition 𝐱𝑙 → 𝐲𝑙  

𝜆𝑗
𝑙(𝐧𝑙, Π) con/uot 

Mean rate at which class-j connection arrivals cause the link macrostate 

transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  

𝑣(𝐧𝑙 , Π) ru Transient reward earned by having set link 𝑙 in macrostate 𝐧𝑙 at 𝑡0 

𝑉(𝐧𝑙 , Π, 𝑡) ru 
Reward expected at 𝑡 ≫ 𝑡0 , if link 𝑙 were set in macrostate 𝐧𝑙  at 𝑡0 , this 

reward is earned at a constant link reward rate  𝑅𝑙(Π) 

𝑔
𝑗
𝑙(𝐧𝑙, Π)  

𝑔
𝑗
𝑙(𝐧𝑙, Π) = 𝑣(𝐧𝑙 + 𝛅𝑗

𝑙 , Π) − 𝑣(𝐧𝑙, Π). Macrostate-dependent link reward 

gain. It is the long-term reward earned by link 𝑙 from a class-j connection 

arriving in macrostate 𝐧𝑙 that causes the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  

𝑔
𝑗
(𝐲, 𝐱, Π) ru 

State-dependent network reward gain.  It is the long-term reward brought to 

the network by a class-j connection arriving in state x. Upon admission, the 

connection causes the network state transition 𝐱 → 𝐲 . This reward is 

estimated as follows:  

- Exact state-dependent model: 𝑔𝑗(𝐲, 𝐱, Π) = 𝑣(𝐲, Π) − 𝑣(𝐱, Π) 

- Approximate state-dependent model: 𝑔
𝑗
(𝐲, 𝐱, Π) ≈ ∑ 𝑔

𝑗
𝑙(𝐲𝑙, 𝐱𝑙, Π)𝑙∈𝜌   

- Approximate macrostate-dependent model: 𝑔
𝑗
(𝐲, 𝐱, Π)  ≈ ∑ 𝑔

𝑗
𝑙(𝐧𝑙, Π)𝑙∈𝜌  

where 𝜌 is the path on which the connection is routed   

X̂𝐧

𝑙
 --------- Set of link states 𝐱𝑙 that yield the carried traffic (or macrostate) 𝐧𝑙 

𝑃𝐧,𝑗
𝑙  --------- 

Probability of observing the macrostate 𝐧𝑙 defined by a non-blocking state 

𝐱𝑙 in X̂𝐧

𝑙
 for class-j traffic 



Approximate Approach to Online Resource Allocation 43 

 

As a result of this, if class-j connections arrive at the network following a Poisson process with mean 

arrival rate 𝜆𝑗, then class-j traffic arrives at link 𝑙 with a rate: 

𝜆𝑗
𝑙(Π) = 𝜆𝑗

𝜌(Π) ∙ ∏ (1 − 𝐵𝑗
𝑠)𝑠∈𝜌∖{𝑙}                                             (4.2) 

which describes an arrival process that is Poissonian as well [Kel91, KY14, Dzi97], where 𝜆𝑗
𝜌(Π) is the 

arrival rate of class-j traffic at path 𝜌. The rates 𝜆𝑗
𝜌(Π) fulfil: 

𝜆𝑗 = ∑ 𝜆𝑗
𝜌(Π)𝜌∈Γ𝑗

                                                                 (4.3) 

Observe that both 𝜆𝑗
𝜌(Π) and  𝜆𝑗

𝑙(Π) depend on the routing decisions made by the policy Π. Based on this, 

we have that 𝜆𝑗
𝜌(Π) can be determined as [Dzi97]: 

𝜆𝑗
𝜌(Π) = 𝜆𝑗 ∙

�̂�𝑗
𝜌(Π)

∑ �̂�
𝑗
𝜌(Π)𝜌∈Γ𝑗

                                                           (4.4) 

where �̂�𝑗

𝜌
(Π) is the acceptance rate of class- j traffic on path 𝜌.  This rate can be determined from online 

traffic measurements. 
Equation (4.2) states that the traffic offered to link 𝑙 is the traffic offered to the path 𝜌 reduced at every 

link 𝑠 ≠ 𝑙 in 𝜌 by a factor (1 − 𝐵𝑗
𝑠). As a result, 𝜆𝑗

𝑙(Π) describes a Poisson process from which the link 

performance, defined as the link reward rate  𝑅𝑙(Π), can be evaluated from a performance function that 

depends on 𝜆𝑗
𝑙(Π), the link capacity 𝐶𝑙, and the parameters µ𝑗

−1, 𝑏𝑗 and  𝑟𝑗 of the 𝐽 connection classes: 

 𝑅𝑙(Π) = 𝑓(𝜆𝑗
𝑙(Π), µ𝑗

−1, 𝑏𝑗, 𝑟𝑗,𝐶𝑙)                                                  (4.5) 

Therefore, if the network fulfils the link independence property - as defined by Equations (4.1)-(4.4), 

two equivalent approaches may evaluate the network reward rate 𝑅(Π). First, the exact state-dependent 

model derived in Chapter 3. And secondly, a link-based approach whereby 𝑅(Π) is determined by the 

performance functions of the network links. Such functions are given by Equation (4.5) which, as it will 

be shown in Section 4.1.3, defines a linear system similar to that obtained for the exact network model.  
From a computational perspective, the link based-approach is more advantageous as the performance 

functions are defined over link state-spaces which have smaller cardinalities than the network state-space. 
By this approach exact results are only obtained when the link independence property is satisfied. This 
occurs in networks that mainly route traffic on direct link paths or in networks that, besides operating at 
low traffic loads, use multi-link paths with a few number of links [Dzi97,CR93]. Although not all real 
network scenarios comply with these conditions, the link-based approach can still be applied (owing to its 
reduced computational complexity) as an approximate method to estimate the network reward rate 𝑅(Π). 
In most real networks correlations exist and they can be classified into two types, namely, link and path 
correlations. The former ensue from connections routed over multi-link paths (the larger the number of 
links in the path, the larger the correlations). The latter stem from the routing decisions that assign traffic 
flows to the paths in Γ𝑗. If the link-based approach estimates 𝑅(Π) in networks where correlations of either 

type exist, there will be an estimation error that grows with the strength of the correlations. In a specific 
network scenario, it is difficult to quantify how strong or weak these correlations are. The reason is that 
they are not only influenced by the definition of the set Γ𝑗 (i.e. the definition of the number of routes and 

the number of links in each route) but are also determined by the traffic characteristics and the policy in 
use. In spite of this, the accuracy of the approach can be improved by employing simple network design 
rules that counteract correlations. One of them is to calculate sets Γ𝑗 with a few number of paths, where 

each path has a short length w.r.t. the number of links. Another strategy is to implement admission control 
rules that avoid accepting connections on large multi-link paths (especially in high traffic load conditions).  

The term “link independence assumption” has widely been used in the literature to refer to network 
models that assume statistical independence of the link state distributions – and thus, those models rely on 
link-based approaches that estimate the network performance. For example, the performance evaluation 
results in [Kel88, Kel11, Kel91, KY14, CR93, DPKW88, DM89, DM92, DM94, Kri91, HKT00, Hwa93, 
Dzi97, Nor02] show that, for telephone and packet-switched data networks, the assumption is a valid 
approach to designing network control mechanisms. Inspired by these results, in the following we use the 
assumption to formulate an approximate state-dependent stochastic model that estimates the network 
reward rate 𝑅(Π). A comprehensive study of the link independence assumption, and its implications, can 
be found in [Dzi97].  



Approximate Approach to Online Resource Allocation 44 

 

Figure 4.1: Flex-grid optical network with four nodes, five links and 12 classes [RB16d]. 

4.1.2 Reformulation of the Network Reward Maximization Problem  
The link independence assumption has successfully been applied to reward-based routing in packet-
switched networks, see for example the approaches proposed in [DPKW88, DM89, DM92, DM94, Kri91, 
HKT00, Hwa93, Dzi97, Nor02]. By using this approximation, we have that the rate 𝑅(Π) at which the 

network earns reward can be calculated as the sum of the link reward rates  𝑅𝑙(Π): 

𝑅(Π) = ∑  𝑅𝑙(Π)𝑙                                                              (4.6) 

and therefore, the network reward maximization problem is now defined as: 

𝑅∗ = max 
Π

∑  𝑅𝑙(Π)𝑙                                                             (4.7) 

Since Equation (4.6) assumes that all network links block independently, then the assumption is made 

that any connection modifies 𝑅(Π) by solely changing the rates 𝑅𝑙(Π) of the links on which it is carried. 

This implies that for a class-j arrival in state 𝐱, the network reward rate attainable by the policy decision 

Π(𝐱, 𝑗) is calculated from Equation (4.6) as: 

𝑅(Π(𝐱, 𝑗)) = ∑  𝑅𝑙(Π(𝐱, 𝑗))𝑙∈𝜌                                                   (4.8) 

where the sum is over the links in the path 𝜌 on which the connection is routed. Notice that, as seen in 

Chapter 3, the selected path 𝜌 is implicitly defined by the state 𝐲 ∈ Λ𝐱
𝑗+

, which results from the transition 

𝐱 → 𝐲 caused by the decision Π(𝐱, 𝑗). The striking consequence of this is that to calculate a decision that 

outperforms Π(𝐱, 𝑗), it is only necessary to know the reward rates of the links that make up the paths in 

Γ𝑗. The applicability of this result will be explored in Section 4.4. In the meantime, let us formulate the 

state-dependent network reward model that results from the link independence assumption. 
Example 4.1 Consider the optical network in Fig. 4.1, which has four nodes, five links and serves 12 

connection classes (two classes per node-pair). Under the link independence assumption, the network 
reward rate is given by 𝑅(Π) =  𝑅1(Π) +  𝑅2(Π) +  𝑅3(Π) +  𝑅4(Π) +  𝑅5(Π). Let us consider class-7 
connections, which can only be routed over the paths in the set Γ7 = {(A, B), (A, C, B)}. Under the link 
independence assumption, it is assumed that class-7 can only modify 𝑅(Π) by changing the rates of the 
links in Γ7. For instance, if the policy Π has a decision Π(𝐱, 7), such that a class-7 connection is admitted 

in state 𝐱 on the path 𝜌 = (A, C, B), then from Equation (4.8) we have that 𝑅(Π(𝐱, 7)) =  𝑅1(Π(𝐱, 7)) +

 𝑅3(Π(𝐱, 7)), with 𝑙 = 1 and 𝑙 = 3 denoting link (A, C) and link (C, B), respectively. 
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Figure 4.2: Flex-grid optical link. 

4.1.3 Approximate State-Dependent Network Reward Model 
Consider a dynamic flex-grid optical network with 𝑁 nodes and 𝐿 links that serves 𝐽 connection classes. 

Every link 𝑙 has a capacity of 𝐶𝑙 spectrum slots. The exact state-dependent reward model for this network 

is given by the set of Equations (3.29) in Chapter 3, where 𝑅(Π) is calculated by solving a linear system 

defined in the state-space Ω𝐱. Before applying the link independence assumption to the derivation of a 

simplified network reward model, let us first calculate the rate at which a network link 𝑙 earns reward.  
The network stochastic process {𝐗𝑡

π, 𝑡 ≥ 0} implicitly defines for every link 𝑙 , a continuous-time 

stochastic process {𝐗𝑡
𝑙,π, 𝑡 ≥ 0}. This process describes the time evolution of the link state when a policy 

Π is used. The random variable 𝐗𝑡
𝑙,π

 takes its values from the link state-space Ω𝐱
𝑙 , and thereby, 𝐗𝑡

𝑙,π
 is the 

link state at time 𝑡. The stochastic properties of this process stem for the parameters (𝑜, 𝑑)𝑗, 𝜆𝑗, µ𝑗
−1, 𝑏𝑗, 

Γ𝑗, and 𝑟𝑗 that define each connection class. In Fig. 4.2, we present a simplified view of the most relevant 

parameters and variables that describe the stochastic behaviour of a link 𝑙.  
Class-j connections arrive at link 𝑙 at a rate 𝜆𝑗

𝑙(Π) (con/uot), which is policy-dependent as it originates 

from the decisions defined in Π, and thus, we have that according to Equation (4.2), 𝜆𝑗
𝑙(Π) is not equal to 

the arrival rate 𝜆𝑗. Then class-j offers to the link a traffic load (in Erlangs) given by: 

𝐴𝑗
𝑙 =

𝜆𝑗
𝑙 (Π)

𝜇𝑗
                                                                    (4.9) 

From this load, the link carries a traffic: 

𝐴c𝑗
𝑙 = 𝐴𝑗

𝑙 ∙ (1 − 𝐵𝑗
𝑙)                                                         (4.10) 

where 𝐵𝑗
𝑙  is the probability that a class-j connection request is blocked by the link. If the network is in state 

𝐱 = (𝐱1, … , 𝐱𝑙 , … , 𝐱𝐿), and the policy Π admits a class-j connection on a path 𝜌, such that 𝑙 ∈ 𝜌, then the 

link 𝑙 makes the state transition 𝐱𝑙 → 𝐲𝑙,where  𝐱𝑙 , 𝐲𝑙 ∈ Ω𝐱
𝑙 . As a result of this event, the connection seizes 

𝑏𝑗 adjacent slots in the link, and the network earns an immediate reward of 𝑟𝑗 (ru). From this reward, 𝑟𝑗
𝑙  

(ru) are earned over link 𝑙. We denote this reward as the link reward parameter which is calculated as:  

𝑟𝑗
𝑙 = {

𝑟𝑗 

|𝜌|
,         if 𝑗 ∈ J𝑙

0,            if 𝑗 ∉ J𝑙
                                                        (4.11) 

Recall that J𝑙 is the set of class-j connections which can be carried on link 𝑙 (see Table 3.1 in Chapter 3). 

Thus, for class-j connections which can never be routed through link 𝑙, we have that 𝑟𝑗
𝑙 = 0, i.e. the link 

𝑙 is not within the paths in Γ𝑗. Otherwise, 𝑟𝑗
𝑙  is 𝑟𝑗 divided by the number of links |𝜌| in the path 𝜌, i.e. the 

reward parameter 𝑟𝑗 is evenly distributed among all links in 𝜌. This reward division rule has been studied 

along with other rules in [DM89, DM92, DM94, Dzi97] for routing in telephone and packet-switched 

networks. The performance results therein presented show that Equation (4.11) gives the simplest and 

most effective rule to apportion the reward parameters 𝑟𝑗 among network links. We then interpret 𝑟𝑗
𝑙  as 

the immediate or short-term reward earned by a link 𝑙 from a class-j connection.  
Example 4.2 In order to illustrate the reward division rule, consider the link 𝑙 = 5 in Fig. 4.1, i.e. that 

interconnecting the nodes B − D. This link is in the path 𝜌 = (A, B, D) ∈ Γ3, Γ9, which has |𝜌| = 2 links, 
it is also in the path 𝜌 = (B, D) ∈ Γ5, Γ11, which has |𝜌| = 1, and it is in the path 𝜌 = (C, B, D) ∈ Γ6, Γ12, 

which has |𝜌| = 2 (see Fig. 4.1). Therefore, the classes carried by this link are J5 = {3,5,6,9,11,12}. From 
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Equation (4.11), these six classes define on the link B − D the reward parameters:  𝑟3
5 = 0.5, 𝑟5

5 = 1.0, 

𝑟6
5 = 0.5, 𝑟9

5 = 0.5, 𝑟11
5 = 1.0 and  𝑟12

5 = 0.5 (ru). For the remaining six classes 𝑟𝑗
5 = 0, as they are not 

defined in  J5. If a class-12 connection is routed over the path  (C,B,D), it brings an immediate reward of 

r12 = 1 (ru) to the network, where from this reward r12
5 = 0.5 (ru) are earned over the link B − D.   

Since 𝐴c𝑗
𝑙  is the mean number of class-j connections simultaneously carried on link 𝑙, class-j traffic is 

expected to yield reward at a mean rate 𝑟𝑗
𝑙 ∙ µ𝑗 ∙ 𝐴c𝑗

𝑙 . Therefore, link 𝑙 earns reward at a mean rate  𝑅𝑙(Π) =

∑ 𝑟𝑗
𝑙 ∙ µ𝑗 ∙ 𝐴c𝑗

𝑙
j  (ru/uot), from which we have that the link performance function in Equation (4.5) is: 

 𝑅𝑙(Π) = ∑ 𝑟𝑗
𝑙 ∙ 𝜆𝑗

𝑙(Π) ∙ (1 − 𝐵𝑗
𝑙)𝐽

𝑗=1                                            (4.12) 

Let us now apply the link independence assumption to calculate the dependence of Equation (4.12) on the 

link states. If at time 𝑡𝑛 the network is in state 𝐱 = (𝐱1, … , 𝐱𝑙 , … , 𝐱𝐿), the probability of observing at time 

𝑡𝑛+1 the link 𝑙 in a state 𝐲𝑙 (as a result of a transition 𝐱 → 𝐲 which causes the link state transition 𝐱𝑙 → 𝐲𝑙) 

depends only on the link state 𝐱𝑙 at time 𝑡𝑛: 

𝑃{𝐗𝑡𝑛+1

𝑙,π = 𝐲𝑙|𝐗𝑡𝑛

1,π = 𝐱1, … , 𝐗𝑡𝑛

𝑙,π = 𝐱𝑙 , … , 𝐗𝑡𝑛

𝐿,π = 𝐱𝐿} = 𝑃{𝐗𝑡𝑛+1

𝑙,π = 𝐲𝑙|𝐗𝑡𝑛

𝑙,π = 𝐱𝑙}         (4.13) 

i.e. the states of the remaining links at time 𝑡𝑛 have no influence on the link state transition (and thus, the 
correlations among links are negligible). Based on this, we have that each network link can be treated 
independently from one another, i.e. the optical network behaves as a compound of 𝐿 independent single-

link networks. Therefore, the dependence of  𝑅𝑙(Π) on the link state 𝐱𝑙 is obtained by applying the set of 
Equations (3.29) in Chapter 3 to the case of a single-link network [RB16b]: 

 𝑅𝑙(Π) = 𝑞(𝐱𝑙) + ∑ ∑ 𝜆𝑗
𝑙(𝐱𝑙 , Π) ∙ [𝑣(𝐲𝑙 , Π) − 𝑣(𝐱𝑙 , Π)]

𝐲𝑙∈Γ
𝐱𝑙
𝑗+ +𝐽

𝑗=1   

 ∑ ∑ 𝜇𝑗 ∙ [𝑣(𝐲𝑙 , Π) − 𝑣(𝐱𝑙 , Π)]
𝐲𝑙∈Γ

𝐱𝑙
𝑗−

𝐽
𝑗=1          , 𝐱𝑙 ∈ Ω𝐱

𝑙           (4.14a) 

where Γ
𝐱𝑙
𝑗+

 and Γ
𝐱𝑙
𝑗−

 are the sets of link states which are reachable due to class-j connection admissions 

and departures in state 𝐱𝑙, respectively. The first double summation is the contribution to  𝑅𝑙(Π) owing 

to connection requests that arrive at the link in state 𝐱𝑙. Connections arrive at a state-dependent rate 

𝜆𝑗
𝑙(𝐱𝑙 , Π) - the actual relationship between 𝜆𝑗

𝑙(𝐱𝑙 , Π) and 𝜆𝑗
𝑙(Π) will be studied in Section 4.3. The second 

double summation is the contribution to the link reward rate due to departures. Moreover, 𝑞(𝐱𝑙) is the 

rate at which the link yields reward in state 𝐱𝑙, and is given by:  

𝑞(𝐱𝑙) = ∑ 𝑟𝑗
𝑙 ∙ 𝜇𝑗(𝐱𝑙)𝐽

𝑗=1                                                     (4.14b) 

with 𝜇𝑗(𝐱𝑙) being the termination rate of carried class-j connections, which is calculated as: 

𝜇𝑗(𝐱𝑙) = 𝜇𝑗 ∙ 𝑛𝑗(𝐱𝑙)                                                        (4.14c)  

where n𝑗(𝐱𝑙) ≥ 0 is the number of class-j connections carried by the link in state 𝐱𝑙 . In addition to 

Equation (4.14a), link 𝑙 fulfils the following two equations:  

𝑉(𝐱𝑙 , Π, 𝑡) =  𝑅𝑙(Π) ∙ 𝑡 + 𝑣(𝐱𝑙 , Π)    , 𝐱𝑙 ∈ Ω𝐱
𝑙                                     (4.14d) 

𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) = 𝑉(𝐲𝑙 , Π, 𝑡) − 𝑉(𝐱𝑙 , Π, 𝑡) = 𝑣(𝐲𝑙 , Π) − 𝑣(𝐱𝑙 , Π)                     (4.14e) 

with 𝑉(𝐱𝑙 , Π, 𝑡) being the reward expected at 𝑡 ≫ 𝑡0, if the link was in state 𝐱𝑙 at 𝑡0. Equation (4.14d) 

states that in steady state, the link earns reward at a rate  𝑅𝑙(Π) regardless of the link state 𝐱𝑙  at 𝑡0. 

Furthermore, Equation (4.14e) defines 𝑔𝑗
𝑙(𝐲𝑙 , 𝐱𝑙 , Π) as the state-dependent link reward gain. It is the 

long-term reward that a class-j connection brings to the link if it gets admission in state 𝐱𝑙. 

Equation (4.14a) defines a linear system over all link states in Ω𝐱
𝑙 . Given that for all 𝐱𝑙 the parameters 

𝑞(𝐱𝑙), 𝜆𝑗
𝑙(𝐱𝑙 , Π) and 𝜇𝑗 are known, the linear system is solved for  𝑅𝑙(Π) and the values 𝑣(𝐱𝑙 , Π). This is 

accomplished by arbitrarily setting one of the values 𝑣(𝐱𝑙 , Π) to zero. Thus, under the link independence 
assumption, Equations (4.14) define an approximate, state-dependent network reward model whereby the  
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Variable 
Exact State-Dependent          

Network Reward Model 
Approximate State-Dependent 

Network Reward Model 

Rate 𝑅(Π) Obtained by solving a linear system of 
|Ω𝐱| equations 

Obtained by solving 𝐿  linear systems, 

one for each link reward rate  𝑅𝑙(Π) 

Transient values There are |Ω𝐱| values 𝑣(𝐱, Π) which are 
obtained from the solution to the linear 
system that calculates 𝑅(Π) 

For each link 𝑙 , there are |Ω𝐱
𝑙 |  values 

𝑣(𝐱𝑙 , Π)  which are obtained from the 
solution to the linear system for link 𝑙 

Gain 𝑔𝑗(𝐲, 𝐱, Π) Calculated from the values 𝑣(𝐱, Π) as: 

 

𝑔𝑗(𝐲, 𝐱, Π) = 𝑣(𝐲, Π) − 𝑣(𝐱, Π) 

Calculated as follows: 

𝑔𝑗(𝐲, 𝐱, Π) ≈ ∑ 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π)𝑙∈𝜌   

where the link gains are given by: 

𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) = 𝑣(𝐲𝑙 , Π) − 𝑣(𝐱𝑙 , Π) 

Table 4.2: Comparison between the exact and the approximate state-dependent reward models. 

the calculation of the rate 𝑅(Π) is performed as follows. First, besides the policy Π, the parameters (𝑜, 𝑑)𝑗, 

𝜆𝑗, µ𝑗
−1, 𝑏𝑗, Γ𝑗, and 𝑟𝑗 are defined. Second, for each link, these parameters and the link capacity 𝐶𝑙 are used 

to calculate the state-space Ω𝐱
𝑙  (every state in Ω𝐱

𝑙  must fulfil the spectrum contiguity constraint). Third, the 
linear system for every link is defined from Equation (4.14a) based on the decisions of the policy Π. Then 

each system is solved for  𝑅𝑙(Π) and the values 𝑣(𝐱𝑙 , Π). Finally, Equation (4.6) is used to calculate 𝑅(Π) 

as the sum of the 𝐿 reward rates  𝑅𝑙(Π). Compared to the exact model, which only requires the solution 
of a linear system, the approximate approach involves 𝐿 independent linear systems. However, those 

systems have cardinalities |Ω𝐱
𝑙 | ≪ |Ω𝐱|, which to some extent alleviate the computational requirements 

needed to estimate the network reward rate 𝑅(Π). 
From the exact state-dependent model derived in Chapter 3, we know that when a class-j connection 

gets admission in state 𝐱, it brings a short-term reward 𝑟𝑗 and a long-term reward 𝑔𝑗(𝐲, 𝐱, Π). Under the 

link independence assumption, from Equation (4.8) we have that 𝑔𝑗(𝐲, 𝐱, Π) is approximated as: 

𝑔𝑗(𝐲, 𝐱, Π)  ≈ ∑ 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π)𝑙∈𝜌                                                 (4.15) 

i.e. 𝑔𝑗(𝐲, 𝐱, Π) is simply the sum of the long-term rewards that the connection brings to the links in the 

path 𝜌 that it uses. Equation (4.15) implicitly assumes that any carried connection affects the network 

reward process by solely changing the rewards of the links in 𝜌.  
In Table 4.2 we compare the exact reward model studied in Chapter 3 and the approximate model that 

uses the link independence assumption. We have previously argued that the drawback of the exact model 
is that for most real networks the cardinality |Ω𝐱| is large enough as to preclude the calculation of 𝑅(Π) 
and the values 𝑣(𝐱, Π). This may also be the case for the link state-spaces in the approximate reward model 
(see Example 3.18 in Chapter 3).  To circumvent this problem, an alternative is to calculate the link reward 

rates  𝑅𝑙(Π) by defining linear systems in the link macrostate-spaces Ω𝐧
𝑙  rather than in Ω𝐱

𝑙 .   

4.2. Macrostate-Dependent Network Reward Model 

In this section we formulate an approximate, macrostate-dependent network reward model based on a 

simplification of the state-dependent link model in Equation (4.14a). The purpose is to calculate the link 

reward rate  𝑅𝑙(Π) as a function of the link macrostates. Since the macrostate-space Ω𝐧
𝑙  has a cardinality 

|Ω𝐧
𝑙 | ≪ |Ω𝐱

𝑙 |, the computational complexity of the state-dependent model (for large networks) is avoided, 

which makes the reward maximization problem, under the link independence assumption, solvable. 

Any link state transition 𝐱𝑙 → 𝐲𝑙 is caused either by the admission or departure of a connection. These 
two events manifest through changes in the traffic carried by the link. This traffic was defined in Chapter 

3 as the link macrostate 𝐧𝑙 = (𝑛1
𝑙 , … , 𝑛𝑗

𝑙 , … , 𝑛𝐽
𝑙), where 𝑛𝑗

𝑙 is the number of carried class-j connections. 

Let 𝛅𝑗
𝑙 be a 𝐽-dimensional vector with a one in position 𝑗 and zeros in the other positions, and let us assume 

that the link state 𝐱𝑙 defines a carried traffic 𝐧𝑙 . If the transition 𝐱𝑙 → 𝐲𝑙 is caused by a class-j arrival, the 

carried traffic changes as  𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙 =  (𝑛1

𝑙 , … , 𝑛𝑗
𝑙 + 1, … , 𝑛𝐽

𝑙). Otherwise, if the  transition  originates  



Approximate Approach to Online Resource Allocation 48 

 

Figure 4.3: State and macrostate spaces for a single-link network that serves two connection classes. 

from a class-j departure, the carried traffic varies as 𝐧𝑙 → 𝐧𝑙 − 𝛅𝑗
𝑙 = (𝑛1

𝑙 , … , 𝑛𝑗
𝑙 − 1, … , 𝑛𝐽

𝑙). In both cases, 

the macrostates 𝐧𝑙 + 𝛅𝑗
𝑙 and 𝐧𝑙 − 𝛅𝑗

𝑙 are defined by their corresponding destination states 𝐲𝑙. In Chapter 

3, it was also shown that any link macrostate 𝐧𝑙  is explicitly defined by a sub-set of network states 𝐱, i.e. 

there can be different spectrum configurations 𝐱 that define the same macrostate 𝐧𝑙 , and thereby different 

link states 𝐱𝑙 may represent the same traffic load 𝐧𝑙 . Let X̂𝐧
𝑙  be the set of link states 𝐱𝑙 that yield the carried 

traffic 𝐧𝑙 . Then we have that the macrostate transitions 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙   and 𝐧𝑙 → 𝐧𝑙 − 𝛅𝑗

𝑙  need not be 

caused by a unique transition 𝐱𝑙 → 𝐲𝑙. In general, the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  can be caused by any of the 

possible link state transitions 𝐱𝑙 → 𝐲𝑙, such that  𝐱𝑙 ∈ X̂𝐧
𝑙  and 𝐲𝑙 ∈ X̂

𝐧+𝛅𝑗
𝑙

𝑙 . Similarly, 𝐧𝑙 → 𝐧𝑙 − 𝛅𝑗
𝑙  can be 

caused by any of the possible link state transitions 𝐱𝑙 → 𝐲𝑙, such that  𝐱𝑙 ∈ X̂𝐧
𝑙  and 𝐲𝑙 ∈ X̂

𝐧−𝛅𝑗
𝑙

𝑙 . 

Example 4.3 Consider the single-link network shown in Fig. 4.3. It has a capacity of 𝐶𝑙 = 6 slots and 

serves two connection classes with bandwidths 𝑏1 = 2 and 𝑏2 = 4. The link state-space Ω𝐱
𝑙  consists of 18 

states 𝐱𝑙 denoted as 𝐱𝑙 = (𝑥1
𝑙 , 𝑥2

𝑙 , 𝑥3
𝑙 , 𝑥4

𝑙 , 𝑥5
𝑙 , 𝑥6

𝑙 ), which are indexed in Fig. 4.3 as 𝛘𝑖 , 𝑖 = 1, … ,18. Each 
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state fulfils the contiguity constraint. The link allocates resources with a policy Π = Π1 that consists of 36 

decisions, 18 for each connection class. The carried traffic is given by the macrostate 𝐧𝑙 = (𝑛1
𝑙 , 𝑛2

𝑙 ). Any 

feasible 𝐧𝑙  satisfies the capacity constraint ∑ 𝑏𝑗 ∙ 𝑛𝑗
𝑙2

𝑗=1 ≤ 6, and is defined by a sub-set of link states X̂𝐧
𝑙 . 

The 18 link states define the six macrostates in Ω𝐧
𝑙 = {(0,0), (1,0), (2,0), (3,0), (0,1), (1,1)}. For each, 

macrostate, Fig. 4.3 shows the corresponding set X̂𝐧
𝑙 . For example, the carried traffic 𝐧𝑙 = (1,1)  is 

observable when the link is in one of the two states in X̂(1,1)
𝑙 = {𝛘17, 𝛘18}. These states are defined as 

𝛘17 = (2, ∞, ∞, ∞, 1, ∞) and 𝛘18 = (1, ∞, 2, ∞, ∞, ∞). This illustrates that different link states 𝐱𝑙  may 

configure the same traffic load 𝐧𝑙 . 

Example 4.4 Consider the macrostate 𝐧𝑙 = (1,0) in Fig. 4.3, which is observable when the link is in 

any state in X̂(1,0)
𝑙 = {𝛘2, 𝛘3, 𝛘4, 𝛘5, 𝛘6}. The transition 𝐧𝑙 → 𝐧𝑙 + 𝛅1

𝑙 , i.e. (1,0) → (2,0), is caused by a 

class-1 arrival. Observe that the destination macrostate (2,0) is defined by the states in X̂
𝐧+𝛅1

𝑙
𝑙 = X̂(2,0)

𝑙 =

{𝛘7, 𝛘8, 𝛘9, 𝛘10, 𝛘11, 𝛘12}. By using the policy Π1 in Fig. 4.3, we have that the transition (1,0) → (2,0) can 

only be caused by any of the five transitions of the form  𝐱𝑙 → 𝐲𝑙, such that 𝐱𝑙 ∈ X̂(1,0)
𝑙  and 𝐲𝑙 ∈ X̂(2,0)

𝑙 . 

They are: 𝛘2 → 𝛘7, 𝛘3 → 𝛘10, 𝛘4 → 𝛘7, 𝛘5 → 𝛘8 and  𝛘6 → 𝛘9. For the sake of clarity, note that when a 
class-1 arrival occurs in state 𝛘2 = (1, ∞, 0,0,0,0), the policy in Fig. 4.3 says that the connection must be 
admitted in slots 3-4. This decision causes the transition 𝛘2 → 𝛘7, with 𝛘7 = (1, ∞, 1, ∞, 0,0), and thereby 
the traffic load (2,0) is now carried . By following this reasoning, the remaining aforementioned four state 
transitions are obtained. Similarly, we have that the transition (1,0) → (1,1), due to a class-2 arrival, can 

only be caused by any of the two transitions 𝛘2 → 𝛘18 or 𝛘6 → 𝛘17, with 𝛘17, 𝛘18 ∈ X̂(1,1)
𝑙 . Furthermore, 

a class-1 departure causes the transition (1,0) → (0,0), which may originate from the five transitions 𝛘2 →
𝛘1 , 𝛘3 → 𝛘1 , 𝛘4 → 𝛘1 , 𝛘5 → 𝛘1  and 𝛘6 → 𝛘1 , with 𝛘1 ∈ X̂(0,0)

𝑙 . This example evinces that, in general, 

macrostate transitions 𝐧𝑙 → 𝐧𝑙 ± 𝛅𝑗
𝑙 are not necessarily caused by a unique transition 𝐱𝑙 → 𝐲𝑙. 

For a given state 𝐱𝑙, Equation (4.14a) calculates 𝑅𝑙(Π) as a linear function of all transitions  𝐱𝑙 → 𝐲𝑙 

caused by arrivals and departures when the link is in state 𝐱𝑙. To simplify this approach, let us use the fact 

that different link states 𝐱𝑙 may represent the same traffic 𝐧𝑙 . Then, for every 𝐧𝑙 , we define an equation 

that calculates 𝑅𝑙(Π) as a linear function of all transitions 𝐧𝑙 → 𝐧𝑙 ± 𝛅𝑗
𝑙 . By doing so, the link states that 

may define the macrostate 𝐧𝑙 , i.e. all  𝐱𝑙 ∈ X̂𝐧
𝑙 , are no longer described by separate equations, but by a 

single one that implicitly takes into account all the transitions 𝐱𝑙 → 𝐲𝑙 that cause 𝐧𝑙 → 𝐧𝑙 ± 𝛅𝑗
𝑙. Therefore, 

let {𝐍𝑡
𝑙,π, 𝑡 ≥ 0} be a continuous-time stochastic process that models the time evolution of the macrostate 

of a link 𝑙 under a policy Π. The random variable 𝐍𝑡
𝑙,π

 takes its values from the macrostate-space Ω𝐧
𝑙  and 

thereby, 𝐍𝑡
𝑙,π

 is the traffic carried by the link at time 𝑡. By following the same analysis made for the exact 
network reward model in Section 3.3.2 - Chapter 3, we have that for a single-link network, the process 

{𝐍𝑡
𝑙,π, 𝑡 ≥ 0} yields reward at a rate  𝑅𝑙(Π) given by [RB16a, RB16b, RB17a]: 

 𝑅𝑙(Π) = 𝑞(𝐧𝑙) + ∑ 𝜆𝑗
𝑙(𝐧𝑙 , Π) ∙ [𝑣(𝐧𝑙 + 𝛅𝑗

𝑙 , Π) − 𝑣(𝐧𝑙 , Π)]𝐽
𝑗=1 +  

∑ 𝑛𝑗
𝑙 ∙ µ𝑗 ∙ [𝑣(𝐧𝑙 − 𝛅𝑗

𝑙 , Π) − 𝑣(𝐧𝑙 , Π)]𝐽
𝑗=1          , 𝐧𝑙 ∈ Ω𝐧

𝑙       (4.16a) 

The first summation is the contribution to  𝑅𝑙(Π) owing to connection requests which arrive at the link 

in macrostate 𝐧𝑙 . Connections arrive at a macrostate-dependent rate 𝜆𝑗
𝑙(𝐧𝑙 , Π), which is implicitly defined 

(as it will be shown in Section 4.3) by the arrival rates 𝜆𝑗
𝑙(𝐱𝑙 , Π) and 𝜆𝑗

𝑙(Π). The second summation is the 

contribution to the link reward rate due to departures in macrostate 𝐧𝑙 . Furthermore, 𝑞(𝐧𝑙) is the rate at  

which the link yields reward in macrostate 𝐧𝑙  and is given by [RB16a, RB16b, RB17a]: 

𝑞(𝐧𝑙) = ∑ 𝑟𝑗
𝑙 ∙ 𝑛𝑗

𝑙 ∙ µ𝑗
𝐽
𝑗=1                                                    (4.16b) 

where 𝑛𝑗
𝑙 ∙ µ𝑗 is the termination rate of class-j traffic in macrostate 𝐧𝑙 . Moreover, in Equation (4.16a), 

𝑣(𝐧𝑙 , Π) is the transient reward value for having set the link in macrostate 𝐧𝑙  at time 𝑡o . Under the 

macrostate-dependent description, we obtain two equations analogous to Equations (4.14d)-(4.14e): 

𝑉(𝐧𝑙 , Π, 𝑡) =  𝑅𝑙(Π) ∙ 𝑡 + 𝑣(𝐧𝑙 , Π)    , 𝐧𝑙 ∈ Ω𝐧
𝑙                                     (4.16c) 

𝑔𝑗
𝑙 (𝐧𝑙 , Π) = 𝑉(𝐧𝑙 + 𝛅𝑗

𝑙 , Π, 𝑡) − 𝑉(𝐧𝑙 , Π, 𝑡) = 𝑣(𝐧𝑙 + 𝛅𝑗
𝑙 , Π) − 𝑣(𝐧𝑙 , Π)               (4.16d) 

with 𝑉(𝐧𝑙 , Π, 𝑡) being the reward expected at 𝑡 ≫ 𝑡0, if the link was in macrostate 𝐧𝑙  at 𝑡0. Furthermore, 

Equation (4.16d) defines 𝑔𝑗
𝑙 (𝐧𝑙 , Π) as the macrostate-dependent link reward gain which is the long-term  
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Figure 4.4: System of linear equations in the state-dependent model for the link in Fig. 4.3. 

reward that a class-j connection brings to the link if it gets admission in macrostate 𝐧𝑙 . From this gain, 

we approximate the state-dependent network reward gain 𝑔𝑗(𝐲, 𝐱, Π) as: 

𝑔𝑗(𝐲, 𝐱, Π)  ≈ ∑ 𝑔𝑗
𝑙 (𝐧𝑙 , Π)𝑙∈𝜌                                                 (4.16e) 

i.e. to calculate 𝑔𝑗(𝐲, 𝐱, Π), it is only necessary to know the macrostate-dependent gains of the links in 

the path 𝜌 used by the connection. 

Equation (4.16a) defines a linear system with |Ω𝐧
𝑙 | equations. For all macrostates 𝐧𝑙 , the parameters 

𝑞(𝐧𝑙), 𝜆𝑗
𝑙(𝐧𝑙 , Π) and 𝜇𝑗 are known. Therefore, under the macrostate-dependent description of  𝑅𝑙(Π), the 

calculation of the network reward rate 𝑅(Π) is performed as follows. First, the parameters (𝑜, 𝑑)𝑗, 𝜆𝑗, µ𝑗
−1, 

𝑏𝑗, Γ𝑗, and 𝑟𝑗 are defined along with the policy Π. Second, for each link, these parameters and the link 

capacity 𝐶𝑙  are used to calculate the macrostate-space Ω𝐧
𝑙  (every macrostate must fulfil the capacity 

constraint ∑ 𝑏𝑗 ∙ 𝑛𝑗
𝑙𝐽

𝑗=1 ≤ 𝐶𝑙). Third, for every link, the linear system is defined from Equation (4.16a) 

based on the decisions of the policy Π. Then each system is solved for  𝑅𝑙(Π) and the values 𝑣(𝐧𝑙 , Π). 

Finally, Equation (4.6) is used to calculate 𝑅(Π) as the sum of the link rates  𝑅𝑙(Π).  
Example 4.5 For the flex-grid link in Fig. 4.3, the policy Π1 uses first-fit (FF) as spectrum allocation 

policy [TAK+14]. In an ordered spectrum grid with 𝐶𝑙  slots indexed as 1,2, … , 𝐶𝑙, first-fit assigns the 
available 𝑏𝑗 adjacent slots with the lowest indices in the grid. Consider the link state 𝛘4 = (0,0,1, ∞, 0,0). 

The policy decision Π1(𝛘4, 1) says that if a class-1 arrival occurs in state 𝛘4 , it must be admitted by 
allocating the slots 1-2, thereby causing the transition 𝛘4 → 𝛘7 = (1, ∞, 1, ∞, 0,0). In this case, the slots 
1-2 are the two available adjacent slots with the lowest indices in the grid. For this spectrum allocation 
policy, we present in Fig. 4.4 the system of 18 linear equations defined by Equation (4.14a). Let us check 

the equation for 𝛘4. In this state, the link only carries a class-1 connection, i.e.  𝐧𝑙 = (1,0). Then the link 

earns reward at a rate 𝑞(𝛘4) = 𝑟1
𝑙 ∙ 𝜇1 (ru/uot). Only two transitions are possible in 𝛘4, namely, 𝛘4 → 𝛘1 

which occurs when the carried connection departs, and 𝛘4 → 𝛘7, due to a class-1 arrival. As seen in Fig.  

 



Approximate Approach to Online Resource Allocation 51 

 

Figure 4.5: System of linear equations in the macrostate-dependent model for the link in Fig. 4.3. 

4.3, class-2 arrivals are rejected (i.e. Π1(𝛘4, 2) = 𝐷𝑜 𝑛𝑜𝑡 𝑎𝑑𝑚𝑖𝑡) as in 𝛘4 there are no four available slots 
that fulfil the contiguity constraint. Since only two transitions are possible, in Equation (4.14a) we have 
that Γ𝛘4

1+ = {𝛘7} and Γ𝛘4
2+ = {𝜙} for the first double summation. Similarly, Γ𝛘4

1− = {𝛘1}  and Γ𝛘4
1− = {𝜙} for 

the second one. Hence, for 𝛘4, we have that  𝑅𝑙(Π1) = 𝑟1
𝑙 ∙ 𝜇1 + 𝜆1

𝑙 (𝛘4, Π1) ∙ [𝑣(𝛘7, Π1) − 𝑣(𝛘4, Π1)] +
𝜇1 ∙ [𝑣(𝛘1, Π1) − 𝑣(𝛘4, Π1)]. To calculate  𝑅𝑙(Π1), the linear system in Fig. 4.4 is solved for  𝑅𝑙(Π1) and 
the 18 values 𝑣(𝛘𝑖 , Π1). 

Example 4.6 For the flex-grid link in Fig. 4.3, the macrostate-dependent reward model is defined by 
a linear system with six equations. That system is defined in Fig. 4.5, where the macrostates are indexed 
as 𝐧𝑖, 𝑖 = 1, … ,6. For each macrostate 𝐧𝑖, the corresponding equation describes the effect that the states 

in X̂𝐧𝑖
𝑙  have on  𝑅𝑙(Π1). To illustrate this, let us consider the macrostate 𝐧2 = (1,0). In the state-dependent 

model, the five states that configure this macrostate (i.e. those in X̂(1,0)
𝑙 = {𝝌2, 𝝌3, 𝝌4, 𝝌5, 𝝌6}) define five 

equations in Fig. 4.4. In the macrostate-dependent model, these five equations are simplified by the 

equation for 𝐧2  shown in Fig. 4.5, namely  𝑅𝑙(Π1) = 𝑟1
𝑙 ∙ µ1 + 𝜆1

𝑙 (𝐧2, Π1) ∙ [𝑣(𝐧3, Π1) − 𝑣(𝐧2, Π1)] +
𝜆2

𝑙 (𝐧2, Π1) ∙ [𝑣(𝐧6, Π1) − 𝑣(𝐧2, Π1)] + µ1 ∙ [𝑣(𝐧1, Π1) − 𝑣(𝐧2, Π1)]. Observe that the five equations in 

Fig. 4.4, for the states in X̂(1,0)
𝑙 , define 𝑞(𝛘𝑖) = 𝑟1

𝑙 ∙ 𝜇1 which coincides with 𝑞(𝐧2) = 𝑟1
𝑙 ∙ 𝜇1. Furthermore, 

notice that the simplified equation is a linear function of the transitions 𝐧2 → 𝐧2 ± 𝛅𝑗
𝑙. These transitions 

were defined in Example 4.4, and they are: 𝐧2 = (1,0) → 𝐧3 = (2,0), 𝐧2 = (1,0) → 𝐧6 = (1,1) and 
𝐧2 = (1,0) → 𝐧1 = (0,0). From this, the reward change caused by the transition 𝐧2 → 𝐧3, i.e. by the 
admission of a class-1 connection, is given in the macrostate equation by 𝑣(𝐧3, Π1) − 𝑣(𝐧2, Π1). This 
reward change can be caused by any of the five state transitions studied in Example 4.4, namely, 𝛘2 → 𝛘7, 
𝛘3 → 𝛘10 , 𝛘4 → 𝛘7 , 𝛘5 → 𝛘8  and  𝛘6 → 𝛘9. These transitions originate from class-1 requests admitted 
when the link is in macrostate 𝐧2 = (1,0) . A similar interpretation follows for the reward changes 
𝑣(𝐧6, Π1) − 𝑣(𝐧2, Π1) and 𝑣(𝐧1, Π1) − 𝑣(𝐧2, Π1). With the macrostate-dependent description, the link 

reward rate  𝑅𝑙(Π1) is calculated by solving the linear system in Fig. 4.5 for  𝑅𝑙(Π1) and the six values 
𝑣(𝐧𝑖 , Π1). This example shows the reduction that the macrostate-dependent description has on the size of 
the linear system: from 18 equations in the state-dependent model to six equations defined in the set of 

macrostates Ω𝐧
𝑙 . 

4.2.1 Properties of the Macrostate-Dependent Reward Model 
The macrostate-dependent model is an approximation to the state-dependent description. The accuracy 

of the approximation depends on the estimation of the rates 𝜆𝑗
𝑙(𝐧𝑙 , Π), as they determine the transition 

rates between the macrostates in Ω𝐧
𝑙 . This issue will be studied in Section 4.3, where it will be shown that 

𝜆𝑗
𝑙(𝐧𝑙 , Π) implicitly quantifies the effect that the contiguity constraint has on the process {𝐍𝑡

𝑙,π, 𝑡 ≥ 0}. 

This process defines the following properties for the macrostate-dependent model described by Equations 

(4.16): 
 

1. Every macrostate 𝐧𝑙 ∈ Ω𝐧
𝑙  is defined by a sub-set of link states 𝐱𝑙 ∈ X̂𝐧

𝑙  that fulfil the contiguity 

and capacity constraints. 
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2. For all 𝐱𝑙 ∈ X̂𝐧
𝑙 , it cannot be stated that the equality 𝑣(𝐱𝑙 , Π) = 𝑣(𝐧𝑙 , Π) always holds. Although 

the states in  X̂𝐧
𝑙  represent the same traffic load 𝐧𝑙 , they define different spectrum configurations, 

and thus, they may have different effects on the link reward process. Therefore, for any  𝐱𝑙, 𝐳𝑙 ∈
X̂𝐧

𝑙  , it is possible that 𝑣(𝐱𝑙 , Π) ≠ 𝑣(𝐳𝑙 , Π), and thereby 𝑣(𝐧𝑙 , Π) ≠  𝑣(𝐱𝑙 , Π) ≠ 𝑣(𝐳𝑙 , Π). 

 

3. The purpose of the macrostate-dependent reward model is to circumvent the complexity of the 

state-dependent description. This is accomplished by calculating a unique value 𝑣(𝐧𝑙 , Π) that 

represents all the states in X̂𝐧
𝑙 . The advantage of this strategy is that it makes the linear system 

in Equation (4.16a) solvable. The drawback is that from the solution to the system, the values 

𝑣(𝐱𝑙 , Π) of the states in X̂𝐧
𝑙  remain unknown. The transient values 𝑣(𝐧𝑙 , Π) are then used as an 

approximation to the values 𝑣(𝐱𝑙 , Π) of the states in X̂𝐧
𝑙 . 

 
4. If a class-j connection is admitted to link 𝑙 in state 𝐱𝑙, such that it causes the transition 𝐱𝑙 → 𝐲𝑙, 

it brings to the link a short-term reward 𝑟𝑗
𝑙  and a long-term reward 𝑔𝑗

𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) = 𝑣(𝐲𝑙 , Π) −

𝑣(𝐱𝑙 , Π). Under the macrostate-dependent reward model, the actual reward 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) cannot 

be calculated, as the values 𝑣(𝐱𝑙 , Π)  and 𝑣(𝐲𝑙 , Π) are unknown. Instead, it is approximated as  

𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) ≈ 𝑔𝑗

𝑙 (𝐧𝑙 , Π) = 𝑣(𝐧𝑙 + 𝛅𝑗
𝑙 , Π) − 𝑣(𝐧𝑙 , Π). Therefore, the assumption is made that 

all the possible link state transitions 𝐱𝑙 → 𝐲𝑙  that cause the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  yield, on 

average, the same long-term reward gain 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) ≈ 𝑔𝑗

𝑙 (𝐧𝑙 , Π).  

 

5. From the link independence assumption, it follows that the state-dependent network reward gain 

now approximates as 𝑔𝑗(𝐲, 𝐱, Π)  ≈ ∑ 𝑔𝑗
𝑙 (𝐧𝑙 , Π)𝑙∈𝜌 . It is interpreted as follows: if at time 𝑡0 the 

network is in state 𝐱 and a class-j connection is admitted to a path 𝜌 ∈ Γ𝑗, it causes the transition 

𝐱 → 𝐲, which implies that every link 𝑙 in 𝜌 undergoes a macrostate transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙 that 

is implicitly caused by a link state move 𝐱𝑙 → 𝐲𝑙. As a result, the network earns an immediate 

(or short-term) reward 𝑟𝑗, from which 𝑟𝑗
𝑙  (ru) are earned through the link 𝑙 in the path.  Besides 

𝑟𝑗 , the connection brings a long-term reward 𝑔𝑗(𝐲, 𝐱, Π), which is the sum of the long-term 

reward contributions on each link in 𝜌. As with the approximate state-dependent model, it is 

assumed that a class-j connection only affects the network reward through the links of the path 

on which it is routed. 

4.2.2 The Value Iteration Algorithm 
As with the exact and the approximate state-dependent network reward models, the linear system defined 

by Equation (4.16a) can be solved by setting one of the transient values 𝑣(𝐧𝑙 , Π) to zero. Then a system 

with |Ω𝐧
𝑙 | equations and |Ω𝐧

𝑙 | unknowns is obtained that can be solved by standard linear algebra methods. 

An alternative solution method, known as the value iteration algorithm (VIA), has successfully been 

applied to reward-based routing in telephone and packet-switched systems [DM92, DM94, Dzi97]. The 

VIA and its properties are thoroughly studied in [Tij86], and a comprehensive formulation of this method 

for Markov decision processes is presented in [Dzi97] - appendix B. The idea behind the VIA is to avoid 

a direct solution of the linear system by using a numerical iteration procedure. The procedure reduces the 

computation time, thereby facilitating the implementation of the macrostate-dependent model for online 

resource allocation. To apply the VIA, the first step is to discretize Equation (4.16a). For this, observe 

that from Equation (4.16c) we have: 

𝑉(𝐧𝑙 , Π, 𝑡) − 𝑉(𝐧𝑙 , Π, 𝑡 − 1) =  𝑅𝑙(Π)      , 𝐧𝑙 ∈ Ω𝐧
𝑙                                 (4.17) 

Similarly, from Equation (4.16d): 

𝑉(𝐧𝑙 + 𝛅𝑗
𝑙 , Π, 𝑡 − 1) − 𝑉(𝐧𝑙 , Π, 𝑡 − 1) = 𝑣(𝐧𝑙 + 𝛅𝑗

𝑙 , Π) − 𝑣(𝐧𝑙 , Π)                    (4.18) 

Therefore, Equation (4.16a) can be re-written from these two equations as: 

𝑉(𝐧𝑙 , Π, 𝑡) − 𝑉(𝐧𝑙 , Π, 𝑡 − 1) = 𝑞(𝐧𝑙) + ∑ 𝜆𝑗
𝑙(𝐧𝑙 , Π) ∙ [𝑉(𝐧𝑙 + 𝛅𝑗

𝑙 , Π, 𝑡 − 1) − 𝑉(𝐧𝑙 , Π, 𝑡 − 1)]𝐽
𝑗=1 +  

∑ 𝑛𝑗
𝑙 ∙ µ𝑗 ∙ [𝑉(𝐧𝑙 − 𝛅𝑗

𝑙 , Π, 𝑡 − 1) − 𝑉(𝐧𝑙 , Π, 𝑡 − 1)]𝐽
𝑗=1 , 𝐧𝑙 ∈ Ω𝐧

𝑙  (4.19) 
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The discretization of Equation (4.19) is achieved by applying the uniformization technique explained in 

[Tij86], which consists in multiplying both sides of the equation by the minimum average sojourn time 

𝜏 attainable by a macrostate in Ω𝐧
𝑙 . This sojourn time can be calculated as:   

𝜏 =
1

∑ 𝜆𝑗
𝑙 (Π)𝐽

𝑗=1 + max
𝐧𝑙∈Ω𝐧

𝑙
∑ 𝑛𝑗

𝑙 ∙µ𝑗
𝐽
𝑗=1

                                                   (4.20) 

With the uniformization technique, the continuous-time stochastic process {𝐍𝑡
𝑙,π, 𝑡 ≥ 0} is modelled by 

an equivalent discrete-time process {𝐍𝑘
𝑙,π, 𝑘 = ℤ+} . For this process, let 𝑉(𝐧𝑙 , Π, 𝑘)  be the discrete 

version of 𝑉(𝐧𝑙 , Π, 𝑡). Then 𝑉(𝐧𝑙 , Π, 𝑘) is interpreted as the mean reward received by the link after 𝑘 

macrostate transitions with 𝐧𝑙  as starting macrostate. Therefore, the discrete version of Equation (4.19) 

reads as follows: 

𝑉(𝐧𝑙 , Π, 𝑘) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1) = 𝑞(𝐧𝑙) ∙ 𝜏 + 

                             ∑ 𝜆𝑗
𝑙(𝐧𝑙 , Π) ∙ 𝜏 ∙ [𝑉(𝐧𝑙 + 𝛅𝑗

𝑙 , Π, 𝑘 − 1) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1)]𝐽
𝑗=1 +   

∑ 𝑛𝑗
𝑙 ∙ µ𝑗 ∙ 𝜏 ∙ [𝑉(𝐧𝑙 − 𝛅𝑗

𝑙 , Π, 𝑘 − 1) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1)]𝐽
𝑗=1 , 𝐧𝑙 ∈ Ω𝐧 

𝑙   (4.21) 

which defines a recurrence relation, with 𝑘 being the iteration index. Notice that from Equation (4.17) 

[Dzi97]: 

lim
𝑘→∞

[𝑉(𝐧𝑙 , Π, 𝑘) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1)] →  𝑅𝑙(Π) ∙ τ                                  (4.22) 

The reward 𝑉(𝐧𝑙 , Π, 𝑘) is then calculated from Equation (4.21) as: 

𝑉(𝐧𝑙 , Π, 𝑘) = 𝑞(𝐧𝑙) ∙ τ + ∑ 𝜆𝑗
𝑙(𝐧𝑙 , Π) ∙ τ ∙ [𝑉(𝐧𝑙 + 𝛅𝑗

𝑙 , Π, 𝑘 − 1) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1)]𝐽
𝑗=1 +                          

∑ 𝑛𝑗
𝑙 ∙ µ𝑗 ∙ 𝜏 ∙ [𝑉(𝐧𝑙 − 𝛅𝑗

𝑙 , Π, 𝑘 − 1) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1)] + 𝑉(𝐧𝑙 , Π, 𝑘 − 1)𝐽
𝑗=1 , 𝐧𝑙 ∈ Ω𝐧 

𝑙  (4.23) 

Based on this, for a link 𝑙, the VIA is implemented to solve the linear system for  𝑅𝑙(Π) and the transient 

reward values 𝑣(𝐧𝑙 , Π) as follows [RB16b]: 

 

1. Define the parameter ϵ ≥ 0 as a scalar that denotes the relative accuracy with which  𝑅𝑙(Π) and 

the values 𝑣(𝐧𝑙 , Π) need to be estimated. 

 

2. Set 𝑘 = 0. For each macrostate 𝐧𝑙 ∈ Ω𝐧
𝑙  assign an arbitrary value to the reward 𝑉(𝐧𝑙 , Π, 0).  

 

3. Set 𝑘 = 𝑘 + 1. For each macrostate 𝐧𝑙 , determine 𝑉(𝐧𝑙 , Π, 𝑘) by calculating the right hand side 

of Equation (4.23). 

 

4. With the results obtained in the previous step, calculate the upper estimate of  𝑅𝑙(Π) ∙ τ as: 

𝑀𝑘 = max
𝐧𝑙∈Ω𝐧

𝑙
{𝑉(𝐧𝑙 , Π, 𝑘) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1)}                                (4.24) 

and the lower estimate of  𝑅𝑙(Π) ∙ τ as: 

mk = min
𝐧∈Ω𝐧

𝑙
{𝑉(𝐧𝑙 , Π, 𝑘) − 𝑉(𝐧𝑙 , Π, 𝑘 − 1)}                                 (4.25) 

5. If the upper and lower estimates obtained for  𝑅𝑙(Π) ∙ τ fulfil the inequality: 

(Mk − mk)/mk ≤ ϵ                                                (4.26) 

the iteration process is stopped. In this case, the approximate solution is: 

 𝑅𝑙(Π) ∙ τ ≅
𝑀𝑘+mk

2
                                                  (4.27) 
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and the transient reward values are calculated from: 

𝑣(𝐧𝑙 + 𝛅𝑗
𝑙 , Π) − 𝑣(𝐧𝑙 , Π) ≅ 𝑉(𝐧𝑙 + 𝛅𝑗

𝑙 , Π, 𝑘) − 𝑉(𝐧𝑙 , Π, 𝑘)                  (4.28) 

              If the inequality is not fulfilled, then go back to step tree, i.e. start a new iteration, and continue  

              until (Mk − mk)/mk ≤ ϵ.   

 
The VIA calculates an approximate solution for the linear system whose accuracy depends on the 

parameter ϵ. Independently of the reward values 𝑉(𝐧𝑙 , Π, 0) used for 𝑘 = 0, the VIA always converges, 
which is a consequence of the existence of the limit in Equation (4.22). The computational complexity of 

the VIA per iteration is quadratic in the number of macrostates, i.e. O(∝ |Ω𝐧
𝑙 |2). Moreover, the number of 

iterations required is polynomial in |Ω𝐧
𝑙 | (see [Tij86]). The VIA avoids the solution of the linear system 

by linear algebra methods which may be too slow under an online resource allocation scenario. 

4.2.3 Simplified Macrostate-Dependent Link Model 

The cardinality of Ω𝐧
𝑙  grows with the size (i.e. the number of components) of the link macrostates. That 

size equals the number of classes 𝐽 served by the network. The components 𝑛𝑗
𝑙 of  𝐧𝑙 = (𝑛1

𝑙 , … , 𝑛𝑗
𝑙 , … , 𝑛𝐽

𝑙) 

have two properties. First, 𝑛𝑗
𝑙 = 0 for all classes which can never be carried by the link, i.e. for all 𝑗 such 

that 𝑗 ∉ J𝑙. Otherwise, 𝑛𝑗
𝑙 ≥ 0. Secondly, there can be two or more classes in J𝑙 with the same bandwidth 

𝑏𝑗 and holding time µ𝑗
−1. These two properties can be used to define a new macrostate-space Ω𝐧

𝑙  with 

macrostates of the form �̂�𝑙 = (�̂�1
𝑙 , … , �̂�𝑘

𝑙 , … , �̂�𝐾
𝑙 ), such that 𝐾 < 𝐽, which implies |Ω𝐧

𝑙 | < |Ω𝐧
𝑙 |. This is 

accomplished in two steps. First, the classes 𝑗 ∉ J𝑙 are not included in �̂�𝑙  as they play no role in the link 

reward process. Secondly, the classes with the same bandwidth 𝑏𝑗 and holding time µ𝑗
−1 are aggregated 

into a new class 𝑘, such that 𝑏𝑘 = 𝑏𝑗 and µ𝑘
−1 = µ𝑗

−1. The new equivalent class-𝑘 has then a macrostate-

dependent arrival rate [RB16d, RB17a]: 

𝜆𝑘
𝑙 (�̂�𝑙 , Π) = ∑ 𝜆𝑗

𝑙(𝐧𝑙 , Π)𝑗∈Λ𝑘
                                                   (4.29) 

where Λ𝑘 is the set of classes with the same bandwidth and holding time, which are represented by the 

equivalent class 𝑘. This class has a reward parameter 𝑟𝑘
𝑙  calculated as a weighted average over the carried 

traffics 𝐴𝑐𝑗
𝑙 , 𝑗 ∈ Λ𝑘:   

𝑟𝑘
𝑙 =

∑ 𝑟𝑗
𝑙∙𝐴𝑐𝑗

𝑙
𝑗∈Λ𝑘

∑ 𝐴𝑐𝑗
𝑙

𝑗∈Λ𝑘

                                                              (4.30) 

With the new macrostate-space Ω𝐧
𝑙 , Equation (4.16a) is redefined as follows: 

 𝑅𝑙(Π) = 𝑞(�̂�𝑙) + ∑ 𝜆𝑘
𝑙 (�̂�𝑙 , Π) ∙ [𝑣(�̂�𝑙 + 𝛅𝑘

𝑙 , Π) − 𝑣(�̂�𝑙 , Π)]𝐾
𝑘=1 +  

∑ �̂�𝑘
𝑙 ∙ µ𝑘 ∙ [𝑣(�̂�𝑙 − 𝛅𝑘

𝑙 , Π) − 𝑣(�̂�𝑙 , Π)]𝐾
𝑘=1          , �̂�𝑙 ∈ Ω𝐧

𝑙      (4.31a) 

where: 

𝑞(�̂�𝑙) = ∑ 𝑟𝑘
𝑙 ∙ �̂�𝑘

𝑙 ∙ µ𝑗
𝐾
𝑘=1                                                    (4.31b) 

The equivalent linear system defined by Equation (4.31a) can be solved by the VIA for  𝑅𝑙(Π) and the 

values 𝑣(�̂�𝑙 , Π). These values define the equivalent gains (or long-term rewards): 

𝑔𝑘
𝑙 (�̂�𝑙 , Π) = 𝑣(�̂�𝑙 + 𝛅𝑘

𝑙 , Π) − 𝑣(�̂�𝑙 , Π)                                         (4.31c) 

which have the same interpretation as 𝑔𝑗
𝑙 (𝐧𝑙 , Π), i.e. the gain 𝑔𝑘

𝑙 (�̂�𝑙 , Π) is the long-term reward that an 

admitted connection of class 𝑗 ∈ Λ𝑘   brings to the link when it arrives in macrostate �̂�𝑙 . 

Example 4.7 Consider the network in Fig. 4.1. For each link 𝑙, the macrostate 𝐧𝑙  has size 12, as the 

network serves 12 connection classes. If all links have the same capacity 𝐶𝑙 = 6, we have |Ω𝐧
𝑙 | > 100. 

From the parameters shown in Fig. 4.1, on each link 𝑙, classes 1-6 can be aggregated into an equivalent 
class 𝑥 with b𝑥 = 2 and µ𝑥

−1 = 1, where Λ𝑥 = {1,2,3,4,5,6}. Similarly, classes 7-12 are aggregated into 
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a class 𝑦 with b𝑦 = 4  and µ𝑦
−1 = 1, where Λ𝑦 = {7,8,9,10,11,12}. Each link is now described by the 

macrostate �̂�𝑙 = (�̂�𝑥
𝑙 , �̂�𝑦

𝑙 ). Under this equivalent description, a link 𝑙 has the state and macrostate-spaces 

shown in Fig. 4.3. The links are then modelled by systems of |Ω𝐧
𝑙 | = 6 linear equations from which  𝑅𝑙(Π) 

and the values 𝑣(�̂�𝑙 , Π) are calculated. If the network allocates resources with the policy Π1 in Fig. 4.3, 
we have that Equation (4.31a) defines the linear system shown in Fig. 4.5 (where the macrostates 𝐧𝑖 

represent the macrostates in Ω𝐧
𝑙 ). By solving the system, the gains 𝑔𝑥

𝑙 (�̂�𝑙 , Π) and 𝑔𝑦
𝑙 (�̂�𝑙 , Π) are calculated 

from Equation (4.31c). The reward gain 𝑔𝑥
𝑙 (�̂�𝑙 , Π) is interpreted as the long-term reward that an admitted 

connection of class 𝑗 ∈ Λ𝑥 = {1,2,3,4,5,6}  brings to the link when it arrives in macrostate �̂�𝑙. 
The class aggregation procedure that we have outlined was originally proposed in [DM89] and was 

further investigated in [DM92, DM94] for reward-based routing in high-speed data networks. In particular, 
[DM92] presents results (based on a detailed performance analysis) that show that the class aggregation 
method simplifies computational complexity without degrading the performance. This renders the method 

suitable for the reduction of the cardinality |Ω𝐧
𝑙 |  in optical networks that serve a large number of 

connection classes. 

4.3. Online Estimation of Link Arrival Rates 

The exogenous arrival rate 𝜆𝑗 and the policy Π define the link arrival rates 𝜆𝑗
𝑙(Π), 𝜆𝑗

𝑙(𝐱𝑙 , Π) and 𝜆𝑗
𝑙(𝐧𝑙 , Π). 

An accurate estimation of these rates is crucial for the implementation of either the state or the macrostate 

dependent reward models. Instead of using analytical methods to calculate the arrival rates, we propose 

an online estimation procedure that differs from existing methods, e.g. [DM89, DM92, DM94, Kri91, 

Dzi97], in that the effect of the contiguity constraint is considered. An online estimation is advantageous 

as it confers the PIA the ability of adapting the policy decisions to changing traffic conditions. 

4.3.1 The Policy and Macrostate-Dependent Link Arrival Rates 

Consider an optical network in state 𝐱 = (𝐱1, … , 𝐱𝑙 , … , 𝐱𝐿), where the link 𝑙 is in state 𝐱𝑙. The transition 

𝐱𝑙 → 𝐲𝑙 may originate from a class-j arrival if the policy decision Π(𝐱, 𝑗) admits the connection on a 

lightpath that causes the transition 𝐱 → 𝐲, with 𝐲 = (𝐲1, … , 𝐲𝑙 , … , 𝐲𝐿). (Note that this lightpath must be 

routed on a path 𝜌, such that 𝑙 ∈ 𝜌.) In that case, the transition 𝐱𝑙 → 𝐲𝑙 has a rate 𝜆𝑗
𝑙(𝐱𝑙 , Π) equal to 𝜆𝑗

𝑙(Π), 

i.e. the rate at which class-j connections arrive at the link. Otherwise, i.e. if Π(𝐱, 𝑗) rejects class-j arrivals, 

the rate is zero. Therefore, we have: 

𝜆𝑗
𝑙(𝐱𝑙 , Π) = {

𝜆𝑗
𝑙(Π),         if the policiy decision Π(𝐱, 𝑗) causes the transition 𝐱𝑙 → 𝐲𝑙  

0,            if the policy decision Π(𝐱, 𝑗) rejects class 𝑗 requests
    (4.32) 

Example 4.8 Consider the single-link network in Fig. 4.3. Class-1 and class-2 connections arrive at 

rates 𝜆1
𝑙 (Π1) and 𝜆2

𝑙 (Π1), respectively. The rates 𝜆𝑗
𝑙(𝛘𝑖 , Π1) are derived from Equation (4.32) by checking 

the transitions that class-j arrivals cause in every link state 𝛘𝑖 . Observe that those transitions are given by 

the policy decisions Π1(𝛘𝑖 , 1) and Π1(𝛘𝑖 , 2). As an example, for 𝛘2, we have that 𝜆1
𝑙 (𝛘2, Π1) = 𝜆1

𝑙 (Π1) 

and 𝜆2
𝑙 (𝛘2, Π1) = 𝜆2

𝑙 (Π1), as both connection classes can be admitted in this state. Then 𝜆1
𝑙 (𝛘2, Π1) and 

𝜆2
𝑙 (𝛘2, Π1) are, respectively, the rates of the transitions 𝛘2 → 𝛘7 and 𝛘2 → 𝛘18. (Both states 𝛘7 and 𝛘18 

are implicitly defined by the policy decisions in Fig. 4.3.) An interesting case occurs for 𝛘3 , where 

𝜆1
𝑙 (𝛘3, Π1) = 𝜆1

𝑙 (Π1) and 𝜆2
𝑙 (𝛘3, Π1) = 0. Since 𝛘3 = (0,1, ∞, 0,0,0), then 𝜆2

𝑙 (𝛘3, Π1) must be zero, as 
the admission of a class-2 connection would violate the spectrum contiguity constraint (i.e. in this state 
there are no four adjacent slots for incoming class-2 traffic). 

The rate 𝜆𝑗
𝑙(𝐧𝑙 , Π) is the average rate at which link 𝑙 jumps from the macrostate 𝐧𝑙  to 𝐧𝑙 + 𝛅𝑗

𝑙. While 

in macrostate 𝐧𝑙 , the actual rate depends on the link state 𝐱𝑙 ∈ X̂𝐧
𝑙  that configures 𝐧𝑙 . There can be states 

in X̂𝐧
𝑙  that block class-j arrivals. For those states, the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗

𝑙  is forbidden and thus, the rate 

is zero. Otherwise, the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  occurs at the rate 𝜆𝑗

𝑙(𝐱𝑙 , Π) of the state 𝐱𝑙  that does not 

block class-j traffic. Thus, let 𝑃𝐧,𝑗
𝑙  be the probability of observing the macrostate 𝐧𝑙  defined by a non-

blocking state 𝐱𝑙 in X̂𝐧
𝑙  for class-j traffic, then 𝜆𝑗

𝑙(𝐧𝑙 , Π) is calculated as the weighted average: 

𝜆𝑗
𝑙(𝐧𝑙 , Π) = 𝜆𝑗

𝑙 (Π) ∙  𝑃𝐧,𝑗
𝑙                                                      (4.33) 

which follows from Equation (4.32), as 𝜆𝑗
𝑙(𝐱𝑙 , Π) = 𝜆𝑗

𝑙(Π) for all states 𝐱𝑙 ∈ X̂𝐧
𝑙  that allow the macrostate 

transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙 . Hence, the macrostate-dependent arrival rate fulfils the inequality: 
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𝜆𝑗
𝑙(𝐧𝑙 , Π) ≤ 𝜆𝑗

𝑙 (Π)                                                           (4.34) 

The equality is satisfied when all the states in X̂𝐧
𝑙  allow the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗

𝑙. In that case it is easy 

to verify that  𝑃𝐧,𝑗
𝑙 = 1. 

Example 4.9 When the single-link network in Fig. 4.3 is in macrostate 𝐧𝑙 = (1,0), the rates of the 

transitions 𝐧𝑙 → 𝐧𝑙 + 𝛅1
𝑙 , i.e. (1,0) → (2,0), and 𝐧𝑙 → 𝐧𝑙 + 𝛅2

𝑙 , i.e. (1,0) → (1,1), depend on the state 

𝛘𝑖 ∈ X̂(1,0)
𝑙 = {𝛘2, 𝛘3, 𝛘4, 𝛘5, 𝛘6} that defines 𝐧𝑙 = (1,0). According to the policy Π1, class-1 arrivals are 

always admitted in all 𝛘𝑖 ∈ X̂(1,0)
𝑙 , i.e. the five states in X̂(1,0)

𝑙  have at least 𝑏1 = 2 free adjacent slots for 

class-1 traffic. Thus, for each 𝛘𝑖 ∈ X̂(1,0)
𝑙 , the transition (1,0) → (2,0) has a rate 𝜆1

𝑙 (𝛘𝑖 , Π1) = 𝜆1
𝑙 (Π1). By 

calculating from Equation (4.33) the weighted average over the five states in X̂(1,0)
𝑙 , we have that  

𝜆1
𝑙 (𝐧𝑙 , Π1) = 𝜆1

𝑙 (Π1) ∙  𝑃(1,0),1
𝑙 = 𝜆1

𝑙 (Π1), where 𝑃(1,0),1
𝑙 = 1, as the traffic (1,0) will always be observed 

in non-blocking states for class-1 traffic. For class-2 arrivals, the transition (1,0) → (1,1) is only possible 

in states 𝛘2 and 𝛘6. These two states define the rates 𝜆2
𝑙 (𝛘2, Π1) = 𝜆2

𝑙 (Π1) and 𝜆2
𝑙 (𝛘6, Π1) = 𝜆2

𝑙 (Π1). The 

remaining three states in X̂(1,0)
𝑙 , namely, 𝛘3, 𝛘4, 𝛘5, block class-2 arrivals (as they do not have four free 

adjacent slots for class-2 traffic). For these states, the transition (1,0) → (1,1) has rate zero. Therefore,  

𝜆2
𝑙 (𝐧𝑙 , Π1) = 𝜆2

𝑙 (Π1) ∙  𝑃(1,0),2
𝑙 , where 𝑃(1,0),2

𝑙  is the probability of observing (1,0) defined by the states 𝛘2 

or 𝛘6. 

4.3.2 Online Estimation Procedure  

From Equations (4.9)-(4.10), it follows that the arrival rate 𝜆𝑗
𝑙(Π) can be calculated as: 

𝜆𝑗
𝑙(Π) =

𝜇𝑗∙𝐴c𝑗
𝑙

(1−𝐵𝑗
𝑙)

                                                             (4.35) 

Therefore, the policy and macrostate-dependent arrival rate 𝜆𝑗
𝑙(𝐧𝑙 , Π) given by Equation (4.33) can be 

calculated as: 

𝜆𝑗
𝑙(𝐧𝑙 , Π) =

𝜇𝑗∙𝐴c𝑗
𝑙

(1−𝐵𝑗
𝑙)

∙ 𝑃𝐧,𝑗
𝑙                                                               (4.36) 

By defining time intervals of length ∆T, Equation (4.36) can be solved during network operation in two 
steps [RB16b, RB16d, RB17a]: 
 

1. Within the interval, the network measures the link sojourn time in every state 𝐱𝑙 ∈ X̂𝐧
𝑙 . Let ∆T𝐱

𝑙  

be the sojourn time measured in state 𝐱𝑙.  

 

2. At the end of the interval, the probability 𝑃𝐧,𝑗
𝑙  is estimated as:  

𝑃𝐧,𝑗
𝑙 =

∑ ∆T𝐱
𝑙

𝐱𝑙∈Υ𝐧,𝑗
𝑙

∑ ∆T𝐱
𝑙

𝐱𝑙∈X̂𝐧
𝑙

                                                                    (4.37) 

The sum in the denominator is the total link sojourn time in macrostate 𝐧𝑙 . In the numerator, Υ𝐧,𝑗
𝑙   

is the set of link states 𝐱𝑙 ∈ X̂𝐧
𝑙  that do not block class-j arrivals (note that Υ𝐧,𝑗

𝑙 ⊆ X̂𝐧
𝑙 .) The sum 

over Υ𝐧,𝑗
𝑙  is then the total time that 𝐧𝑙  was configured by non-blocking states for class-j traffic. 

Hence, 𝑃𝐧,𝑗
𝑙  is the percentage of the sojourn time in macrostate 𝐧𝑙  that the transition 𝐧𝑙 → 𝐧𝑙 +

𝛅𝑗
𝑙 was not forbidden. Similarly, in Equation (4.36), the probability (1 − 𝐵𝑗

𝑙) is calculated as the 

fraction of time, w.r.t. ∆T, the link was in non-blocking states for class-j connections. Moreover, 

from the measurements, the traffic 𝐴c𝑗
𝑙  is estimated as the mean number of class-j connections 

simultaneously carried in ∆T. The parameter 𝜇𝑗
−1 can easily be determined as the average over 

all class-j holding times over ∆T. With this information, Equation (4.36) is then used to calculate 

𝜆𝑗
𝑙(𝐧𝑙 , Π).  

 

Example 4.10 Consider the arrival rate 𝜆2
𝑙 (𝐧𝑙 , Π1) = 𝜆2

𝑙 (Π1) ∙  𝑃(1,0),2
𝑙  studied in Example 4.9 for the 

macrostate 𝐧𝑙 = (1,0). In this case, Υ(1,0),2
𝑙 = {𝛘2, 𝛘6} is the sub-set of link states in X̂(1,0)

𝑙  that do not 
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block class-2 arrivals (i.e. from the states in X̂(1,0)
𝑙  only 𝛘2  and 𝛘6  have 𝑏2 = 4  free slots which are 

adjacent). To estimate the rate 𝜆2
𝑙 (𝐧𝑙 , Π1), the sojourn times ∆T𝛘𝑖

𝑙  are measured for each 𝛘𝑖 ∈ X̂(1,0)
𝑙 . Then 

from Equation (4.37), 𝑃(1,0),2
𝑙 = (∆T𝛘2

𝑙 + ∆T𝛘6
𝑙 )/(∆T𝛘2

𝑙 + ∆T𝛘3
𝑙 + ∆T𝛘4

𝑙 + ∆T𝛘5
𝑙 + ∆T𝛘6

𝑙 ). 

4.3.3 Effect of the Contiguity Constraint on the Arrival Rates 
In the macrostate-dependent network reward model, the calculation of the state-spaces Ω𝐱

𝑙  is skipped. This 
does not imply that the effect that the contiguity constraint has on each link reward process is neglected. 
Instead, as it was pointed out in Section 4.2.1, for each link, every macrostate is defined by a sub-set of 

link states that fulfil the contiguity constraint. But, if the states in Ω𝐱
𝑙  are not calculated, how does the 

macrostate-dependent model account for the effect that the contiguity constraint has on the stochastic 

process {𝐍𝑡
𝑙,π, 𝑡 ≥ 0}? That effect is implicitly quantified by the arrival rates 𝜆𝑗

𝑙(𝐧𝑙 , Π). To understand this, 

note that the constraint has no effect in transitions 𝐧𝑙 → 𝐧𝑙 − 𝛅𝑗
𝑙  originating from connection departures. 

It only restricts the possible link state moves 𝐱𝑙 → 𝐲𝑙 that may cause the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  due to 

class-j arrivals. For 𝐱𝑙 → 𝐲𝑙 to be feasible, 𝐱𝑙 must have 𝑏𝑗 available adjacent slots. If that is the case, 𝐱𝑙 

is a link state that does not block class-j arrivals, i.e. it is an element in the set Υ𝐧,𝑗
𝑙 , and thus, the transition 

is allowed. Otherwise, it is denied. The effect of restricting the possible state moves is quantified by the 

rate 𝜆𝑗
𝑙(𝐧𝑙 , Π) at which the link moves from 𝐧𝑙  to 𝐧𝑙 + 𝛅𝑗

𝑙. This rate defines the probability 𝑃
𝐧𝑙,𝐧𝑙+𝛅𝑗

𝑙 (Π) 

that the transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  occurs. This probability is less than that observed in a link that relaxes the 

contiguity constraint. By following an analysis similar to that presented in Chapter 3 - Section 3.3.2, we 

have that 𝑃
𝐧𝑙,𝐧𝑙+𝛅𝑗

𝑙 (Π) = 𝜆𝑗
𝑙(𝐧𝑙 , Π)  ∙ 𝜏𝐧𝒍, where 𝜏𝐧𝒍  is the mean sojourn time in 𝐧𝑙 . Thus, the estimation of 

the arrival rate 𝜆𝑗
𝑙(𝐧𝑙 , Π) implies the estimation of the effect that the contiguity constraint has on the link 

performance, i.e. on the probability that a long-term reward 𝑔𝑗
𝑙 (𝐧𝑙 , Π) (ru) is earned provided that a class-

j arriva1 occurs in macrostate 𝐧𝑙 . Observe that the contiguity constraint is enforced by every policy 

decision Π(𝐱, 𝑗). The policy itself determines the state moves 𝐱𝑙 → 𝐲𝑙 which may cause 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙. 

The estimation of 𝜆𝑗
𝑙(𝐧𝑙 , Π) does not involve the calculation of Ω𝐱

𝑙  either. To solve Equation (4.36) it is 

only necessary to measure the sojourn times ∆T𝐱
𝑙  in the states which are observed to represent 𝐧𝑙 . By this 

strategy, the computational complexity of the state-dependent reward model is avoided and thus, the 
reward-based resource allocation problem becomes tractable. 

Example 4.11 In Fig. 4.6 we show the macrostate transition diagram defined by the link in Fig. 4.3. 
The diagram depicts the transitions between the macrostates and their corresponding transition rates. There 

are only six rates 𝜆𝑗
𝑙(𝐧𝑙 , Π) that represent transitions of the from 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗

𝑙. These rates, as defined in 

Fig. 4.6, are given by the probabilities 𝑃𝐧,𝑗
𝑙  of observing the link in states that do not block class-j arrivals. 

A non-blocking state for class-j traffic is one that has at least 𝑏𝑗 free adjacent slots, thereby fulfilling the 

spectrum contiguity constraint. As an example, Fig. 4.6 illustrates the transition (1,0) → (1,1) which was 
studied in Example 4.10. Note that if (1,0) is configured by 𝛘3, 𝛘4 or 𝛘5, class-j arrivals are rejected as 
the contiguity constraint cannot be satisfied.   

4.4. Approximate Policy Iteration Algorithm 

In this section we use the macrostate-dependent network reward model to formulate an approximate 

version of the PIA defined in Chapter 3. The approximate PIA also performs iteration cycles every ∆T 

time units. However, it differs from the exact state-dependent algorithm in the following three relevant 

aspects: 

 

1. At the end of every iteration cycle only the VDO step is executed. Upon completion of the ith 

cycle, the VDO calculates for every link 𝑙, the reward rate  𝑅𝑙(Π𝑖) and the values 𝑣(𝐧𝑙 , Π𝑖) of 

the policy Π𝑖 in use. 

 

2. To make the policy calculation feasible, the PIR does not calculate the new policy Π𝑖+1  at the 

end of the ith cycle. Instead, over the next cycle, the PIR uses a decision calculation algorithm 

to compute the decisions Π𝑖+1(𝐱, 𝑗) during network operation, one at a time, and only when 

necessary, i.e. upon arrival of a connection request. The PIR step is then executed every time 

that a connection request arrives at the network. This strategy not only reduces computational 

complexity, but it alleviates the memory requirements needed to store the policy decisions.  
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Figure 4.6: Definition of the policy and macrostate-dependent arrival rates for the link in Fig. 4.3. 

3. Recall that in Chapter 3 the set  Λ𝐱
𝑗+

 was defined as the collection of all decisions available for 

a class-j request arriving in network state 𝐱.  In addition to the decision “reject admission”, in 

the approximate PIA, the set Λ𝐱
𝑗+

 contains at most one candidate lightpath for each path 𝜌 in Γ𝑗. 

 

In the following we describe the approximate PIA and present a comparison of this method with the exact 

algorithm outlined in Chapter 3. 

4.4.1 Definition of the Approximate Policy Iteration Algorithm 
Consider a dynamic flex-grid optical network with 𝑁 nodes and 𝐿 links. Each link 𝑙 has a capacity of 𝐶𝑙 

spectrum slots.  The network serves 𝐽 connection classes defined by the known parameters (𝑜, 𝑑)𝑗, 𝜆𝑗, 

µ𝑗
−1, 𝑏𝑗, Γ𝑗 and 𝑟𝑗. Resources are allocated to connections with the approximate PIA shown in Fig. 4.7, 

where we refer to an event as the arrival or departure of a connection.  
During network operation the PIA performs iteration cycles every ∆T time units. Within the ith cycle 

resources are allocated by a policy Π𝑖 which is calculated in the VDO and the PIR steps of the PIA. This 
calculation procedure works as follows. Initially, the network enters a first iteration cycle within which 
resources are allocated by an arbitrarily chosen policy Π = Π0. This policy is responsible for making all 
decisions on RSA and CAC for any connection arriving in the first interval ∆T. Over the interval, each 
link measures its sojourn times in every observed link state by using the procedure outlined in Section 
4.3.2. At the end of the interval, for each link 𝑙, the VDO step solves the linear system defined by Equation 

(4.16a) for 𝑅𝑙(Π0) and the transient reward values 𝑣(𝐧𝑙 , Π0). For this, the rates 𝜆𝑗
𝑙(𝐧𝑙 , Π0) are estimated 

from the measurements taken during the cycle period ∆T. The network then enters the next cycle in which 
the PIR calculates a policy Π1 that outperforms Π0. Unlike the exact PIA, which calculates the new policy 
before starting the next cycle, the approximate approach calculates every policy decision Π1(𝐱, 𝑗) within 
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Figure 4.7: Approximate policy iteration algorithm (PIA). 

the next cycle and only if a class-j connection request arrives in state 𝐱. If this event occurs, the PIR uses 

𝑅𝑙(Π0) and the transient values 𝑣(𝐧𝑙 , Π0) to calculate the decision Π1(𝐱, 𝑗) that fulfils 𝑅(Π1(𝐱, 𝑗)) ≥
𝑅(Π0(𝐱, 𝑗)). The new decision is executed and stored in memory, so that it is used to allocate resources 
for future class-j requests arriving within the current cycle in state 𝐱. The impact that the new policy has 
on the network performance is captured by the link sojourn time measurements taken over the cycle. These 

measurements are used in the VDO (at the end of the cycle) to estimate 𝜆𝑗
𝑙(𝐧𝑙 , Π1) and to calculate 𝑅𝑙(Π1) 

and 𝑣(𝐧𝑙 , Π1). With this information, another iteration cycle is initiated to determine a policy Π2 that 
improves Π1. This process is repeated so as to calculate a sequence of policies Π1, Π2,…, Π𝑖,…, Π∗, which 
result, respectively, in the network reward rates 𝑅(Π1) < 𝑅(Π2) < ⋯ < 𝑅(Π𝑖) < ⋯ ≤ 𝑅(Π∗). As with 
the exact PIA, the iterations are stopped when the policies obtained in two consecutive cycles attain the 
same network reward rate. However, this stopping criterion is not likely to be met in reality by the 
approximate PIA. The reason is that, as previously mentioned, the size of a policy is given by the 
cardinality of the network state-space and the number of connection classes. Since in a cycle decisions are 
calculated only when connections arrive, it is unlikely that arrivals occur in all network states for all 
connection classes within the cycle period ∆T. Likewise, it is also unlikely that the decisions calculated 
for two consecutive cycles correspond exactly to the same states and connection classes. Hence, for real 
networks, the PIA in Fig. 4.7 is repeatedly executed so as to guarantee that in each cycle the performance 
is improved compared to the previous one. In the long-run, this process yields policies Π∗ which are close 
(but not necessarily equal) to the optimum, an thus they are sub-optimal. 

In summary, the ith iteration cycle (𝑖 > 0) of the PIA aims at determining a policy Π𝑖 whose decisions 

are calculated in the PIR step. The calculation involves the link rates 𝑅𝑙(Π𝑖−1) and the values 𝑣(𝐧𝑙 , Π𝑖−1) 
estimated (for the policy Π𝑖−1) at the end of the preceding iteration. During the ith cycle, measurements 
are taken to track the impact the policy Π𝑖 has on the performance. That performance is quantified at the 

end of the cycle in the VDO step, which estimates 𝜆𝑗
𝑙(𝐧𝑙 , Π𝑖), 𝑅𝑙(Π𝑖) and 𝑣(𝐧𝑙 , Π𝑖) for all network links. 

This information is stored in memory and used in the next iteration cycle to determine the policy Π𝑖+1.  
Any feasible policy Π0 might be used to initialize the PIA. In particular, Π0 can be determined by any 

of the online RSA algorithms currently proposed in the literature, see for example [CVR+12, TAK+14, 
WWH+11]. One of the most remarkable properties of the PIA is that, regardless of the chosen Π0, better 
policies are always found throughout the iteration process. This justifies the adoption of policies Π0 which 
are simple to implement, so that their decisions can be calculated online without involving complex 
calculations in the first iteration cycle. In what follows, we explain in more detail how the VDO and the 
PIR perform their calculations in the ith iteration cycle.   

4.4.2 Estimation of the Policy Performance in the VDO Step 
At the end of the ith iteration cycle, the PIA performs the VDO step in order to evaluate the performance 

of the policy Π𝑖. Such a performance is given by the reward rates  𝑅𝑙(Π𝑖) and the values 𝑣(𝐧𝑙 , Π𝑖) of the 

network links. Based on the fact that the parameters (𝑜, 𝑑)𝑗, µ𝑗
−1, 𝑏𝑗, Γ𝑗, 𝑟𝑗 and 𝐶𝑙 are known, the VDO in 

Fig. 4.7 implements the following procedure for each link 𝑙: 
 

1. The link reward parameters 𝑟𝑗
𝑙  are calculated with Equation (4.11). 
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2. Since 𝑏𝑗 and 𝐶𝑙 are known, the capacity constraint ∑ 𝑏𝑗 ∙ 𝑛𝑗
𝑙𝐽

𝑗=1 ≤ 𝐶𝑙 is used to calculate the link 

macrostate-space Ω𝐧
𝑙 . There is no need to involve the contiguity constraint in the calculation, as 

the network policy itself guarantees that any observable macrostate fulfils this restriction. 

 

3. The rates 𝜆𝑗
𝑙(𝐧𝑙 , Π𝑖) are estimated with Equation (4.36) from the sojourn time measurements 

taken over the ith iteration cycle.  

 

4. The reward parameters 𝑟𝑗
𝑙 , the termination rates 𝜇𝑗 and the arrival rates 𝜆𝑗

𝑙(𝐧𝑙 , Π𝑖) are used to 

define the system of linear equations for the link. That system is given by Equation (4.16a). 

 

5. The linear system is solved for  𝑅𝑙(Π𝑖) and the transient values 𝑣(𝐧𝑙 , Π𝑖). The VIA outlined in 

Section 4.2.2 can be applied as a solution method owing to its simplicity and proved outstanding 

performance (especially for large size macrostate-spaces). Any alternative fast linear algebra 

(or numeric) method suffices as well. 

 

6. The solution to the linear system is stored in memory, so that the PIR uses it in the next iteration 

cycle to calculate the policy Π𝑖+1. 

 

In case the macrostate-space Ω𝐧
𝑙  is too large, the simplified link model presented in Section 4.2.3 can be 

used to further reduce the size of the resulting linear system. If this course of action is taken, the VIA can 

be adopted as a solution method as well. 

4.4.3 The Policy Calculation Procedure in the PIR Step 
To illustrate the policy calculation procedure used by the PIR in Fig. 4.7, consider a network that enters 

the ith iteration cycle after having calculated - in the VDO step, and for all links - the rates 𝑅𝑙(Π𝑖−1) and 

the values 𝑣(𝐧𝑙 , Π𝑖−1) of the policy used in the preceding cycle. The task of the PIR is to calculate a policy 
Π𝑖 that allocates resources to incoming requests in the ith cycle period. This new policy must have a better 
performance than Π𝑖−1. 

The decisions of Π𝑖 are calculated over the ith cycle, one at a time, and only when necessary, i.e. upon 
arrival of a connection request. For that, the PIR applies the decision calculation algorithm shown in Fig. 
4.8, which comprises network control functions for RSA and CAC. The algorithm works as follows: when 
a connection request of class-j arrives in network state 𝐱, it is checked whether the decision Π𝑖(𝐱, 𝑗) has 
already been calculated for that state and connection class. If that decision has not been calculated yet, the 

RSA function of the algorithm calculates the set of decisions Λ𝐱
𝑗+

 available for the connection request. 
This is accomplished in two steps. First, from the set of candidate routes Γ𝑗, the paths 𝜌 with at least 𝑏𝑗 

free spectrum slots fulfilling the contiguity and continuity constraints are selected. Secondly, for each of 
these paths, an optical channel with bandwidth 𝑏𝑗 slots is calculated by using a chosen spectrum allocation 

rule (e.g. first-fit, random-fit [TAK+14]). Thus, the RSA function calculates a candidate lightpath on every 
path 𝜌 in Γ𝑗 that satisfies the contiguity and continuity constraints. Each lightpath defines a decision in 

Λ𝐱
𝑗+

.  Recall that – as explained in Chapter 3 – in the set Λ𝐱
𝑗+

 a decision is represented by the state 𝐲 that a 
lightpath would configure in the network if it is allocated to the request that arrives in state 𝐱. Besides 

those lightpaths, Λ𝐱
𝑗+

 contains the state 𝐱 as well, as the decision can be made that the class-j request is 
rejected, and thus no state transition occurs in the network.  The task of the CAC function of the algorithm 

is to calculate Π𝑖(𝐱, 𝑗) as the decision 𝐲∗ in Λ𝐱
𝑗+

 that fulfils 𝑅(Π𝑖(𝐱, 𝑗)) ≥ 𝑅(Π𝑖−1(𝐱, 𝑗)). From Equation 
(3.30) in Section 3.4.2 - Chapter 3, we know that 𝑅(Π𝑖(𝐱, 𝑗)) is obtained in the exact network reward 
model by solving the problem: 

𝑅(Π𝑖(𝐱, 𝑗)) = max
𝐲∈Λ𝐱

𝑗+
{𝑞(𝐱) + ∑ ∑ 𝜆𝑗(𝐱, Π𝑖−1) ∙ [𝑣(𝐲, Π𝑖−1) − 𝑣(𝐱, Π𝑖−1)]

𝐲∈Γ𝐱
𝑗+ +𝐽

𝑗=1   

∑ ∑ 𝜇𝑗 ∙ [𝑣(𝐲, Π𝑖−1) − 𝑣(𝐱, Π𝑖−1)]
𝐲∈Γ𝐱

𝑗−
𝐽
𝑗=1 }                        (4.38) 

where the decision Π𝑖(𝐱, 𝑗) is the decision 𝐲∗ in Λ𝐱
𝑗+

 that solves:  

𝐲∗ = argmax
𝐲∈Λ𝐱

𝑗+
{𝑔𝑗(𝐲, 𝐱, Π𝑖−1)}                                                  (4.39) 
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Figure 4.8: Decision calculation algorithm executed by the PIA in the PIR step. 

with 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) = 𝑣(𝐲, Π𝑖−1) − 𝑣(𝐱, Π𝑖−1). Observe that under the link independence assumption, 

the network reward rate 𝑅(Π𝑖(𝐱, 𝑗)), i.e. Equation (4.38), is expressed as the sum of the link reward rates: 

𝑅(Π𝑖(𝐱, 𝑗)) = ∑  𝑅𝑙(Π𝑖(𝐱, 𝑗))𝑙                                                  (4.40) 

To analyse the implications of Equation (4.40), let us study the effect that a decision 𝐲 ∈ Λ𝐱
𝑗+

 has on the 

reward earned by the network. Let 𝜌 be the path that corresponds to the lightpath implicitly defined by 

the decision (or equivalently the network state) 𝐲. If a class-j connection request arrives in the ith PIA 

iteration cycle, while the network is in the state 𝐱 = (𝐱1, … , 𝐱𝑙 , … , 𝐱𝐿), then the network carries a traffic 

given by the macrostate 𝐧 = 𝐧(𝐱) = (𝐧1, … , 𝐧𝑙 , … , 𝐧𝐿), recall that the concept of network macrostate 

was defined in Section 3.1.2 - Chapter 3.  If the connection seizes the lightpath calculated in the path 𝜌, 

it would cause the transition 𝐱 → 𝐲. This implies that on each link 𝑙 in 𝜌, the carried traffic changes as 

𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙 . From the values 𝑣(𝐧𝑙 , Π𝑖−1) calculated in the previous cycle, the network knows that the 

connection will bring to link 𝑙 a long-term reward of 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖−1) = 𝑣(𝐧𝑙 + 𝛅𝑗

𝑙 , Π𝑖−1) − 𝑣(𝐧𝑙 , Π𝑖−1) (ru). 

Therefore, if the connection is established on the path 𝜌, it would bring to the network a long-term reward 

of 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) (ru), which according to Equation (4.16e) is calculated as: 

𝑔𝑗(𝐲, 𝐱, Π𝑖−1)  ≈ ∑ 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖−1)𝑙∈𝜌                                              (4.41) 

This result is a consequence of the link independence assumption, which states that a connection affects 
the network reward rate by solely changing the reward rates of the links that it uses. Observe that the 
decision “reject admission” has gain 𝑔𝑗(𝐱, 𝐱, Π𝑖−1) = 0, as 𝐲 = 𝐱 (i.e. there is no change in the network 

state). Based on this, the optimization problem in Equation (4.39) is solved by the CAC function in two 

steps. First, the long-term reward gains 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) are calculated for all possible decisions in Λ𝐱
𝑗+

 with 

Equation (4.41). Secondly, if all decisions 𝐲 ≠ 𝐱 in Λ𝐱
𝑗+

 have negative gains, then the decision Π𝑖(𝐱, 𝑗) is 
to deny admission to the connection request. (Recall that a negative gain means that the connection yields 
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reward losses as it prevents admission of more valuable traffic.) Otherwise, since the decisions 𝐲 ≠ 𝐱 in 

Λ𝐱
𝑗+

 define candidate lightpaths routed over different paths 𝜌, from Equation (4.41) we have that the 
optimum decision 𝐲∗ is that which solves: 

𝜌∗ = argmax
𝜌

{∑ 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖−1)𝑙∈𝜌 }                                                (4.42) 

which means that the decision Π𝑖(𝐱, 𝑗) is to accept the connection on the lightpath routed on the path 𝜌∗ 

that yields that maximum positive long-term reward gain. Then 𝜌∗ corresponds to the lightpath defined 

by the decision 𝐲∗ which has the maximum gain 𝑔𝑗(𝐲∗, 𝐱, Π𝑖−1) > 0, 𝐲∗ ≠ 𝐱. Therefore, under the link 

independence assumption, the admission decision rule defined by Equation (4.42) is phrased as: for all 

possible decisions in Λ𝐱
𝑗+

, admit the connection on the lightpath with the highest positive reward gain. If 

all candidate lightpaths have negative gains, reject the connection. This rule was originally proposed in 

[RB16d], and we denote it as the Markov decision process (MDP) rule.  
Once the decision Π𝑖(𝐱, 𝑗) is calculated by the CAC function, it is executed and stored in memory, 

thereby avoiding a recalculation of this decision for future class-j connection requests arriving in the state 
𝐱 . By this approach the policy is gradually defined while memory requirements and computational 
complexity are alleviated. Another advantage is that the decisions adapt to variations in the parameters 𝜆𝑗, 

µ𝑗
−1, 𝑏𝑗, Γ𝑗, and 𝑟𝑗. (Note that the adaptability follows from the fact that, at end of every iteration cycle, the 

VDO step uses the current values of these parameters to calculate the policy performance.) 
The link independence assumption reduces mathematical complexity, but it might be oversimplifying. 

In reality, any carried connection induces state correlations among links which are not in the path set Γ𝑗 

(due to the continuity and contiguity constraints). The contributions from those links to the long-term 
rewards 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) are not accounted for by Equation (4.41). However, as studied in [DPKW88, 

DM89, DM92, DM94, Kri91, HKT00, Hwa93, Dzi97, Nor02] the assumption is still justified by the fact 
that an exact calculation of  𝑔𝑗(𝐲, 𝐱, Π𝑖−1) is not feasible even for small networks (because of the huge 

cardinality of the exact network model). The extent to which the assumption is valid is strongly dependent 
on the network topology, as networks that route connections on multi-link paths (e.g. ring, partial-mesh 
networks) are prone to induce more correlations than those which use many direct link paths (e.g. highly 
meshed networks). To counteract the lack of accuracy of the assumption, Equation (4.41) can still be used 
to define rules that intend to reduce the correlations among links, thereby improving the accuracy of the 
decisions calculated by the PIA [RB17a]. Besides the MDP rule, Table 4.3 presents three alternative 
admission decision rules which can be used by the CAC function shown in Fig. 4.8. For a connection of 
class-j that requests admission in network state 𝐱 , the rules need as input the candidate lightpaths 
calculated by the RSA function. The rule denoted as MDP-SP (Shortest-Path) checks if the RSA function 
has calculated a lightpath on the shortest path (w.r.t. the number of links) in Γ𝑗. If so, admission is granted 

on that path; otherwise, the MDP rule is used to place the connection on the path with the maximum 
positive reward gain. (Remark: thus, regardless of its gain, priority is given to the shortest path as long as 
it has 𝑏𝑗 free slots fulfilling the constraints.) The MDP-PG (Positive-Gain) rule selects from the set of 

candidate paths, the route with positive gain which has the shortest length (w.r.t. the number of links). 
This rule tries to avoid large paths with positive gains. If no path has 𝑔𝑗(𝐲, 𝐱, Π𝑖−1)  ≥ 0, admission is 

denied. The MDP-PGMC (Positive-Gain-Maximum-Capacity) rule selects the route with the maximum 
available capacity (in slots) which has a positive gain. Therefore, this rule discards paths with higher gains 
and less available capacity. 

Ring and partial-mesh are the most common topologies used to deploy optical networks. For these 
topologies, the sets Γ𝑗 mainly contain multi-link paths which lead to correlations in the resource occupation 

of the network links. This effect (which due to the link independence assumption is not quantified by MDP 
rule) can be harmful when connections use routes with large number of links. To counteract this, the MDP-
SP and the MDP-PG rules try to minimize the length of the selected path. The former rule follows a less 
conservative approach (w.r.t. the reward), as it prioritizes the shortest path in Γ𝑗 regardless of its gain. The 

latter rule selects the shortest path (from the set of candidate routes) that avoids a decrement in the long-
term network reward. An alternative to these two strategies is the MDP-PGMC rule. Instead of minimizing 
the route length, it mitigates the problem by prioritizing the path with positive gain which has more 
available capacity. Thus, it prevents congestion on highly loaded paths. 

In Table 4.4 we present a comparison between the exact state-dependent PIA and the macrostate-
dependent approximate approach. Most of the differences therein summarized have already been argued. 

Nevertheless it is worth discussing a remarkable difference regarding the set of decisions Λ𝐱
𝑗+

. In the exact 
PIA, that set contains all the lightpaths available in state 𝐱 for a class-j request. Thus, there can be more 
than one candidate lightpath that uses the same path 𝜌 in Γ𝑗. In the approximate PIA, at most one candidate 

lightpath is calculated on each path 𝜌. The reason for this stems from the fourth property of the macrostate- 
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Table 4.3: Admission decision rules used by the PIR within the ith iteration cycle [RB17a]. 

Step Exact PIA Approximate PIA 

VDO  Executed at the end of the ith iteration 
cycle to determine the network reward 
rate 𝑅(Π𝑖) and the values 𝑣(𝐱, Π𝑖). This 
is achieved by solving a linear system of 
|Ω𝐱| equations. The system is defined in 
the network state-space Ω𝐱 

Executed at the end of the ith iteration 
cycle. The rate 𝑅(Π𝑖) is estimated as the 

sum of the link reward rates  𝑅𝑙(Π𝑖) . 
For this, 𝐿 linear systems are defined in 

the macrostate-spaces Ω𝐧
𝑙 , one system 

for each link 𝑙. Every system is solved 

for  𝑅𝑙(Π𝑖) and the values 𝑣(𝐧𝑙 , Π𝑖) 

PIR Executed at the end of the ith cycle, 
where every decision Π𝑖+1(𝐱, 𝑗) is the 

decision 𝐲∗  in Λ𝐱
𝑗+

 that brings the 
maximum positive long-term reward:  

𝑔𝑗(𝐲, 𝐱, Π𝑖) = 𝑣(𝐲, Π𝑖) − 𝑣(𝐱, Π𝑖)  

The set Λ𝐱
𝑗+

 contains all the possible 
lightpaths available for the request in 
state 𝐱, i.e. more than one lightpath can 
be recommended on each path 𝜌 in Γ𝑗 .  

The PIA stops when the policies 
calculated in two consecutive iterations  
have the same performance 

Executed over the next cycle, where 
Π𝑖+1(𝐱, 𝑗) is only calculated if a class-j 
arrival occurs in state 𝐱 . Different 
admission decision rules can be used to 

calculate Π𝑖+1(𝐱, 𝑗) from the set Λ𝐱
𝑗+

. By 
using the link independence assumption 
the rules estimate the long-term rewards 
as: 

𝑔𝑗(𝐲, 𝐱, Π𝑖)  ≈ ∑ 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖)𝑙∈𝜌   

The set Λ𝐱
𝑗+

 has at most one lightpath for 
each path 𝜌 in Γ𝑗. The PIA is not likely 

to satisfy the stopping criterion 

Table 4.4: Comparison between the exact and the approximate PIA algorithms. 

Rule Description 

MDP  i) From the set of candidate lightpaths calculated by the RSA function, select the   

    lightpath that uses the path 𝜌∗ that yields the maximum positive long-term  

    reward gain 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) 

 

ii) If 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) < 0 for all lightpaths, reject the connection; otherwise, admit it  

    on the lightpath in the path 𝜌∗ 

 

MDP-SP  i) Check if the set of candidate lightpaths calculated by the RSA function contains    

    a lightpath that uses the shortest path (w.r.t. the number of links) in Γ𝑗  

 

ii) If so, regardless of its gain, admit the connection on that path; otherwise, select  

    the lightpath that yields the maximum positive gain 𝑔𝑗(𝐲, 𝐱, Π𝑖−1). If for all   

    lightpaths 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) < 0, reject the connection 
 

MDP-PG 

 
 i) For each route 𝜌 in the set of candidate lightpaths calculated by the RSA function,  

    determine the corresponding long-term reward 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) 

     

ii) Admit the connection on the path 𝜌 with positive gain which has the shortest    

    length (w.r.t. the number of links). If  𝑔𝑗(𝐲, 𝐱, Π𝑖−1) < 0, for all 𝜌, reject the  

    connection 
 

MDP-PGMC  i) For each route 𝜌 in the set of candidate lightpaths calculated by the RSA function,  

    calculate the corresponding long-term gains 𝑔𝑗(𝐲, 𝐱, Π𝑖−1) 
 

ii) Admit the connection on the path 𝜌 with the maximum available capacity (in  

    slots) that has a positive path-reward gain. If no path fulfils this criterion, reject    

    the connection 
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dependent model discussed in Section 4.2.1. This property states that the long-term rewards 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) 

of all the possible link state moves  𝐱𝑙 → 𝐲𝑙  that cause the transition  𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙 are approximated as 

𝑔𝑗
𝑙 (𝐧𝑙 , Π). (Recall that the transient values 𝑣(𝐧𝑙 , Π) are used as an approximation to the values 𝑣(𝐱𝑙 , Π) 

of the states in X̂𝐧
𝑙 .) Owing to this approximation, all the candidate lightpaths that use the same path 𝜌, 

cause transitions 𝐱 → 𝐲 which are assumed to yield the same reward gain 𝑔𝑗(𝐲, 𝐱, Π)  ≈ ∑ 𝑔𝑗
𝑙 (𝐧𝑙 , Π)𝑙∈𝜌 . 

As a result, under the macrostate-dependent formulation, it suffices that the RSA function selects only one 
lightpath on each path 𝜌 that fulfils the contiguity and continuity constraints. This is accomplished by 
using a spectrum allocation algorithm that calculates an optical channel for every route 𝜌. However, since 

in really the reward gains 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) that cause 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗

𝑙  need not be alike, the spectrum allocation 

algorithm used by the RSA function is expected to have an influence on the network performance. This 
issue will be investigated in more detail in Chapter 5. Regardless of the PIA variant, it is worth pointing 
out that both the exact and the approximate versions rely on the estimation of transient reward values. 
Their importance arises from the fact that they define the long-term rewards 𝑔𝑗(𝐲, 𝐱, Π) that a connection 

brings to the network. These values inform the PIA (in the PIR) whether in state 𝐱 it is pertinent to admit 
a class-j connection that would cause the state transition 𝐱 → 𝐲. 

Example 4.12 Let us study the calculation of the decision Π𝑖+1(𝛘1, 2) for the single-link network in 
Fig. 4.3. The decision corresponds to a class-2 arrival in state 𝛘1 = (0,0,0,0,0,0), i.e. when no traffic is 
being carried. For class-2, the set Γ2 has a single-link path defined as 𝜌 = (A, B). From Fig. 4.3, we have 
that three lightpaths are available for the request in the path 𝜌. They are defined by the states 𝛘14 =
(2, ∞, ∞, ∞, 0,0), 𝛘15 = (0,2, ∞, ∞, ∞, 0) and 𝛘16 = (0,0,2, ∞, ∞, ∞). If the exact PIA is used, the set of 

decisions defined in the PIR step is Λ𝐱
𝑗+

= {𝛘1, 𝛘14, 𝛘15, 𝛘16}. Then the policy decision Π𝑖+1(𝛘1, 2) is 

determined by the state 𝛘𝑖  in Λ𝐱
𝑗+

 that yields the maximum reward gain 𝑔2(𝛘𝑖 , 𝛘1, Π𝑖) = 𝑣(𝛘i, Π𝑖) −
𝑣(𝛘1, Π𝑖). For example, if the maximum reward is provided by 𝛘16, the decision Π𝑖+1(𝛘1, 2) is: admit the 
connection on the path 𝜌 = (A, B) by allocating the slots 3-6. On the other hand, in the approximate PIA, 
since the three possible lightpaths use the same path, their long-term rewards are assumed to be alike and 

are approximated as 𝑔𝑗(𝛘𝑖 , 𝛘1, Π𝑖)  ≈ 𝑔2
𝑙 (𝐧𝑙 , Π𝑖), with 𝐧𝑙 = (0,0). (Note that these lightpaths define the 

state transitions 𝛘1 → 𝛘14 , 𝛘1 → 𝛘15  and 𝛘1 → 𝛘16 that cause the macrostate transition (0,0) → (0,1).) 
Therefore, in the approximate approach only one of the three options is selected to calculate Π𝑖+1(𝛘1, 2). 

For that, the PIR uses a spectrum allocation algorithm. If first-fit is used, then Λ𝐱
𝑗+

= {𝛘1, 𝛘14}, as 𝛘14 is 
the state that contains the first four adjacent available slots. If a random-fit algorithm is considered, then 

Λ𝐱
𝑗+

= {𝛘1, 𝛘𝑖} , where 𝛘𝑖  is randomly selected from { 𝛘14, 𝛘15, 𝛘16 }. Independently of the spectrum 

allocation algorithm, the approximate PIA defines sets Λ𝐱
𝑗+

 with only two elements, namely, 𝛘1 which 
represents the decision “connection rejection”, and 𝛘𝑖 , 𝑖 = 14,15,16, which represents a unique candidate 

lightpath calculated in the path 𝜌. The policy decision Π𝑖+1(𝛘1, 2) is obtained by calculating 𝑔2
𝑙 (𝐧𝑙 , Π𝑖). 

Assuming the MDP rule, if 𝑔2
𝑙 (𝐧𝑙 , Π𝑖) > 0, the connection is accepted on the selected lightpath; otherwise, 

it is rejected. Observe that in reality, both the exact and the approximate PIA attain the same performance 

if all three lightpaths have the same gains 𝑔𝑗(𝛘i, 𝛘1, Π𝑖) = 𝑔2
𝑙 (𝐧𝑙 , Π𝑖). However, since those gains may 

differ, the approximate PIA is expected to have a performance less than that of the exact model. Such a 
performance depends on the spectrum allocation algorithm used by the RSA function. 

4.5. Chapter Summary 

In this chapter an approximate approach to online resource allocation was proposed for dynamic optical 

networks. The approach stems from a simplification made on the exact state-dependent PIA that assumes 

statistical independence of the link state distributions. As a result, a network with 𝐿 links is treated as a 

compound of 𝐿 independent single-link networks, thereby approximating the network reward rate by the 

sum of the link reward rates. By this assumption, upon arrival of a connection request, the approximate 

PIA first calculates (based on the network state) candidate lightpaths routed over different paths. Then 

the long-term reward that each lightpath yields is determined, and admission is granted on the lightpath 

with the highest positive reward. If no lightpath has positive gain, the connection request is rejected. To 

counteract the lack of accuracy of the approach (due to the actual presence of correlations among network 

links), different admission decision rules were defined for the PIA. They intend to minimize the harmful 

effect that connections routed over large multi-link paths may have in the network performance.      
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Chapter 5 

Performance Evaluation Results 

In this chapter we present performance evaluation results for selected network scenarios. For that purpose, 
simulations were set up to assess the performance of the PIA under different traffic load conditions and 
for different network topologies. Section 5.1 outlines the definitions needed for the interpretation of the 
results presented in the subsequent sections. In Section 5.2 we present a performance comparison of the 
exact state-dependent reward model with the approximate macrostate-dependent approach. By considering 
two single-link networks, special attention is given to two aspects, namely, the accuracy of the macrostate-
dependent long-term reward gains and the performance of adaptive and state-dependent admission control. 
In Section 5.3 the performance of the approximate PIA is evaluated in multi-link networks. For that, full-
mesh, partial-mesh and ring topologies are considered to investigate three aspects: first, the reward losses 
attainable under different traffic loads by the MDP-based admission decision rules; secondly, the influence 
of the spectrum allocation algorithm on the PIA performance; and last, the problem of GoS control. Most 
of the results presented in this chapter have been published by the author in [RB16a, RB16b, RB16c, 
RB16d, RB17a]. 

5.1. General Remarks 

In this chapter we present results that are derived from analytical evaluations and simulations.  In order to 
facilitate the discussion of these results, and to avoid unnecessary repetitions, in this section we outline 
the definitions and assumptions common to all considered performance evaluation scenarios.  

5.1.1 Solution Method for the Systems of Linear Equations 
All analytical evaluations and simulations that involve the solution to the linear systems of the exact or 
the approximate models use the VIA as solution method (see Section 4.2.2 in Chapter 4). The iteration 
procedure of the VIA is stopped by defining a relative accuracy ϵ = 0.1. Recall that the VIA circumvents 
a direct solution of the linear systems, and instead, it uses an iteration procedure which is computationally 
advantageous for large capacity networks. 

5.1.2 Simulation of the Exact and the Approximate PIA Algorithms 
All simulations run to evaluate the reward-based algorithms follow the guidelines for connection-level 
performance simulation discussed in [SDM10]. Therein, it is stated that “a (performance evaluation) 
scenario consists of the network model, the traffic model, the simulator and the investigated method”. In 
our case, the investigated methods are the exact and the approximate PIA schemes (as defined in Chapters 
3 and 4). The network and traffic models are defined in detail in Sections 5.2 and 5.3 for each considered 
scenario. Suffice it to clarify that, in all cases, class-j connections arrive according to a Poisson process 

with rate 𝜆𝑗 , and have exponentially distributed holding times with mean 𝜇𝑗
−1 . On the other hand, to 

evaluate the performance of both PIA variants, a discrete event simulation framework was implemented 
in R [Rpr17, LDL13].  All simulations were performed on a 6-core machine with 64 GB RAM running 
Linux on an Intel X86 server. Furthermore, for all considered performance evaluation scenarios, the 
simulations were set up with the following assumptions: 
 

 The size of the iteration cycles ∆T (for the exact and the approximate PIA algorithms) is defined 

as ∆T = α ∙ max
𝑗

𝜇𝑗
−1, where 𝛼 ≫ 0 is a positive constant.  Therefore, ∆T is proportional to the 
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maximum holding time 𝜇𝑗
−1. In all considered scenarios, we set α = 100000 so as to guarantee 

that ∆T is large enough to provide reliable estimates of the effect that the policy decisions have 
on the network performance.  
 

 As argued in Chapter 4, the approximate PIA is unlikely to meet the stopping criterion as it is 
improbable that arrivals occur in all states for all connection classes within a cycle ∆T. Moreover, 
it is also unlikely that the decisions calculated for two consecutive cycles correspond exactly to 
the same states and connection classes. (Actually, in all scenarios studied in this chapter, the 
stopping criterion was never met.) Therefore, in order to provide simulation results, we define the 
following stopping criterion for the approximate PIA. Let δ ≥ 0 be the desired relative accuracy 
with which 𝑅(Π) needs to be estimated. Thus, for a given scenario, let 𝑅(Π𝑖−1) and 𝑅(Π𝑖) be the 
simulated network reward rates attained in two consecutive cycles. At the end the ith cycle, and 
after executing the VDO step, the following inequality is calculated: 

|𝑅(Π𝑖) − 𝑅(Π𝑖−1)|/𝑅(Π𝑖) ≤ δ                                                    (5.1)  

If it is fulfilled, then the simulation is stopped and 𝑅(Π) = 𝑅(Π𝑖) is regarded as the performance 
achieved by the approximate PIA. In all results reported in this chapter, it is further specified the 
ith iteration cycle that meets the stopping criterion. Moreover, for all considered performance 
evaluation scenarios we set δ = 0.1. 
 

 It is worth emphasizing that the stopping criterion defined in Equation (5.1) applies only to the 
approximate (i.e. the macrostate-dependent) PIA. The exact state-dependent approach follows the 
stopping rule defined in Chapter 3. 

5.1.3 Presentation of Results 
In most performance evaluation scenarios studied in this chapter the results from analytical evaluations 

and simulations are presented based on the following definitions: 

 

 Two metrics are defined to assess the performance of the exact and the approximate PIA. One 
metric is the network reward rate 𝑅(Π) = 𝑅(Π𝑖). The second metric is the network reward loss 
𝑅𝐿(Π) = 𝑅𝐿(Π𝑖), which is calculated as: 

𝑅𝐿(Π) =
𝑉𝑜−𝑉𝑟

𝑉𝑜
                                                                 (5.2) 

with 𝑉o and 𝑉𝑟  being the rewards offered to and received (or carried) by the network, respectively. 
Thus, 𝑅(Π) and 𝑅𝐿(Π) are to be interpreted, respectively, as the reward rate and the reward loss 
caused by the resource allocation policy Π = Π𝑖.  
 

 For all considered performance evaluation scenarios, the simulated 𝑅(Π) and 𝑅𝐿(Π) are reported 
with 95% confidence intervals [Bou11, DBÇ15]. These intervals are either plotted in figures 
(together with the mean estimates) or presented in tables depending on the mechanism chosen to 
report the simulation results for each scenario.  
 

 In some evaluation scenarios, where performance comparisons are made, the results are compared 
by calculating the relative approximate error: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟(%) = 100 ∙ |X𝐴 − X𝐵|/X𝐴                             (5.3) 

where X𝐴 and X𝐵  are the performance metrics to be compared. The error is calculated relative (or 
with respect) to X𝐴. In every evaluation scenario it is explicitly defined the metrics that X𝐴 and X𝐵  
represent. 

 
It would be desirable to present results that compare the performance of the exact and the approximate 
PIA algorithms for different network types, however, this is only possible for very small networks (given 
that the exact model is intractable for large-networks). For this reason, in Section 5.2 we resort to the small 
single-link network studied in Chapter 4 to compare the exact and approximate schemes. Special attention 
is given to the approximate long-term reward gains and their variations with the traffic load. Then in 
Section 5.3 we solely investigate the approximate PIA for the case of multi-link optical networks, where 
the performance is evaluated for the MDP-based rules defined in Chapter 4. 
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Figure 5.1: Definition of the policy, the state and the macrostate spaces for the single-link network. 

5.2. Performance Comparison of the Exact and the 

Approximate Reward Models 

In this section we present a performance comparison of the exact state-dependent reward model with the 

approximate macrostate-dependent approach. Since the exact model is unsolvable for large networks, we 

consider a small single-link network with capacity 𝐶𝑙 = 6  slots that serves two connection classes with 

bandwidths 𝑏1 = 2 and 𝑏2 = 4. Besides the resource allocation policy, Fig 5.1 defines the state and the 

macrostate-spaces for this link. The link state-space Ω𝐱
𝑙  consists of 18 states 𝐱𝑙  denoted as 𝛘𝑖 , 𝑖 =

1, … ,18. These states define a macrostate-space Ω𝐧
𝑙  with six macrostates denoted as  𝐧𝑖, 𝑖 = 1, … ,6. The  
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𝑨 

(Erl) 

𝑨𝟏 

(Erl) 
𝑨𝟐 

(Erl) 
𝝀𝟏 

(con/uot) 
𝝀𝟐 

(con/uot) 
𝝁𝟏 

(con/uot) 
𝝁𝟐 

(con/uot) 
𝒓𝟏 

(ru) 
𝒓𝟐  

(ru) 

0.001 0.0001 0.0009 0.0001 0.0001 1.0 0.1 2.5 4.0 

0.010 0.0009 0.0091 0.0009 0.0009 1.0 0.1 2.5 4.0 

0.100 0.0091 0.0909 0.0091 0.0091 1.0 0.1 2.5 4.0 

1.000 0.0909 0.9091 0.0909 0.0909 1.0 0.1 2.5 4.0 

10.00 0.9091 9.0909 0.9091 0.9091 1.0 0.1 2.5 4.0 

Table 5.1: Parameters for the comparison of the exact and the approximate reward models. 

 
Link Reward Rate 𝑹(Π1) (ru/uot) 

𝐴 = 0.001 𝐴 = 0.01 𝐴 = 0.1 𝐴 = 1.0 𝐴 = 10 

Exact 0.0006 0.0065 0.0610 0.4142 1.688 
Approximate 0.0006 0.0065 0.0610 0.4261 1.652 

Relative Error (%) 0.00 0.00 0.00 2.87 2.13 

Table 5.2: Comparison of the exact and the approximate link reward rates. 

link allocates resources with a policy Π = Π1 that consists of 36 decisions. The exact and the approximate 

reward models for this single-link network have already been studied in Chapter 4. In Section 5.2.1 we 

will use these models to present an analytical comparison of the performance when the policy Π1 is used 

under different traffic loads. Then in Section 5.2.2 simulations will be used to determine the reward losses 

caused by both methods when the PIA implements Π1 as starting policy. These losses are compared 

against the performance achieved by a basic CAC scheme, which only rejects connections that violate 

the contiguity and capacity constraints. 

5.2.1 Exact and Approximate Long-Term Reward Gains 
For the link in Fig. 5.1, we define in Table 5.1 the parameters used to compare the solutions of the exact 

and the approximate reward models under different traffic loads 𝐴. This traffic is calculated as: 

𝐴 = 𝐴1 + 𝐴2                                                                (5.4) 

where 𝐴1 = 𝜆1/𝜇1 and 𝐴2 = 𝜆2/𝜇2.  Class-1 and class-2 connections bring, respectively, immediate (or 

short-term) rewards of 𝑟1 = 2.5 (ru) and 𝑟2 = 4.0 (ru).  The performance is calculated by solving the 

linear systems derived in Section 4.2 - Chapter 4, for the single-link network. In particular, in chapter 4, 

the exact model is defined by the linear system in Fig. 4.4, whereas the approximate approach is given 

by the system in Fig. 4.5. Two important remarks are needed regarding these linear systems. First, since 

we are studying a single-link network, the mathematical notation is kept simple by dropping off the 

superscript 𝑙 from 𝑅(Π1), 𝐴, 𝐴𝑗, 𝜆𝑗 and 𝑟𝑗, i.e. there is no need to differentiate among links. Secondly, as 

explained in Chapter 4, the linear system in Fig. 4.4 defines the exact state-dependent reward model for 

the link in Fig. 5.1. The reason is that it solely represents the reward process of a single-link network. 
In Table 5.2 and Table 5.3 we summarize the solutions to both linear systems. Table 5.2 shows the 

exact and the approximate link reward rates 𝑅(Π1). These rates are compared by calculating the relative 
approximate error with Equation (5.3) – the error is calculated relative to the exact rate.  The results show 
that for all traffic loads, the macrostate-dependent approach gives good estimates for 𝑅(Π1). On the other 
hand, in Table 5.3 a comparison is made for the transient reward values calculated by each approach. The 
six macrostates in which the link can be observed are described by the transient reward values 𝑣(𝐧𝑖 , Π1) 
obtained from the macrostate-dependent model. Recall that in the approximate PIA, the value 𝑣(𝐧𝑖 , Π1) 

is used as an approximation to the exact reward values 𝑣(𝛘𝑖 , Π1) of the states in the set X̂𝐧
𝑙  that define 𝐧𝑖. 

In Fig. 5.1 the six sets X̂𝐧
𝑙  are defined for the single-link network. For these sets, in Table 5.3 the exact 

values are presented with the macrostate approximation. For example, the reward value 𝑣(𝐧2, Π1) - where 

𝐧2 = (1,0) - is an approximation to the values 𝑣(𝛘𝑖 , Π1) of the states in X̂(1,0)
𝑙 = {𝛘2, 𝛘3, 𝛘4, 𝛘5, 𝛘6}. The 

results show that in all cases the values 𝑣(𝐧𝑖 , Π1) provide a good approximation to the exact values 
𝑣(𝛘𝑖 , Π1). However, to better quantify and judge the accuracy of the approximation, let us recall that the 
importance of calculating the transient values in either model is to determine the long-term reward gains. 
These gains are only earned when a connection arrives and gets admission to the network. As studied in 

Chapter 4, a macrostate transition 𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  can be caused by arrivals that trigger any of the possible 

link state transitions 𝐱𝑙 → 𝐲𝑙, such that  𝐱𝑙 ∈ X̂𝐧
𝑙  and 𝐲𝑙 ∈ X̂

𝐧+𝛅𝑗
𝑙

𝑙 . Thus, if a class-j connection is admitted  
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Type of value 
Value 

Definition    

Transient Reward Values 𝑣(𝛘𝑖 , Π1) and 𝑣(𝐧𝑖 , Π1) (ru) 

𝐴 = 0.001 𝐴 = 0.01 𝐴 = 0.1 𝐴 = 1.0 𝐴 = 10 

Exact value state 𝛘1 𝑣(𝛘1, Π1) 0.047 0.338 1.867 6.432 36.219 
Approximate value 𝑣(𝐧1, Π1) 0.047 0.338 1.867 6.046 36.659 

Exact value state 𝛘2 𝑣(𝛘2, Π1) 2.547 2.838 4.366 8.904 38.409 
Exact value state 𝛘3 𝑣(𝛘3, Π1) 2.547 2.835 4.334 8.739 38.526 
Exact value state 𝛘4 𝑣(𝛘4, Π1) 2.547 2.835 4.334 8.755 39.062 
Exact value state 𝛘5 𝑣(𝛘5, Π1) 2.547 2.835 4.334 8.746 38.499 
Exact value state 𝛘6 𝑣(𝛘6, Π1) 2.547 2.841 4.388 9.082 38.936 
Approximate value 𝑣(𝐧2, Π1) 2.547 2.838 4.366 8.525 38.775 

Exact value state 𝛘7 𝑣(𝛘7, Π1) 5.047 5.335 6.834 11.240 41.294 
Exact value state 𝛘8 𝑣(𝛘8, Π1) 5.047 5.334 6.822 11.124 40.111 
Exact value state 𝛘9 𝑣(𝛘9, Π1) 5.047 5.338 6.861 11.395 41.251 
Exact value state 𝛘10 𝑣(𝛘10, Π1) 5.047 5.332 6.806 11.041 40.169 
Exact value state 𝛘11 𝑣(𝛘11, Π1) 5.047 5.335 6.833 11.209 40.388 
Exact value state 𝛘12 𝑣(𝛘12, Π1) 5.047 5.336 6.845 11.325 41.475 
Approximate value 𝑣(𝐧3, Π1) 5.047 5.336 6.850 10.937 41.259 

Exact value state 𝛘13 𝑣(𝛘13, Π1) 7.547 7.834 9.328 13.686 43.278 
Approximate value 𝑣(𝐧4, Π1) 7.547 7.834 9.331 13.307 43.162 

Exact value state 𝛘14 𝑣(𝛘14, Π1) 4.043 4.297 5.484 8.404 35.884 
Exact value state 𝛘15 𝑣(𝛘15, Π1) 4.041 4.274 5.263 6.647 24.821 
Exact value state 𝛘16 𝑣(𝛘16, Π1) 4.043 4.297 5.484 8.393 35.684 
Approximate value 𝑣(𝐧𝟓, Π1) 4.043 4.297 5.484 7.893 36.409 

Exact value state 𝛘17 𝑣(𝛘17, Π1) 6.543 6.795 7.966 10.726 37.263 
Exact value state 𝛘18 𝑣(𝛘18, Π1) 6.543 6.795 7.964 10.700 37.038 
Approximate value 𝑣(𝐧6, Π1) 6.543 6.795 7.964 10.201 37.758 

Table 5.3: Comparison of the exact and the approximate transient reward values. 

in state 𝐱𝑙, such that it causes the transition 𝐱𝑙 → 𝐲𝑙, it brings a long-term reward gain 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) =

𝑣(𝐲𝑙 , Π) − 𝑣(𝐱𝑙 , Π). Under the macrostate-dependent model, the gains of all transitions 𝐱𝑙 → 𝐲𝑙 that cause 

𝐧𝑙 → 𝐧𝑙 + 𝛅𝑗
𝑙  are assumed to be identical and thus approximated as 𝑔𝑗

𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) ≈ 𝑔𝑗
𝑙 (𝐧𝑙 , Π) =

𝑣(𝐧𝑙 + 𝛅𝑗
𝑙 , Π) − 𝑣(𝐧𝑙 , Π). Therefore, to compare both methods, it would be more reasonable to analyse 

how well 𝑔𝑗
𝑙 (𝐧𝑙 , Π)  approximates 𝑔𝑗

𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) . For that, consider the macrostate transition diagram 

depicted in Fig. 5.2. In the diagram, it is seen that arrivals may cause six possible macrostate transitions 
in the single-link network. They are 𝐧1 → 𝐧2, 𝐧2 → 𝐧3, 𝐧3 → 𝐧4, 𝐧5 → 𝐧6, 𝐧1 → 𝐧5 and 𝐧2 → 𝐧6. Each 
transition yields a long-term reward gain 𝑔𝑗(𝐧𝑖 , Π1). These gains are defined in Fig. 5.2 and are calculated 

with the transient reward values 𝑣(𝐧𝑖 , Π1) listed in Table 5.3. (In order to keep the mathematical notation 

simple, in Fig. 5.2 we drop from 𝑔𝑗
𝑙 (𝐲𝑙 , 𝐱𝑙 , Π) and 𝑔𝑗

𝑙 (𝐧𝑙 , Π) the superscript 𝑙. Furthermore, the states 𝐱𝑙 

and 𝐲𝑙 are denoted by the corresponding states 𝛘𝑖 , whereas 𝐧𝑙  is denoted by 𝐧𝑖.) 
Figure 5.2 further defines the state transitions that cause each macrostate transition. For example, 𝐧2 →

𝐧6, i.e. (1,0) → (1,1), may occur if a class-2 request arrives when the link is in state 𝛘2 or 𝛘6. Therefore, 
according to the policy decisions Π1(𝛘2, 2) and Π1(𝛘6, 2) in Fig. 5.1, we have that 𝐧2 → 𝐧6 is observed if 
and only if either transition 𝛘2 → 𝛘18 or 𝛘6 → 𝛘17 occurs. These transitions yield, respectively, the long-
term rewards 𝑔2(𝛘18, 𝛘2, Π1) = 𝑣(𝛘18, Π1) − 𝑣(𝛘2, Π1)  and 𝑔2(𝛘17, 𝛘6, Π1) = 𝑣(𝛘17, Π1) − 𝑣(𝛘6, Π1) . 
In principle, these two gains need not be alike. However, the macrostate-dependent reward model 
approximates them as 𝑔2(𝐧2, Π1) = 𝑣(𝐧6, Π1) − 𝑣(𝐧2, Π1) - see Fig. 5.2.  

In Tables 5.4-5.9 we summarize for each macrostate transition the corresponding gain 𝑔𝑗(𝐧𝑖 , Π1) as 

well as the exact gains 𝑔𝑗(𝛘𝑘 , 𝛘𝑖 , Π1) that cause the transition. The gains are shown for each traffic load 

and are calculated from the reward values in Table 5.3. The exact gains are compared with 𝑔𝑗(𝐧𝑖 , Π1) by 

calculating the relative approximate error with Equation (5.3) – the error is calculated relative to the exact 
gains. The results show that the macrostate-dependent model provides good approximations, especially at 
low traffic loads. (Note that for all macrostate transitions, the relative approximate error increases with the 
traffic load.)  

Two important attributes of the reward models are revealed by the results. First, in most traffic loads 
the inequalities 𝑔𝑗(𝐧𝑖 , Π1) ≤ 𝑟𝑗  and  𝑔𝑗(𝛘𝑘 , 𝛘𝑖 , Π1) ≤ 𝑟𝑗 are verified.  In particular, as seen in Tables 5.4-

5.9, the equalities 𝑔𝑗(𝐧𝑖 , Π1) = 𝑟𝑗,  𝑔𝑗(𝛘𝑘 , 𝛘𝑖 , Π1) = 𝑟𝑗 are satisfied at low traffic loads. The reason is that 
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Figure 5.2: Definition of the exact and the approximate reward gains for the single-link network. 

A 

(Erl) 

𝑔1(𝐧1, Π1) 

(ru) 

𝑔1(𝛘2, 𝛘1, Π1) 

Gain 

(ru) 

Error 

(%) 

0.001 2.500 2.500 0.00 

0.010 2.500 2.500 0.00 

0.100 2.499 2.499 0.00 

1.000 2.479 2.472 0.28 

10.00 2.116 2.190 3.38 

Table 5.4: Relative approximate error long-term reward gain g1(n1, п1). 
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 A 

(Erl) 
𝑔1(𝐧2, Π1) 

(ru) 

𝑔1(𝛘7, 𝛘2, Π1) 𝑔1(𝛘10, 𝛘3, Π1) 𝑔1(𝛘7, 𝛘4, Π1) 𝑔1(𝛘8, 𝛘5, Π1) 𝑔1(𝛘9, 𝛘6, Π1) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

0.001 2.500 2.500 0.00 2.500 0.00 2.500 0.00 2.500 0.00 2.500 0.00 

0.010 2.498 2.497 0.04 2.497 0.04 2.500 0.08 2.499 0.04 2.497 0.04 

0.100 2.484 2.468 0.65 2.472 0.49 2.500 0.64 2.488 0.16 2.473 0.44 

1.000 2.412 2.336 3.25 2.302 4.78 2.485 2.94 2.378 1.43 2.313 4.28 

10.00 2.484 2.885 13.90 1.643 51.19 2.232 11.29 1.612 54.09 2.315 7.30 

Table 5.5: Relative approximate error long-term reward gain g1(n2, п1). 

A 

(Erl) 
𝑔1(𝐧3, Π1) 

(ru) 

𝑔1(𝛘13, 𝛘7, Π1) 𝑔1(𝛘13, 𝛘9, Π1) 𝑔1(𝛘13, 𝛘12, Π1) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

0.001 2.500 2.500 0.00 2.500 0.00 2.500 0.00 

0.010 2.498 2.499 0.04 2.496 0.08 2.498 0.00 

0.100 2.481 2.494 0.52 2.467 0.57 2.483 0.08 

1.000 2.370 2.446 3.11 2.291 3.45 2.361 0.38 

10.00 1.903 1.984 4.08 2.027 6.12 1.803 5.55 

Table 5.6: Relative approximate error long-term reward gain g1(n3, п1). 

A 

(Erl) 
𝑔1(𝐧5, Π1) 

(ru) 

𝑔1(𝛘17, 𝛘14, Π1) 𝑔1(𝛘18, 𝛘16, Π1) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

0.001 2.500 2.500 0.00 2.500 0.00 

0.010 2.498 2.498 0.00 2.498 0.00 

0.100 2.480 2.482 0.08 2.480 0.00 

1.000 2.308 2.322 0.60 2.307 0.04 

10.00 1.349 1.379 2.18 1.354 0.37 

Table 5.7: Relative approximate error long-term reward gain g1(n5, п1). 

A 

(Erl) 
𝑔2(𝐧1, Π1) 

(ru) 

𝑔2(𝛘14, 𝛘1, Π1) 

Gain 

(ru) 

Error 

(%) 

0.001 3.996 3.996 0.00 

0.010 3.959 3.959 0.00 

0.100 3.617 3.617 0.00 

1.000 1.847 1.972 6.34 

10.00 -0.250 -0.335 25.34 

Table 5.8: Relative approximate error long-term reward gain g2(n1, п1). 

A 

(Erl) 
𝑔2(𝐧2, Π1) 

(ru) 

𝑔2(𝛘17, 𝛘6, Π1) 𝑔2(𝛘18, 𝛘2, Π1) 

Gain 

(ru) 

Error 

(%) 

Gain 

(ru) 

Error 

(%) 

0.001 3.996 3.996 0.00 3.996 0.00 

0.010 3.957 3.954 0.08 3.957 0.00 

0.100 3.598 3.578 0.56 3.598 0.00 

1.000 1.676 1.644 1.95 1.796 6.68 

10.00 -1.017 -1.673 39.2 -1.371 25.8 

Table 5.9: Relative approximate error long-term reward gain g2(n2, п1). 
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𝝀𝟏 

(con/uot) 

𝝀𝟐 

(con/uot) 

𝝁𝟏 

(con/uot) 

𝝁𝟐 

(con/uot) 

𝒓𝟏 

(ru) 

𝒓𝟐  

(ru) 

variable variable 1.0 0.1 2.5 4.0 

Table 5.10: Parameter settings for performance evaluation of the PIA in the single-link network. 

when the traffic load is low, an admitted class-j connection is less likely to prevent the admission of more 

“profitable” connections, i.e. the probability that during the connection holding time 𝜇𝑗
−1  the carried 

connection blocks new arrivals is negligible. Therefore, the admission of class-1 and class-2 connections 
yield, respectively, long-term reward gains 𝑔1(𝐧𝑖 , Π1) ≈ 𝑔1(𝛘𝑘 , 𝛘𝑖 , Π1) ≈ 𝑟1 = 2.5  and 𝑔2(𝐧𝑖 , Π1) ≈
𝑔2(𝛘𝑘 , 𝛘𝑖 , Π1) ≈ 𝑟2 = 4.0. As the traffic load increases, most of the gains become lower than the reward 
parameters. The higher the traffic load, the higher the probability that a carried connection blocks more 
valuable traffic, thereby 𝑔𝑗(𝐧𝑖 , Π1) < 𝑟𝑗 and  𝑔𝑗(𝛘𝑘 , 𝛘𝑖 , Π1) < 𝑟𝑗. As an example, consider the transition 

𝐧2 → 𝐧6 which was previously explained. The results for this case are summarized in Table 5.9. When 
the link is offered a load of 𝐴 = 0.01 (Erlangs), if a class-2 arrival gets admission in state 𝛘2, then the 
transition 𝛘2 → 𝛘18 occurs and an immediate reward of 𝑟2 = 4.0 (ru) is earned. However, owing to the 
harmful effects that this connection may cause, the link will effectively earn a long-term reward of 
𝑔2(𝛘18, 𝛘2, Π1) = 3.957 (ru), which is comparable to 𝑟2. This gain is approximated in the macrostate-
dependent reward model as 𝑔2(𝐧2, Π1) = 3.957 (ru). If the load rises to 𝐴 = 1.0 Erlangs, the link now 
earns from the same connection a reward of 𝑔2(𝛘18, 𝛘2, Π1) = 1.796  (ru) – note that this gain is 
approximated as 𝑔2(𝐧2, Π1) = 1.676 (ru). This connection becomes more harmful as the 𝑏2 = 4 slots 
that it seizes may block the admission of connections that can bring more reward to the link.  

The second attribute revealed by the results is that (as expected) for a given macrostate transition, the 
exact gains 𝑔𝑗(𝛘𝑘 , 𝛘𝑖 , Π1) resulting from the transition are in most cases comparable, but not alike. For 

instance, in Table 5.9 we can see that the macrostate transition 𝐧2 → 𝐧6  has gains 𝑔2(𝛘18, 𝛘2, Π1) ≠
𝑔2(𝛘17, 𝛘6, Π1)  which are approximated by 𝑔2(𝐧2, Π1) . However, the results show that for the six 
macrostate transitions, the exact gains tend to be similar, especially in low traffic load regions. 

An important remark needs to be clarified regarding the relative approximate error at high traffic loads. 
In most cases, the error is small, however the macrostate-dependent model tends to overestimate the long-
term gains for transitions 𝛘𝑖 → 𝛘𝑘 in which the destination state 𝛘𝑘 blocks arrivals of either class. Consider 
as an example the results in Table 5.5 for 𝐴 = 10 Erlangs, which show the gains for the transition 𝐧2 →
𝐧3. The gain 𝑔1(𝐧2, Π1) approximates the exact gains 𝑔1(𝛘𝑘 , 𝛘𝑖 , Π1) of the five state transitions that cause 
𝐧2 → 𝐧3. From the results, the gain 𝑔1(𝐧2, Π1) = 2.484 (ru) is a reasonable approximation to the exact 
gains of the three state transitions 𝛘2 → 𝛘7, 𝛘4 → 𝛘7 and 𝛘6 → 𝛘9. Note that the destination states 𝛘7 =
(1, ∞, 1, ∞, 0,0) and 𝛘9 = (1, ∞, 0,0,1, ∞) allow the admission of class-1 arrivals as both have two free 
adjacent slots. However, 𝑔1(𝐧2, Π1)  overestimates the exact gains 𝑔1(𝛘10, 𝛘3, Π1) = 1.643  (ru) and 
𝑔1(𝛘8, 𝛘5, Π1) = 1.612 (ru) of the transitions 𝛘3 → 𝛘10 and 𝛘5 → 𝛘8, respectively. The destination states 
𝛘8 = (1, ∞, 0,1, ∞, 0) and 𝛘10 = (0,1, ∞, 1, ∞, 0), in contrast to 𝛘𝟕 and 𝛘9, block the admission of class-
1 requests. For this reason, the exact gains 𝑔1(𝛘10, 𝛘3, Π1) and 𝑔1(𝛘8, 𝛘5, Π1) are less than 𝑔1(𝛘7, 𝛘2, Π1), 
𝑔1(𝛘7, 𝛘4, Π1) and 𝑔1(𝛘9, 𝛘6, Π1). Hence, 𝛘8  and 𝛘10  are more harmful than 𝛘7  and 𝛘9 . This effect is 
more noticeable at high traffic loads because in those states the link is more likely to block arrivals of 
either class. 

The analytical study presented for the single-link network shows that, in the considered traffic load 
region, the macrostate-dependent model is a reasonable approach to modelling the link reward process. 
Since for multi-link networks the assumption is made that each link behaves independently, it can be 
argued that - in those networks - the macrostate-dependent approach can be a good approximation for each 
link reward process. We defer this discussion to Section 5.3, where the case of multi-link networks is 
tackled. In the meantime, let us complement the analytical study by analysing the performance of the exact 
and the approximate PIA when Π1 is used as the starting policy. 

5.2.2 Adaptive and State-Dependent Connection Admission Control 
To assess the performance of the exact and the approximate PIA for the single-link network in Fig. 5.1, 

simulations were set up with the parameters 𝜆𝑗, µ𝑗, and  𝑟𝑗 defined in Table 5.10. For different traffic 

loads 𝐴, the mean link reward rate 𝑅(Π) and the mean the link reward loss 𝑅𝐿(Π) are evaluated for each 

PIA variant. By setting 𝜆1 = 𝜆2 = 𝜆, the traffic loads are generated from Equation (5.4) by varying 𝜆. 

Therefore, since 𝐴1 = 𝜆/µ1 and 𝐴2 = 𝜆/µ2, then  𝐴 = 𝜆 ∙ (µ1
−1 + µ2

−1), where µ1 and µ2 are fixed and 

equal to the values defined in Table 5.10.  
As starting policy, both PIA variants use the policy Π1 shown in Fig 5.1. Furthermore, the approximate 

PIA implements the MDP rule and uses first-fit (FF) as spectrum allocation algorithm [TAK+14]. (Recall 
that in a spectrum grid with  𝐶𝑙 slots indexed as  1,2, … , 𝐶𝑙 , first-fit assigns the available 𝑏𝑗 adjacent slots 
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Figure 5.3: Simulation results for the basic CAC scheme, the exact and the approximate PIA. 

with the lowest indices.) Both methods are further compared against a basic CAC scheme that only rejects 
connections that violate the contiguity and capacity constraints (i.e. connections are admitted if resources 
are available disregarding any harmful effect that they may cause).  

Figure 5.3 depicts the simulation results, where the reward rates and losses of the approximate PIA 
correspond to the policy calculated in the fifth iteration cycle, i.e. the cycle that meets Equation (5.1). The 
results show that both PIA algorithms have similar performance, which indicates that - as with the results 
in Section 5.2.1 - the macrostate-dependent PIA is a good approximation to the exact model. The average 
relative approximate error of the reward losses (calculated over all traffic loads) is 0.47%. The advantage 
of the approximate method is its reduced complexity (note that the exact PIA involves the solution of a 
system with 18 linear equations, whereas in the macrostate-dependent variant the system has only size 
six). In Fig. 5.3 it is also observed that both PIA strategies outperform the basic CAC scheme, especially 
for high traffic loads. This difference stems from the admission decision rules defined by the resource 
allocation algorithms. The basic CAC approach accepts connections whenever resources are available for 
them, thereby any harmful effect that an admitted connection may cause is omitted. On the other hand, the 
PIA variants exclude and reject connection requests that, in spite of the availability of resources, yield 
negative reward gains. Thus, only traffic that increases the long-term reward earned by the link is admitted. 

To further study the approximate PIA, let us consider a larger single-link network with a capacity of 
𝐶𝑙 = 32 slots that serves 𝐽 = 2 connection classes. Class-1 and class-2 have, respectively, bandwidths and 
reward parameters 𝑏1 = 2 (slots), 𝑟1 = 2 (ru) and 𝑏2 = 8 (slots), 𝑟2 = 6.5 (ru). Two evaluation scenarios 
are defined in Table 5.11 for this link. In both scenarios the PIA implements first-fit as spectrum allocation 
algorithm, and the basic CAC scheme is implemented as starting policy Π0 (using first-fit as well). This 
means that in the first iteration cycle, connection requests are always admitted if resources are available 
for them. From the second cycle onwards, the PIA calculates and executes new policies according to the 
MDP rule. For both scenarios, a performance comparison with the exact PIA is infeasible given that this 
approach is unsolvable for the considered link (the state-space contains 5054773 states, which defines a 
linear system that cannot be solved online). In contrast, the macrostate-space has 69 macrostates, thereby 
allowing the implementation of the approximate PIA. The aim of scenario 1 is to evaluate the link reward 
rate 𝑅(Π) attained by the approximate PIA under different traffic loads 𝐴. Since a comparison with the 
exact PIA is not possible, we compare 𝑅(Π) with the analytical rate obtained by solving the linear system 
defined by the policy Π. The traffic loads 𝐴 = 𝜆1/µ1 +  𝜆2/µ2 are determined by setting 𝜆1 = 𝜆2 = 𝜆. 
Therefore, 𝜆 is varied so that the traffic 𝐴  changes from 0.5 to 80 Erlangs. On the other hand, the goal of  
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Parameter Scenario 1 Scenario 2 

𝐶𝑙 32 (slots) 32 (slots) 

𝐽 2 (classes) 2 (classes) 

𝜆1 variable 0.75 (con/uot) 

𝜆2 variable 0.75 (con/uot) 

µ1 1 (con/uot) 1 (con/uot) 

µ2 1 (con/uot) Variable 

𝑏1 2 (slots) 2 (slots) 

𝑏2 8 (slots) 8 (slots) 

𝑟1 2 (ru/con) 2 (ru/con) 

𝑟2 6.5 (ru/con) 6.5 (ru/con) 

rule MDP MDP 

Spectrum allocation first-fit first-fit 

Table 5.11: Parameter settings for performance evaluation of the approximate PIA [RB16b]. 

Figure 5.4: Analytical and simulated average link reward rate vs. offered traffic [RB16b]. 

scenario 2 is to assess the approximate PIA by comparing its reward losses with those achieved by the 
basic CAC scheme. The assessment is performed for different offered traffic loads 𝐴, which are obtained 
by varying µ2 from 0.01 to 20 (con/uot).  The results of this study are published in [RB16b]. 

Figure. 5.4 depicts the analytical and the simulated average link reward rate for scenario 1. The results 
refer to the performance achieved in the eight iteration cycle, which is the cycle that meets the stopping 
criterion in Equation (5.1). The analytical link reward rate is calculated by solving the linear system (with 
69 equations) defined by the policy Π executed in that cycle. Such a system is solved by using the 
parameters defined in Table 5.1. Moreover, in the simulations, the link reward rate is estimated from the 
observed carried traffics as 𝑅(Π) = ∑ 𝑟𝑗 ∙ µ𝑗 ∙ 𝐴𝑐𝑗𝑗 . Notice that this expression was derived in Chapter 3, 

and corresponds to Equation (3.4). The results indicate that the approximate PIA closely matches the 
analytical results. More specifically, in Fig. 5.4 it is seen that most analytical link reward rates are within 
the 95% confidence intervals. The average relative approximate error (calculated over all simulated traffic 
loads) is 5.55%. This allows us to infer that the online estimation method of arrival rates (as implemented 
by the approximate PIA) gives reliable estimates.  To prove this, consider the comparison between the 
exact and the estimated arrival rates 𝜆𝑗 shown in Table 5.12. Therein, the exact rates 𝜆1 = 𝜆2 = 𝜆 are the 

exogenous arrival rates that yield the traffic loads 𝐴. The estimated rates correspond to 𝜆1
𝑙 (Π) and 𝜆2

𝑙 (Π), 
which are determined by the procedure outlined in Chapter 4. (Note that as explained in chapter 4, the 

rates 𝜆𝑗
𝑙(Π) are estimated with Equation (4.35) from online measurements.) The relative approximate 

errors in Table 5.12 evince the good accuracy of the estimation procedure. Besides, it shows that the PIA 
adapts well to changes in the traffic load. This explains why in Fig. 5.4 the approximate PIA fits well the 
analytical results. 

For scenario 2, Fig. 5.5 shows the average simulated link reward loss as function of the total offered 
traffic for the basic CAC scheme and the approximate PIA. For the PIA, the reward losses are those 
obtained in the eight iteration cycle. As with the small single-link network, the results show that the PIA 
yields lower reward losses compared to the basic CAC scheme, especially for high traffic loads. Although  
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A 
(Erl) 

𝝀𝟏 

(con/uot) 

𝝀𝟐  

(con/uot) 

Exact Estimated Error (%) Exact Estimated Error (%) 

0.50 0.250 0.2507 0.28 0.250 0.2488 0.48 

0.75 0.375 0.3749 0.03 0.375 0.3760 0.27 

0.90 0.450 0.4493 0.16 0.450 0.4474 0.58 

1.00 0.500 0.5008 0.16 0.500 0.4986 0.28 

1.50 0.750 0.7451 0.65 0.750 0.7434 0.88 

2.00 1.000 0.9938 0.62 1.000 0.9911 0.89 

3.00 1.500 1.4670 2.20 1.500 1.4850 1.00 

4.00 2.000 1.9970 0.15 2.000 1.9930 0.35 

5.00 2.500 2.4840 0.64 2.500 2.4800 0.80 

6.00 3.000 3.0100 0.33 3.000 2.9720 0.93 

10.00 5.000 4.9810 0.38 5.000 5.0400 0.80 

20.00 10.00 10.07 0.70 10.00 9.8970 1.03 

30.00 15.00 14.94 0.40 15.00 15.67 4.47 

40.00 20.00 20.10 0.50 20.00 20.93 4.65 

50.00 25.00 24.99 0.04 25.00 23.68 5.28 

60.00 30.00 29.68 1.07 30.00 31.81 6.03 

70.00 35.00 34.67 0.94 35.00 34.30 2.0 

80.00 40.00 40.73 1.82 40.00 42.10 5.25 

Table 5.12: Relative approximate error for the arrival rates estimated by the PIA. 

Figure 5.5: Reward loss vs offered traffic for the basic CAC scheme and the PIA [RB16b]. 

the exact PIA is not implementable for this link, the results suggest that the approximate variant is a good 
at approximating the exact long-term reward gains. Thus, with the MDP rule, the PIA detects and rejects 
adverse connections that would diminish the reward earned by the link. Furthermore, the decisions taken 
by the PIA adapt to the traffic load, which explains the superiority of the method, especially at high traffic 
loads. In this case, the PIA is more efficient than the basic CAC scheme at detecting and discarding 
harmful connection requests. 

Based on the results presented in this section, we can argue that the macrostate-dependent PIA is a 
plausible approximation to solving the reward-based online resource allocation problem. In the following 
section, we evaluate the performance of the method for full-mesh, partial-mesh and ring topologies, where 
three aspects are investigated. First, a comparison is made for the reward losses attainable by the four 
MDP-based admission decision rules. Secondly, an analysis is made on the influence of the spectrum 
allocation algorithm on the PIA performance. And last, we present an analysis on GoS control. These three 
aspects are investigated by setting up simulations under different traffic load conditions. 
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Figure 5.6: Network topologies and definition of connection class parameters [RB16d]. 

5.3. Performance Analysis of the Approximate PIA 

To assess the performance of the approximate PIA for multi-link networks, simulations were set up for 

three network topologies: the partial-mesh and the ring topologies shown in Fig. 5.6, and the full-mesh 

version of these networks. The topologies consist of flex-grid optical links with capacities of 𝐶𝑙 = 32 

slots, and have 10 nodes which are assumed to have sufficient transponders to serve the traffic demand. 

In these networks it is assumed that each of the 45 end-to-end node-pairs serves two connection classes, 

namely, a narrowband class with 𝑏𝑗 = 2 and a wideband class with 𝑏𝑗 = 8. Thus, the three networks 

serve 𝐽 = 90  classes, where classes 1-45 and 46-90 comprise narrowband and wideband connections, 

respectively. The settings of the parameters 𝜆𝑗, µ𝑗, 𝑏𝑗 and  𝑟𝑗 are shown in Fig. 5.6. 

As initial online policy Π0 for the PIA, we implemented the KSP (i.e. the k-shortest paths) algorithm 
proposed in [WWH+11]. For any connection request, the KSP assigns a lightpath on the first available 
shortest path (in Γ𝑗) that fulfils the contiguity and continuity constraints. Furthermore, it is assumed, that 

for each connection class, the set of candidate paths Γ𝑗 comprises the 2-shortest paths (w.r.t. the number 

of links) connecting the nodes (𝑜, 𝑑)𝑗. Both the KSP and the PIA (in the PIR) use first-fit as spectrum 

allocation algorithm. 
In the VDO the PIA executes the six steps outlined in Section 4.4.2 – Chapter 4. However, these steps 

are performed by defining the linear systems (for each link) in a simplified macrostate-space Ω𝐧
𝑙  rather 

than in Ω𝐧
𝑙 . Observe that in Ω𝐧

𝑙  each link 𝑙 would be described by macrostates 𝐧𝑙 = (𝑛1
𝑙 , … , 𝑛90

𝑙 ) with 90 
components. Since for classes 1-45,  𝑏𝑗 = 2 and µ𝑗 = 1, and for classes 45-90, 𝑏𝑗 = 8 and µ𝑗 = 0.1 (see 

Fig. 5.6), the cardinality of Ω𝐧
𝑙  is reduced by the simplified link model from Section 4.2.3 - Chapter 4. 

With that model, classes 1-45 and 46-90 are aggregated into two classes 𝑖, 𝑘 with µ𝑖 = 1, 𝑏𝑖 = 2 and µ𝑘 =
0.1, 𝑏𝑘 = 8, respectively. On each link this reduces the number of classes from 𝐽 = 90 to 𝐽′ = 2, so that 

every link 𝑙 is described by macrostates �̂�𝑙 = (�̂�𝑖
𝑙 , �̂�𝑘

𝑙 ) with two components. These macrostates define the 

simplified space Ω𝐧
𝑙 . Thus, for each link 𝑙, the VDO calculates the link reward parameters from Equation 

(4.30) – Chapter 4, as follows: 

𝑟𝑖
𝑙 =

∑ (𝑟𝑗
𝑙∙𝐴𝑐𝑗

𝑙)45
𝑗=1

∑ 𝐴𝑐𝑗
𝑙45

𝑗=1

                                                                (5.5) 

𝑟𝑘
𝑙 =

∑ (𝑟𝑗
𝑙∙𝐴𝑐𝑗

𝑙)90
𝑗=46

∑ 𝐴𝑐𝑗
𝑙90

𝑗=46

                                                              (5.6)  

To evaluate the performance of the approximate PIA, simulations are run to estimate the mean network 
reward rate 𝑅(Π) and the mean the network reward loss 𝑅𝐿(Π). These performance metrics are evaluated 
for different offered traffic loads 𝐴 which are calculated as: 

𝐴 = ∑ 𝐴𝑗
90
𝑗=1                                                                (5.7) 

with 𝐴𝑗 = 𝜆𝑗/µ𝑗 (Erlangs). The traffic loads are generated from Equation (5.7) by varying the arrival 

rates 𝜆𝑗, which are set equal for all j. Hence, if 𝜆𝑗 =  𝜆, ∀𝑗, we have: 
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𝐴 = 𝜆 ∙ ∑ µ𝑗
−190

𝑗=1                                                               (5.8) 

where the termination rates µ𝑗 are fixed and equal to the values defined in Fig. 5.6. On the other hand, 

note that the reward parameters are set as 𝑟𝑗 = 1, ∀ 𝑗, and thus, the PIA maximizes (for all considered 

traffic loads) the overall mean rate of accepted connections, i.e. the objective function defined in Equation 

(3.6) - Chapter 3. 
In the following we evaluate the performance of the approximate PIA for the four admission decision 

rules defined in Chapter 4. Recall that the MDP rule arises as a consequence of the link independence 
assumption, and hence, it must calculate the optimum policy if and only if there are no correlations among 
network links. The remaining three strategies aim at minimizing the lack of accuracy of the MDP rule. 
Based on this, in Section 5.3.1 we compare the performance of the MDP rule with that obtained when the 
networks apply the KSP scheme only. Then in Section 5.3.2 we focus our attention on the performance 
attainable by each of the four admission decision rules. The purpose is to evaluate the accuracy of the link 
independence assumption, and to determine which rule counteracts the correlations among links at its best. 
For each rule, in Section 5.3.3 we study the impact that the spectrum allocation algorithm used by the PIA 
has on the network performance. Finally, in Section 5.3.4 simulation results are presented that show how 
the PIA can implement grade of service control and equalization. 

5.3.1 Resource Allocation with the KSP Scheme and the MDP Rule 
It would be desirable to compare the performance of the approximate PIA with the optimum solution 
obtained by the exact algorithm formulated in Chapter 3. However, since the optimum solution cannot be 
calculated, the performance of the approximate approach is compared against that of the KSP scheme. 
Two reasons motivate this comparison. First, the results in [WWH+11] show that, compared to existing 
RSA algorithms [TAK+14], the KSP has an outstanding performance. Secondly, the KSP is very simple 
to implement, which makes it suitable as starting policy Π0 for the PIA. 

In Fig. 5.7 we show performance evaluation results for the three network topologies when resources 
are allocated by the KSP scheme only and by the PIA applying the MDP rule (using the KSP as starting 
policy Π0). The graphs in Fig. 5.7 depict the network reward rates 𝑅(Π) and the network reward losses 
𝑅𝐿(Π) as function of the total offered traffic. The results correspond to the policy calculated in the sixth 
iteration cycle, i.e. the cycle that meets Equation (5.1). The reward losses are expressed as a percentage 
(%) calculated with Equation (5.2). From the results, it can be seen that regardless of the topology, the 
MDP rule yields a lower reward loss compared to the KSP scheme, especially for high traffic loads. As 
with the single-link networks studied in Section 5.2, it is observed that admitting all connection requests 
that fulfil the contiguity and continuity constraints (as the KSP does), renders the network indifferent to 
the harmful effects that the connections can bring. In contrast, with the MDP rule, the long-term reward 
gains allow for detection and rejection of adverse connections, i.e. requests that bring to the network a 
negative reward gain. Since 𝑟𝑗 = 1, ∀ 𝑗, a connection with negative gain would decrease, if admitted, the 

overall mean rate of accepted connections, or equivalently, it would increase the overall blocking 
probability. Observe that these results are also verified by the reward rates shown in Fig. 5.7. In the 
simulated traffic load regions, the network reward rate is higher for the MDP rule. 

A remark regarding the optimality of the PIA - with MDP rule - should be made. The presence of 
multi-link shortest paths in Γ𝑗 causes non-zero correlations between the network links. As this effect is 

neglected by the MDP rule, the performance of the PIA shown in Fig 5.7 corresponds to a policy Π that is 
sub-optimal. The partial-mesh and the ring networks in Fig. 5.6 have average shortest path lengths of 1.93 
and 2.77, respectively. In these topologies, correlation do exist. In spite of this, the MDP rule outperforms 
the KSP scheme in the simulated traffic load regions. In the case of the full-mesh network, the superiority 
of the PIA scheme is obvious. Here, the connections are mainly routed on the direct links between node 
pairs. Thus, for the full-mesh network, the inter-link correlations are negligible.  

5.3.2 Resource Allocation with the MDP-based Admission Rules 
Although the MDP rule outperforms the KSP algorithm, it is important to test its accuracy. For this, we 

compare its performance with that attained by the three MDP-based rules which aim at counteracting the 

effect of link correlations. The comparison is made by performing simulations for the ring and the partial-

mesh networks in Fig. 5.6 (i.e. for the topologies which cause correlations among the network links). In 

Fig. 5.8 we present the reward losses (depending on the traffic load) that these four MDP-based strategies 

yield. As seen, regardless of the network topology, the MDP-PGMC rule shows the best performance 

(especially at very low traffic loads), whereas the reward losses induced by the MDP-SP and the MPD-

PG rules are similar. The worst performance is attained by applying the MDP rule. This result evinces 

that, although better than the KSP scheme, this rule calculates a sub-optimal policy Π owing to its lack 

of accuracy. 
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Figure 5.7: Simulation results for the KSP scheme and the PIA with the MDP rule [RB16d]. 

Figure 5.8: Performance comparison of the four PIA admission decision rules [RB17a]. 
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Table 5.13: Percentage of connections admitted on each candidate path [RB17a]. 

Figure 5.9: PIA convergence for the partial-mesh network applying the MDP-PGMC rule. 

The differences among the four rules arise because in the simulated traffic load regions the links have 
low utilizations.  As a consequence, the macrostate-dependent link reward-gains are mainly positive. (This 
statement can be understood by recalling the small single-link network studied in Section 5.2.1. In Tables 
5.4-5.9 it is seen that in low traffic loads, the gains are positive and tend to equal the reward parameters.) 
Thus, in most cases, when a connection arrives, the shortest path in Γ𝑗 has a positive reward gain and 

exhibits a suitable lightpath (owing to the low utilization). This explains why the MDP-SP and the MDP-
PG rules have comparable performance. These two strategies tend to make the same decisions, i.e. placing 
the connections on the lightpath calculated in the shortest path in Γ𝑗. On the other hand, since the link gains 

are mainly positive, there are macrostates for which the second shortest path may yield a higher gain than 
the shortest path. This renders the MDP rule (in low traffic regions) prone to admit connections on the 
longest route, thereby increasing the reward losses. The MDP-PGMC rule proves to be the best strategy 
as it attempts to evenly load the network without impairing the reward rate. To illustrate these arguments 
better, Table 5.13 shows for the partial-mesh network results in Fig. 5.8, the percentage of connections 
admitted by each rule on the 1st and the 2nd shortest path in Γ𝑗. As can be seen, the MDP rule tends to load 

the 2nd path, whereas the MDP-SP and the MDP-PG strategies place most of the traffic on the shortest 
path. The MDP-PGMC rule alleviates the load on the 1st path by using the 2nd route only when it provides 
higher capacity while guaranteeing a positive reward increment. 

For the considered network topologies and the simulated traffic load regions, the higher losses attained 
by the MDP rule indicate the inaccuracy of the link independence assumption. Although the connections 
are placed on the path with the highest reward gain, the MDP rule disregards any harmful effect that the 
connections have on links which are not in the path set Γ𝑗. However, the results in Fig. 5.8 show that this 

disadvantage can easily be overcome by adding simple modifications to the MDP rule which reduce the 
link state correlations. That is the case of the three remaining decision rules which significantly improve 
the network performance. 

For all admission decision rules, the PIA runs the policy  Πo during the first iteration cycle. To show 
the convergence of the PIA, in Fig. 5.9, for the partial-mesh network, the reward loss attained by the MDP-
PGMC rule is depicted as a function of the iteration cycle i. Each curve in Fig. 5.9 represents the reward 
loss for a specific traffic load 𝐴 (remark: these loads correspond to the values depicted in the first column 
of Table 5.13). The performance of the KSP (i.e. policy Π0) corresponds to the reward losses obtained for  

A 

(Erl) 

MDP MDP-SP MDP-PG MDP-PGMC 

1st (%) 2nd (%) 1st (%) 2nd (%) 1st (%) 2nd (%) 1st (%) 2nd (%) 

1.7 13.5 86.5 99.9 0.1 99.9 0.1 82.9 17.1 

2.2 15.2 84.8 99.8 0.2 99.8 0.2 80.5 19.5 

2.8 15.9 84.1 99.6 0.4 99.6 0.4 79.1 20.9 

3.3 16.1 83.9 99.2 0.8 99.2 0.8 77.8 22.2 

3.9 16.6 83.4 98.8 1.2 98.8 1.2 77.0 23.0 

4.4 18.5 81.5 98.3 1.7 98.3 1.7 76.4 23.6 

5.0 18.7 81.3 97.7 2.3 97.7 2.3 75.8 24.2 
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Figure 5.10: Performance of the PIA using RF spectrum allocation scheme. 

𝑖 = 1. As can be seen in Fig. 5.9, the speed of convergence is dependent on 𝐴. In particular, for the partial-
mesh and the ring network, it was observed that after 𝑖 = 6 iterations the policies Π𝑖 calculated by the PIA 
met the stopping criterion in Equation (5.1). The reward losses shown in Fig. 5.8 correspond to the results 
obtained for 𝑖 = 6. Figure 5.9 also indicates how the policies Π𝑖 calculated by the PIA outperform the 
KSP policy Π0.  

Although compared to the KSP and the MDP rule, the performance of the MDP-SP, the MDP-PG and 
the MDP-PGMC is better, it cannot be determined how far or close the policies calculated by these three 
approaches are from the optimum Π∗. The reason is that the optimum solution provided by the exact PIA 
cannot be calculated. However, the results indicate that the rules observe a good performance in the 
considered traffic load regions.  

5.3.3 Impact of the Spectrum Allocation Method on the PIA  
As discussed in Chapter 4, the macrostate-dependent model assigns the same long-term reward gain to all 
lightpaths routed on the same path. Thus, the approximate PIA only calculates one candidate lightpath on 
each route that fulfils the contiguity and continuity constraints. However, as argued in Chapters 3 and 4, 
in reality, on the same path lightpaths may have different gains. (This fact has been observed for the small 
single-link network studied in Section 5.2.1 - see Tables 5.4-5.9.) For this reason, the spectrum allocation 
scheme used by the PIA is expected to have an influence on the network performance. To investigate this, 
we run simulations to determine the reward losses attained by the PIA when random-fit (RF) is used - in 
the PIR step - as spectrum allocation algorithm. Based on a predetermined probability density function, 
RF randomly selects, for each route that fulfils the contiguity and continuity constraints, a lightpath from 
the set of candidate lightpaths available in the route [TAK+14]. By using RF with a uniform distribution, 
in Fig. 5.10 we present the reward losses attained by the four PIA admission decision rules in the partial-
mesh and the ring networks. The simulated traffic loads correspond to those evaluated in Fig. 5.8. (Recall 
that in Fig. 5.8, the PIA uses FF as spectrum allocation algorithm.) 

As with FF, the results show that for RF the MDP rule exhibits the worst performance. However, it 
can also be seen that RF deteriorates the performance of the MDP-PGMC rule, as it is now comparable to 
the MDP-SP and the MDP-PG strategies. In Table 5.14 and Table 5.15 we present a comparison of the 
reward losses - expressed in (%) - obtained by each rule in the partial-mesh and the ring networks, 
respectively. For a given rule, the comparison is made between the reward losses obtained by FF and RF. 
For that, in both tables we present the percentage change ∆𝑅𝐿 of the reward loss that is caused by RF with  
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Table 5.14: Reward losses obtained by FF and RF algorithms in the partial-mesh network. 

Table 5.15: Reward losses obtained by FF and RF algorithms in the ring network. 

respect to the losses attainable by FF. For all traffic loads and network topologies, the results show that 
the decision rules perform better with FF. When RF is used, the performance is severely deteriorated. The 
harmful effect is more noticeable under low traffic loads (note that the lower the offered traffic the higher 
the reward loss change ∆𝑅𝐿). This is explained by the fact that in low traffic regime, the network paths 
observe low utilizations, thereby more candidate lightpaths are available for incoming connection requests. 
In this scenario, with FF the PIA admits connections on the lightpath with the lowest indices in the grid. 
This avoids transitions to states that may block future arrivals. On the contrary, with RF, the PIA is prone 
to place connections on lightpaths that block future requests. For higher traffic loads, ∆𝑅𝐿 decreases as a 
higher resource occupation implies that both FF and RF have a reduced set of candidate lightpaths. 

Although the exact gains cannot be calculated for each candidate lightpath, the results in Tables 5.14- 
5.15 allow us to infer that the lightpaths selected by FF yield higher long-term reward gains than those 
selected by RF. When RF is used, the PIA is more likely to select lightpaths which configure blocking 
states for class-j connections. Those lightpaths have, in reality, lower long-term reward gains (as it was 
the case for the single-link network studied in Section 5.2, where it was shown that the approximate PIA 
tends to overestimate the gain of spectrum configurations that block class-j traffic). Thus, with respect to 
RF, the performance of the PIA can be improved by using FF as the spectrum allocation method.  

5.3.4 Grade of Service Control  
Regardless of the admission decision rule, the PIA can control the class-specific blocking probabilities 

𝐵𝑗  by appropriately setting the parameters 𝑟𝑗, thereby the policies Π𝑖 calculated by the PIA may achieve 

a desired GoS for each connection class. This property allows GoS equalization and the prioritization of 

selected classes. To illustrate this, consider the partial-mesh network in Fig. 5.6 and the PIA using the 

MDP and the MDP-PGMC rules with FF as spectrum allocation scheme. For each rule, the dependence 

of the blocking probabilities 𝐵𝑗  on the parameters 𝑟𝑗 is studied in low and high traffic load conditions. 

This is accomplished by defining the four simulation scenarios depicted in Table 5.16. As seen, the MDP 

rule is evaluated for 𝐴 = 9.9 and 𝐴 = 99, whereas the MDP-PGMC rule for 𝐴 = 5.0 and 𝐴 = 8.3. In all 

scenarios, we let all narrowband and wideband connections to have, respectively, the reward parameters 

𝑟𝑛 = 𝑟1 = ⋯ = 𝑟45 and 𝑟𝑤 = 𝑟46 = ⋯ = 𝑟90. Furthermore, for all wideband connections (i.e. classes 46- 
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(%) 

FF 

(%) 

RF 

(%) 
∆𝑅𝐿 

(%) 

FF 

(%) 

RF 

(%) 
∆𝑅𝐿 

(%) 

1.7 0.033 0.225 582 0.003 0.059 1867 0.003 0.060 1900 0.001 0.061 6000 

2.2 0.099 0.447 352 0.014 0.112 700 0.014 0.100 614 0.004 0.115 2775 

2.8 0.190 0.704 271 0.025 0.206 724 0.025 0.211 744 0.012 0.183 1425 

3.3 0.354 1.077 204 0.053 0.383 623 0.053 0.350 560 0.018 0.397 2106 

3.9 0.641 1.580 146 0.099 0.559 465 0.099 0.570 476 0.060 0.592 887 

4.4 0.885 2.041 131 0.203 0.876 332 0.203 0.908 347 0.102 0.906 788 

5.0 1.163 2.530 118 0.287 1.155 302 0.287 1.147 300 0.172 1.277 642 
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(%) 
∆𝑅𝐿 

(%) 

0.6 0.119 0.747 528 0.002 0.084 4100 0.002 0.093 4550 0.001 0.082 8100 

0.8 0.549 1.797 227 0.014 0.222 1486 0.014 0.228 1529 0.009 0.217 2311 

1.1 1.271 2.933 131 0.053 0.430 711 0.053 0.436 723 0.028 0.418 1393 

1.4 2.287 4.274 87 0.097 0.691 612 0.097 0.669 590 0.068 0.726 968 

1.7 3.431 5.707 66 0.170 1.002 489 0.170 1.023 502 0.159 1.111 599 

1.9 4.809 6.999 46 0.300 1.441 380 0.300 1.417 372 0.277 1.502 442 

2.2 6.481 8.432 30 0.540 1.946 260 0.545 1.975 262 0.510 2.082 308 
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 Parameter 
MDP MDP-PGMC 

𝐴 = 9.9 𝐴 = 99 𝐴 = 5.0 𝐴 = 8.3 

𝐶𝑙 32 (slots) 32 (slots) 32 (slots) 32 (slots) 

𝐽 90 (classes) 90 (classes) 90 (classes) 90 (classes) 

𝜆1 = ⋯ = 𝜆90 0.11  1.1  0.010  0.016  

µ1 = ⋯ = µ45 1.00  1.0 1.0 1.0 

µ46 = ⋯ = µ90 1.00  1.0  0.1 0.1  

𝑏1 = ⋯ = 𝑏45 2 (slots) 2 (slots) 2 (slots) 2 (slots) 

𝑏46 = ⋯ = 𝑏90 8 (slots) 8 (slots) 8 (slots) 8 (slots) 

𝑟𝑛 = 𝑟1 = ⋯ = 𝑟45 variable variable variable variable 

𝑟𝑤 = 𝑟46 = ⋯ = 𝑟90 8 (ru) 8 (ru) 1 (ru) 1 (ru) 

Policy Π0 KSP  KSP  KSP  KSP  

Spectrum sllocation algorithm first-fit first-fit first-fit first-fit 

Table 5.16: Definition of parameters for GoS control simulations [RB16d, RB17a]. 

90), the reward parameters 𝑟𝑤 are fixed and equal to the values defined in Table 5.16. Then in every 

scenario, simulations are run to assess the GoS of each connection class for different values of 𝑟𝑛.  
Figure 5.11 and Fig. 5.12 show the simulation results for the considered scenarios. The graphs in both 

figures depict the blocking probability 𝐵𝑛 (averaged over classes 1-45) of narrowband connections, the 
blocking probability 𝐵𝑤 (averaged over classes 46-90) of wideband connections, and the overall blocking 
probability 𝐵𝑇  as function of the narrowband reward parameters 𝑟𝑛. (Remark: in the graphs, for each 𝑟𝑛 
the blocking probabilities are those attained by the PIA in the sixth iteration cycle.) The results illustrate 
that the PIA can control the GoS by varying the reward parameters. However, it should be noted that 
changing any individual reward parameter influences the blocking probabilities of all connection classes. 
In fact, the graphs show that an improper choice of 𝑟𝑛 may deteriorate the GoS of wideband connections. 
For both rules, in low and high traffic load conditions, low values of 𝑟𝑛 cause narrowband connections to 
be rejected (as they bring to the network a negligible reward) and priority is only given to wideband traffic. 
Thus, the blocking 𝐵𝑛 is higher than 𝐵𝑤. In this case, 𝐵𝑤 is mainly influenced by the traffic offered by 
wideband connections and by the capacity of the network links. When the parameters 𝑟𝑛 are increased, 
narrowband connections become more valuable. As a result, 𝐵𝑛 decreases to the detriment of 𝐵𝑤, which 
shows the dependence of the class-specific blocking 𝐵𝑗  on the reward parameters of all connection classes. 

In addition to the capability of prioritizing traffic classes, the results also indicate that the network may 
set the reward parameters to equalize 𝐵𝑛, 𝐵𝑤 and 𝐵𝑇 . Consider as an example the MDP-PGMC rule. By 
using the parameters defined in Table 5.16 with 𝑟𝑛 = 𝑟𝑤 = 1, we have that 𝑟𝑗 = 1, ∀ 𝑗, and thus the PIA 

minimizes the overall blocking probability 𝐵𝑇 . In Table 5.17 we show (with 95% confidence intervals) 
this blocking as well as  𝐵𝑛 and  𝐵𝑤 for 𝐴 = 5.0 and 𝐴 = 8.3. As seen, the minimization of 𝐵𝑇  does not 
imply that all connection classes attain the same blocking. For instance, when 𝐴 = 5, the minimum 
blocking is 𝐵𝑇 = 0.19 ± 0.03. Although the overall losses are minimized, each class suffers a distinct 
GoS, i.e. 𝐵𝑛 = 0.06 ± 0.01, whereas 𝐵𝑤 = 0.31 ± 0.02. However, the results in Fig. 5.12 show that there 
exist an 𝑟𝑛  for which 𝐵𝑛 , 𝐵𝑤  and 𝐵𝑇  are equalized. The values of 𝑟𝑛  (obtained via simulations) that 
equalize these blocking probabilities are presented in Table 5.17. As an example, for 𝐴 = 5, the GoS is 
equalized to 𝐵𝑛 ≅ 𝐵𝑤 ≅ 𝐵𝑇 ≅ 0.33 if the network operator sets 𝑟𝑛 = 0.0148 (ru) and 𝑟𝑤 = 1 (ru). In 
general, the values of the parameters 𝑟𝑛 and 𝑟𝑤 for which a GoS equalization is obtained are dependent on 
𝐴. If, for example, the traffic load increases to 𝐴 = 8.3, equalization is attained by setting 𝑟𝑛 = 0.0183 
(ru) - as can be seen from Table 5.17 and Fig. 5.12.  

Although the analytical relationship between the parameters 𝑟𝑗 and 𝐵𝑗  is not trivial and depends on the 

traffic load, the results suggest that online and adaptive GoS control algorithms can be investigated so as 
to achieve (at its best) a desired grade of service for each connection class. Contrary to the exact and the 
approximate PIA, which have full knowledge of the reward parameters 𝑟𝑗, any reward-based GoS control 

scheme must be able to calculate (online and for the current traffic load conditions) the values of 𝑟𝑗 that 

either cause the lowest possible blocking 𝐵𝑗  or cause GoS equalization  This issue is an open challenge 

which has also been posed in the literature of reward-based approaches for telephone and packet-switched 
networks [DM89, DM92, DM94, Dzi97, Nor02]. To the best of our knowledge, the work in [Dzi97] has 
been the only one which has approached the problem of fairness and equalization (for reward-based 
schemes) from a game theoretical perspective. Still, further research is required so as to figure out whether 
those ideas can be applied to the exact and the approximate reward models for dynamic optical networks. 
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Figure 5.11: Blocking probabilities vs reward parameters MDP rule [RB16d]. 

Figure 5.12: Blocking probabilities vs reward parameters MDP-PGMC rule [RB17a]. 
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Table 5.17: Grade of service equalization partial-mesh network MDP-PGMC rule [RB17a]. 

5.4. Chapter Summary 

A relevant goal of a reward based approach to online resource allocation is to provide knowledge about 

the harmful effect that connections may cause in the network. This effect depends on the network state 

and on the traffic load, and is quantified by the long-term reward gains. The knowledge of these gains is 

important as it allows the implementation of admission control mechanisms that maximize the reward 

earned by the network. Connection admission control is applied on the time scale of connection 

interarrival times, which implies that CAC algorithms must be fast at estimating those gains. However, 

for most networks, an exact estimation is unfeasible owing to the huge cardinality of the network state-

space. To circumvent this problem, the approximate PIA resorts to two strategies: first, a macrostate-

dependent approximation of the long-term reward gains; and secondly, the link independence assumption. 

For the considered performance evaluation scenarios, the results show that the macrostate-dependent 

long-term reward gains are a reasonable approximation to the exact (state-dependent) gains. The accuracy 

of the approximation stems from the online procedure that estimates the state-dependent link arrival rates. 

Moreover, the simulation results for the partial-mesh and the ring networks show that although the link 

independence assumption is not always accurate, its performance can substantially be improved by 

adding simple modifications to it. That is the case of the MDP-SP, the MDP-PG and the MDP-PGMC 

rules. The performance of these rules depends on the spectrum allocation algorithm used by the 

approximate PIA. The reason for this is explained by the fact that the approximate PIA assumes that the 

lightpaths routed on the same path have similar gains which - as verified by the results - is not always 

true. However, with respect to random-fit, the inaccuracy of this assumption can easily be improved by 

using first-fit as the spectrum allocation method. With this algorithm, the MDP rules place connections 

on lightpaths that lead to less blocking in the network. From the results we conclude that an exact 

description of the optical grid configuration is not always necessary to design adaptive and state-

dependent resource allocation algorithms. Instead, the stochastic properties of the network can be 

modelled by the approximate PIA. By this method, the computational complexity of the exact state-

dependent PIA is skipped, thereby rendering the online resource allocation problem solvable.  
By comparing the performance of the PIA with the KSP scheme (which only rejects connections that 

violate the contiguity and capacity constraints), it is observed that the PIA yields a lower reward loss. This 
evinces the advantage of detecting and rejecting adverse connection requests that, despite the availability 
of resources, would prevent the network from admitting more valuable connections. Furthermore, the PIA 
has two substantial advantages compared to existing online RSA schemes. First, different reward 
objectives can be attained (e.g. maximization of carried traffic, revenue, etc.) by properly defining the 
reward parameters. Secondly, as shown by the results, GoS control can be applied on individual connection 
classes. However, further research is required to investigate how a reward-based algorithm can be 
implemented for adaptive GoS control, i.e. for tuning the connection reward parameters to either provide 
a desired GoS or to provide equalization of the class-specific blocking probabilities.  

In the next chapter, we further investigate how an existing connection establishment protocol can be 
adapted to implement the approximate PIA. Besides the implementation details, an analytical model is 
proposed to assess the connection set up latency when the PIA is used as the resource allocation method. 
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 (%) 
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(%) 

5.0 
1 1 0.06±0.01 0.31±0.02 0.19±0.03 

0.0148 1 0.32±0.04 0.33±0.04 0.33±0.05 

8.3 
1 1 0.56±0.03 2.96±0.05 1.77±0.04 

0.0183 1 2.91±0.04 2.89±0.03 2.90±0.04 
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Chapter 6 

Connection Establishment and Online 

Resource Allocation 

To serve connections on demand, dynamic optical networks rely on signalling protocols for connection 

establishment, maintenance and teardown. In particular, connection establishment protocols define the 

signalling procedures whereby resources are allocated. This implies that the design of resource allocation 

algorithms needs to conform to the specifications of the connection setup protocol applied by the network. 

In this chapter we tackle this issue by studying an implementation of the PIA that uses a 3-way handshake 

protocol for connection setup. Moreover, we propose an analytical approach to evaluating the connection 

setup latency. In Section 6.1, the implementation scenario for the PIA is explained, where it is discussed 

how the protocol is used to perform RSA and CAC. To evaluate the connection setup latency, in Section 

6.2 we outline a method to assess the performance of communication protocols by reducible task graphs. 

Then in Section 6.3 the method is used to formulate an analytical performance evaluation model for the 

3-way handshake protocol. To derive the model, the protocol is described by a task graph that represents 

the signalling latency of the connection setup procedure. By using reduction techniques, the graph is 

simplified to obtain a performance model that estimates the mean connection setup time. In Section 6.4 

the numerical results obtained by the analytical model are compared with simulations of selected 

scenarios. This chapter includes results published by the author in [RB17a, RB17c, RB18a]. 

6.1. Implementation of the Approximate PIA 

Different implementation variants can be proposed for the approximate PIA. They mainly differ in how 

the information handled by the algorithm is distributed and processed by the network elements. In this 

section we propose an implementation that employs the path computation element (PCE) [FVA06] to 

coordinate the PIA iteration cycles. The execution of the VDO is centralized by the PCE, whereas the 

PIR is executed by following a decentralized approach that relies on a connection establishment protocol. 

6.1.1 Centralized Execution of the VDO 
In the proposed implementation scenario, three relevant tasks are performed by the PCE: the coordination 

of the PIA operation, the execution of the VDO and the update of the network state. The first two tasks 

are depicted by the time-sequence diagram in Fig. 6.1. To coordinate the PIA operation, every ∆T time  

units the PCE commands each network node to start executing the ith iteration cycle. During that cycle, 

the nodes locally take online measurements to estimate the link arrival rates. At the end of the cycle, 

every node sends the measurements to the PCE. With this information the PCE centralizes the execution 

of the VDO as follows. First, for each link 𝑙, it solves the corresponding system of linear equations for 

𝑅𝑙(Π𝑖) and the transient values 𝑣(𝐧𝑙 , Π𝑖). Secondly, from these values, it estimates the long-term reward 

gains 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖). Furthermore, since the PCE has full visibility of the network state, it calculates the path 

sets Γ𝑗 to be used by the PIR in the next cycle. After calculating 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖) and Γ𝑗, the PCE sends this 

information to the nodes and initializes the next iteration cycle. (Remark: The PCE only sends to a given 

node the gains 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖) of the links that connect to the node. Likewise, it sends to the node the sets Γ𝑗 

that have at least one candidate path containing the node. This prevents the nodes from receiving and 

storing information that is irrelevant for the execution of the PIR step.)  
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Figure 6.1: Time-sequence diagram centralized implementation of the VDO. 

Figure 6.2: Time-sequence diagram implementation of the PIR with the 3WHS protocol. 

Variable Description 

𝑇𝐶𝑅  Processing time of a connection request at node “𝑜” 

𝑇𝑃𝑎𝑠𝑠𝑗  Processing time of pass j, 𝑗 = 1,2,3 

𝑇𝑃1 Processing time at node “𝑑” of the message probes sent by node “𝑜” in Pass1 

𝑇𝑃2 Processing time at node “𝑜”  of the Pass2 signalling message sent by node “𝑑” 

𝑇𝑃3 Processing time at the node “𝑑” of the Pass3 signalling message 

𝑇𝑋𝐶  Time to perform a cross-connection in an optical node 

Table 6.1: Variables describing the 3WHS protocol. 

6.1.2 Decentralized Execution of the PIR 
To enable fast connection setup times in dynamic optical networks (e.g. in the range of milliseconds to 

seconds), a 3-way handshake signalling (3WHS) protocol was proposed in [SN09, CCC+12, SCG+12, 

SGK+14]. In Fig. 6.2 we propose an adaptation of that protocol that enables the execution of the PIR step 

during the connection establishment procedure. (Table 6.1 defines the variables depicted in Fig. 6.2.) 
The PIR is implemented as a decentralized probing mechanism that consists of three passes. To explain 

them, assume that all network nodes have received from the PCE the corresponding gains 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖) and  
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Figure 6.3: Example of the course of a Pass1 and a Pass2 signalling message probes. 

the path sets Γ𝑗. Let us further assume that a connection request of class-j arrives at the node “𝑜” in (𝑜, 𝑑)𝑗 

- see Fig 6.2. This node takes a time 𝑇𝐶𝑅  to process the request. After this, it starts a Pass1 by sending on 
each route in Γ𝑗 a message probe towards node “𝑑”.  The probes are sent out simultaneously by the node 

“𝑜”. As a message probe travels towards “𝑑”, it collects the states 𝐱𝑙 and the reward gains 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖) of 

the links in the path it traverses. (Remark: 𝑔𝑗
𝑙 (𝐧𝑙 , Π𝑖) is the gain that the class-j request would bring to link 

𝑙 if it is accepted in the macrostate 𝐧𝑙  defined by the current link state 𝐱𝑙.) Thus, every message probe 
must be processed at all intermediate nodes in the path. This processing includes both reading the message 
and writing in it the link states and the reward gains needed to execute the PIR step. The processing time 
𝑇𝑃𝑎𝑠𝑠1 of Pass1 (see Fig. 6.2) is completed when all message probes arrive at “𝑑”. All probes need not 
arrive at the same time as each path may have different propagation delays and number of nodes. 

With the information provided by the message probes, node “𝑑” takes a time 𝑇𝑃1 to execute the PIR 
step. Therefore, after 𝑇𝑃1 time units, node “𝑑” knows whether the class-j request must be admitted or 
rejected. In case of admission, it also knows the lightpath on which the connection needs to be established. 
With this knowledge, node “𝑑” triggers the resource allocation procedure. For that, it starts a Pass2 by 
sending a signalling message towards “𝑜” on the path selected by the PIR. This message has the commands 
that the nodes in the path need to cross-connect the lightpath. When this message arrives at an intermediate 
node, it is read and immediately forwarded to the next upstream node while the cross-connection process 
is locally triggered. (For all nodes we denote the cross-connection time as 𝑇𝑋𝐶 .) The processing time of 
Pass2, namely 𝑇𝑃𝑎𝑠𝑠2, ends when the message arrives at “𝑜”. This node takes a time 𝑇𝑃2 to process this 
message. After this, it sends a Pass3 message towards “𝑑” to confirm that the lightpath has been configured 
and, at the same time, it starts the cross-connection to the client ports. The connection is set up when the 
cross-connection at “𝑜” is completed (see 𝑇𝑆𝑒𝑡𝑢𝑝 in Fig. 6.2). If after Pass1 the PIR decides to reject the 

connection, then Pass2 is used to inform node “𝑜” about the decision. In this case, the Pass2 signalling 
message travels back to “𝑜” without triggering any cross-connection in the path it traverses. In this case, 
upon reception of the Pass2 message, node “𝑜” informs the client that the request has been rejected. 

The processing time 𝑇𝑃𝑎𝑠𝑠3 of Pass3 ends when the Pass3 message arrives at “𝑑”. This node takes a 
time 𝑇𝑃3 to process this message. After this, it starts the cross-connection to the client ports. Furthermore, 
node “d” locally stores the decision and sends it to the PCE in order to update the network state.  

Example 6.1 Figure 6.3 depicts the course of a Pass1 and a Pass2 message probes in a network with 
six nodes and seven links. The probes correspond to a class-j request for which (𝑜, 𝑑)𝑗 = (A, D) and Γ𝑗 =
{(A, E, C, D), (A, B, F, D)}. Since the request arrives at node A, then this node triggers the connection setup 
process by sending two message probes: one over the path (A, E, C, D) and the other over (A, B, F, D). Each 
probe collects information about the link states and the long-term link reward gains. Once the two 
messages arrive at D, this node executes the PIR step. Figure 6.3 shows the Pass2 message when the PIR 
decides to admit the connection over the path (A, E, C, D). This message triggers the resource allocation 
process. 

The connection setup process in Fig. 6.2 is solely controlled by the node pair (𝑜, 𝑑)𝑗. The process is 

always triggered by the node that receives the connection request, whereas the destination node executes 
the PIR and triggers the resource allocation procedure. Note that although the PCE is not directly involved 
in the process, it is periodically updating (every ∆T time units) the information that the nodes need to 
establish connections on demand. By this approach, the connection setup process is decentralized, thereby 
avoiding the exchange of signalling messages between the nodes (𝑜, 𝑑)𝑗 and the PCE. Those messages 

might cause delays that may lead to large connection setup times. As demonstrated by the results in [SN09, 
CCC+12, SCG+12, SGK+14], by avoiding the exchange of messages with the PCE, the 3WHS protocol 
can provide setup times less than the round trip fibre delay (RTD) + 50 ms. This feature is useful to provide 
services with stringent setup time requirements. Moreover, since the 3WHS probes all the routes in Γ𝑗 

simultaneously, it provides the information needed by the destination node to calculate decisions on CAC 
and RSA. This avoids the collection of global information to perform resource allocation, and thus, the 
decision and connection setup processes are accelerated. In [SCG+12] it is shown that to provide setup 
times less than RTD + 50 ms, the ROADMs would require a signalling processing time less than 580 µs, 
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which is feasible with today’s technology. The 3WHS protocol together with the PIA (as seen in Fig. 6.2) 
can be realized as an extension of the GMPLS [Man04] control plane or included into a software-defined 
networking (SDN) architecture. The PIR step could also be realized in a purely centralized approach, e.g. 
within an SDN controller. However, in this case, centralization may impose severe restrictions on the 
minimum connection setup times attainable by the network. 

 The time-sequence diagram in Fig. 6.2 shows that the connection setup time is given by: 

𝑇𝑆𝑒𝑡𝑢𝑝 = 𝑇𝐶𝑅 + 𝑇𝑃𝑎𝑠𝑠1 + 𝑇𝑃1 + 𝑇𝑃𝑎𝑠𝑠2 + 𝑇𝑃2 + 𝑇𝑋𝐶                                    (6.1) 

In general, 𝑇𝑆𝑒𝑡𝑢𝑝, 𝑇𝐶𝑅 , 𝑇𝑃1, 𝑇𝑃2, 𝑇𝑃𝑎𝑠𝑠1, 𝑇𝑃𝑎𝑠𝑠2 and 𝑇𝑋𝐶  are random variables, and hence, from Equation 

(6.1) it is not possible to directly calculate an estimate of  the connection setup latency.  In fact, an accurate 
estimation of the latency needs to consider the statistical properties of the variables, and has to properly 
quantify their impact on the protocol performance. To address this issue in more detail, in Section 6.2 we 
outline a generic method that can be used to estimate the latencies incurred by communication protocols. 
Then in Section 6.3 the method is applied to formulate a performance model that estimates the latency of 
the connection setup procedure in Fig. 6.2. 

6.2. Performance Evaluation of Communication 

Protocols by Stochastic Task Graphs 

The design of a communication protocol comprises the specification, verification and implementation of 

the system of rules that define the protocol. An efficient design has to rely on performance evaluations 

that provide insight into the parameters that determine the protocol behaviour. Such evaluations can be 

made through experiments, simulations or analytical models. In some cases, depending on the complexity 

of the protocol design, experiments and simulations can be costly and time-consuming. This justifies the 

use of analytical models that provide valid descriptions of the protocol performance. If these models give 

precise approximations, they can be used to perform analyses and improvements on the protocol design. 

In this section, a method to calculate analytical performance evaluation models for communication 

protocols is outlined.  In the method, protocols are modelled as task graphs which consist of the series of 

actions (or tasks) executed by a protocol. These tasks are described by stochastic processes that represent 

the work load imposed by the protocol on the network. The approach is motivated by the work in [Küh14], 

where a novel task graph reduction strategy is formulated to analyse parallel processing in data centre 

environments. Such a strategy, as discussed in [Küh16], is also applicable to the analysis of distributed 

network control mechanisms. In particular, [Küh16] shows that by representing a protocol as a reducible 

task graph, it is possible to find the probability density function that describes the stochastic properties 

of the protocol. We will use this result to define a performance evaluation model for the 3WHS protocol. 

6.2.1 Task Graph Representation of Communication Protocols 
A communication protocol is a system of rules that defines the series of tasks or steps taken to achieve a 

specific goal, such as the realization of a network control or management function. All tasks consume 

processing and storage resources in the network, and they may interact with each other by exchanging 

information messages. The protocol performance is given by the expected value 𝐸[𝑇] of its delay (or 

execution time) 𝑇, which depends on the stochastic properties of the task execution times and on the 

interrelationships among tasks. These dependencies can be represented by modelling the protocol as a 

task graph, which is a diagram made up of three building blocks: circles, arrows and diamonds.  The 

circles denote tasks characterized by random variables 𝑇𝑖  which represent the processing time of a task 

𝑖. The arrows are used to illustrate the sequential order in the execution of the tasks they interconnect (i.e. 

tasks connected to the beginning of an arrow must be executed before those connected to the end).  The 

diamonds represent possible splits during the process of protocol execution.  
Example 6.2 Consider the task graph depicted in Fig. 6.4, which represents a protocol that consists of 

six tasks characterized by the random variables 𝑇𝐴, 𝑇𝐵, 𝑇𝐶 , 𝑇𝐷, 𝑇𝐸  and 𝑇𝐹 . The tasks are represented by the 
circles in the graph, and the arrows define the sequential order whereby the tasks are executed. Task 𝐴 is 
executed first and before task 𝐵; after 𝐵, tasks 𝐶 and 𝐷 are executed in parallel. Upon completion of these 
two tasks there is a protocol split represented by the diamond, which indicates that with probability 𝑞, the 
protocol performs task E instead of 𝐹.  

In order to calculate the average delay 𝐸[𝑇] for any given communication protocol, the corresponding 
task graph has to first be built as follows: 
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Figure 6.4: Example of a task graph for a protocol made up of six tasks. 

Figure 6.5: The four basic task graph components. 

1. Given the set of rules defining the protocol, the tasks and their relationships must be defined. 

This can be obtained from time-sequence diagrams that specify the protocol behaviour. (The 

diagrams explicitly depict the message flows between the network entities responsible for the 

execution of tasks.)  As a result, a task graph can be built where arrows are used to depict the 

temporal flow in the process of protocol execution. 

 

2. For every task 𝑖, the stochastic properties of the task processing time 𝑇𝑖  have to be determined. 

These are: the probability density function (PDF) 𝑓𝑖(𝑡), the cumulative distribution function 

(CDF) 𝐹𝑖(𝑡) = 𝑃(𝑇𝑖 ≤ 𝑡), and the expected value 𝐸[𝑇𝑖]. These properties are given either by 

analytical models which are known to represent the random variable 𝑇𝑖 , or by statistical analyses 

made on observations of 𝑇𝑖 .   

 
The task graph represents the workload handled by the network when the protocol is running. With the 
aid of suitable reduction techniques (provided that the graph is directed and acyclic), the graph can be 
simplified to a single task whose processing time 𝐸[𝑇] equals the mean delay of the protocol it represents. 

6.2.2 Task Graph Reduction Methodology  
In [Küh14] an approach for the analysis of parallel processing in data centre environments is presented. 

Therein, a novel mathematical method for the reduction of task graphs is outlined. In the following, we 

adopt that method to reduce protocol graphs by calculating an equivalent task for any pair of interrelated 

tasks. For that, in [Küh14] it is shown that a directed acyclic graph is reducible by using the four basic 

graph components defined in Fig. 6.5. 
Two tasks 𝑖 and 𝑗 which are sequentially executed (see Fig. 6.5a) are equivalent to a single task 𝑘 with 

processing time 𝑇𝑘 = 𝑇𝑖 + 𝑇𝑗 . The stochastic properties of 𝑘 follow from its PDF, which is given by the 

convolution of 𝑓𝑖(𝑡) and 𝑓𝑗(𝑡): 

𝑓𝑘(𝑡) = 𝑓𝑖(𝑡) ⊗ 𝑓𝑗(𝑡) = ∫ 𝑓𝑖(𝜏)
𝑡

0
⋅ 𝑓𝑗(𝑡 − 𝜏) ∙ 𝑑𝜏(6.2)
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When two tasks 𝑖 and 𝑗 are executed in parallel (see Fig. 6.5b), two cases are distinguished. First, if 𝑖 and 
𝑗 need to be completed before processing any subsequent task, the equivalent task 𝑘 has execution time 
𝑇𝑘 = 𝑚𝑎𝑥 (𝑇𝑖 , 𝑇𝑗) with PDF given by: 

𝑓𝑘(𝑡) = 𝑓𝑖(𝑡) ∙ 𝐹𝑗(𝑡) + 𝑓𝑗(𝑡) ∙ 𝐹𝑖(𝑡)                                                (6.3)

Otherwise, if the protocol may execute subsequent tasks once either 𝑖 or 𝑗 is completed first, then we have 
𝑇𝑘 = 𝑚𝑖𝑛 (𝑇𝑖 , 𝑇𝑗) with PDF: 

𝑓𝑘(𝑡) = 𝑓𝑖(𝑡) ∙ [1 − 𝐹𝑗(𝑡)] + 𝑓𝑗(𝑡) ∙ [1 − 𝐹𝑖(𝑡)]                                      (6.4)

Alternative split, see Fig. 6.5c, refers to the case where two tasks 𝑖 and 𝑗 are mutually exclusive, this is 
depicted in the figure by the two branches emerging from the diamond. If tasks 𝑖 and 𝑗 are performed with 
probabilities 𝑞 and (1 − 𝑞), respectively, the equivalent task 𝑘 has a processing time 𝑇𝑘 with PDF: 

𝑓𝑘(𝑡) = 𝑞 ∙ 𝑓𝑖(𝑡) + (1 − 𝑞) ∙ 𝑓𝑗(𝑡)(6.5)

Another interesting case occurs when upon completion, a task 𝑖 can be re-executed with probability 𝑞. 
This forms an iteration loop (see Fig. 6.5d) represented by a task 𝑘 with a PDF obtained by iteratively 
applying Equation (6.2): 

𝑓𝑘(𝑡) = ∑ 𝑞𝑖 ∙ (1 − 𝑞)∞
𝑖=0 ∙ 𝑓𝑖(𝑡) ⊗ [𝑓𝑖(𝑡) ⊗ … ⊗ 𝑓𝑖(𝑡)](6.6)

For each of the four aforementioned cases, the expected value 𝐸[𝑇𝑘] (or mean processing time) of task 𝑘 
is calculated as: 

𝐸[𝑇𝑘] = ∫ 𝑡 ∙ 𝑓𝑘(𝑡) ∙ 𝑑𝑡
∞

0
 (6.7)

For a given task graph, the four elements in Fig. 6.5 are used to calculate the PDF 𝑓(𝑡) of the protocol 
delay 𝑇. From this PDF the stochastic properties of the protocol are derived. For this, a stepwise reduction 
of tasks is performed on the graph by implementing the following procedure: 

 
1. Define the task graph for the protocol. This includes the definition of the PDF and the CDF for 

each task processing time 𝑇𝑖 . 

 

2. Aggregate pairs of interrelated tasks by using Equations (6.2)-(6.6). As a result, each aggregated 

pair is represented by a task 𝑘 with PDF 𝑓𝑘(𝑡) and expected delay 𝐸[𝑇𝑘]. This procedure defines 

a reduced equivalent graph for the protocol. 

 

3. If the equivalent graph obtained in the previous step has a single task 𝑘 with processing time 𝑇𝑘, 

stop the graph reduction procedure, and define 𝑓(𝑡) = 𝑓𝑘(𝑡) as the PDF of the protocol delay. 

Otherwise, go back to step two, i.e. start a new graph reduction step.  
 

This method, as formulated in [Küh14], guarantees that if the task graph is directed and acyclic, then a 
single task is found whose PDF represents the statistical properties of the original graph. 

Example 6.3 In Fig. 6.6 we show the stepwise reduction for the task graph in Fig. 6.4. The six tasks 
have PDFs 𝑓𝐴(𝑡), 𝑓𝐵(𝑡), 𝑓𝐶(𝑡), 𝑓𝐷(𝑡), 𝑓𝐸(𝑡) and 𝑓𝐹(𝑡). By knowing them, in a first reduction step the task-
pairs (𝐴, 𝐵), (𝐶, 𝐷) and (𝐸, 𝐹) are, respectively, aggregated into the tasks 𝐾, 𝐿 and 𝑀. From Equation 
(6.2) the PDF of task 𝐾 is calculated as 𝑓𝐾(𝑡) = 𝑓𝐴(𝑡) ⊗ 𝑓𝐵(𝑡). Assuming that tasks 𝐶 and 𝐷 need to be 
completed before continuing with the subsequent tasks, then according to Equation (6.3) task 𝐿 has PDF 
𝑓𝐿(𝑡) = 𝑓𝐶(𝑡) ∙ 𝐹𝐷(𝑡) + 𝑓𝐷(𝑡) ∙ 𝐹𝐶(𝑡). Furthermore, task 𝑀 has PDF 𝑓𝑀(𝑡) = 𝑞 ∙ 𝑓𝐸(𝑡) + (1 − 𝑞) ∙ 𝑓𝐹(𝑡) 
as it is the split between tasks 𝐸 and 𝐹. As a result, an equivalent graph with three tasks, i.e. 𝐾, 𝐿 and 𝑀, 
is obtained (see Fig. 6.6). In the second step, the tasks (𝐾, 𝐿) are aggregated into task 𝑁 with PDF 𝑓𝑁(𝑡) =
𝑓𝐾(𝑡) ⊗ 𝑓𝐿(𝑡). Then the protocol is now described by a graph with two tasks 𝑁 and 𝑀 which are further 
simplified (in the last step) to a task 𝑃 with PDF 𝑓𝑃(𝑡) = 𝑓𝑁(𝑡) ⊗ 𝑓𝑀(𝑡). The statistical properties of the 
protocol delay are fully described by 𝑓𝑃(𝑡). For example, after calculating 𝑓𝑃(𝑡) through the reduction 

process, the mean delay is determined from Equation (6.7) as 𝐸[𝑇𝑃] = ∫ 𝑡 ∙ 𝑓𝑃(𝑡) ∙ 𝑑𝑡
∞

0
.  

Communication protocols are event driven processes whose execution is triggered by external 
requests. Upon arrival of a request, the protocol executes the tasks defined in its graph. If requests arrive 
according to a general and independently distributed arrival process GI with rate 𝜆 (requests/time unit) and  
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Figure 6.6: Task graph reduction for a protocol with six tasks. 

the service time (which is the protocol delay 𝑇) is characterized by the PDF 𝑓(𝑡), according to [Küh14], 
the protocol can be represented by a GI/G/1 queuing model. Therefore, the mean protocol delay 𝐸[𝑇] is 
the expected service time of a request that triggers the protocol execution. In what follows, we use these 
results to derive an analytical performance evaluation model to analyse connection setup in dynamic 
optical networks. 

6.3. Connection Setup Latency in Dynamic Optical 

Networks  

The graph at the top of Fig. 6.7 represents the task graph for the 3WHS protocol as derived from the 

time-sequence diagram in Fig. 6.2. From left to right, the graph defines the sequence of protocol steps 

(or tasks) that set up a connection between a node-pair (𝑜, 𝑑)𝑗.  These two nodes are connected by a set 

Γ𝑗 of k-shortest paths. Pass1 and Pass2 are modelled as tasks whose durations, i.e. 𝑇𝑃𝑎𝑠𝑠1 and  𝑇𝑃𝑎𝑠𝑠2, are 

given by the delays incurred in the paths traversed by their signalling messages. Those delays consist of 

node processing times and propagation delays. To represent these two delay contributors in Fig. 6.7, let 

us define 𝑁𝑖  as the number of intermediate nodes (i.e. excluding the nodes “𝑜” and “𝑑”) in path 𝑖. 

Therefore, in Fig. 6.7, for the tasks modelling Pass1 and Pass2, 𝑇𝑖𝑗  is a random variable that denotes the 

processing time of a signalling message at the intermediate node 𝑗 (𝑗 = 1, … , 𝑁𝑖) which is in the path 𝑖 
(𝑖 = 1, … , 𝑘). Moreover, 𝐷𝑖 = 𝐿𝑖/𝐶  is the propagation delay in path 𝑖 , with 𝐿𝑖  and 𝐶  being the path 

length and the speed of light in the fibre, respectively. In the graph, Pass1 is modelled as the parallel 

processing of k-message probes, where each probe is processed by a shortest path. Furthermore, Pass2 is 

modelled by an alternative split among the k-shortest paths, as during this pass, signalling takes place on 

a selected path. This split is represented by the diamond in the graph. 

The properties of the 3WHS protocol are fully characterized by the PDF 𝑓𝑇𝑆𝑒𝑡𝑢𝑝
(𝑡) of the connection 

setup time 𝑇𝑆𝑒𝑡𝑢𝑝.  From this PDF, the protocol performance can be defined as the mean connection setup 

latency 𝐸[𝑇𝑆𝑒𝑡𝑢𝑝]. To calculate 𝑓𝑇𝑆𝑒𝑡𝑢𝑝
(𝑡), let the random variables 𝑇𝐶𝑅 , 𝑇𝑃1, 𝑇𝑃2, 𝑇𝑖𝑗 , 𝐷𝑖  and 𝑇𝑋𝐶  have 

PDFs 𝑓𝑇𝐶𝑅
(𝑡), 𝑓𝑇𝑃1

(𝑡), 𝑓𝑇𝑃2
(𝑡), 𝑓𝑇𝑖𝑗

(𝑡), 𝑓𝐷𝑖
(𝑡) and 𝑓𝑇𝑋𝐶

(𝑡), respectively. Let us further assume these 

PDFs to be known. Thus, 𝑓𝑇𝑆𝑒𝑡𝑢𝑝
(𝑡) is obtained by reducing the task graph through the three steps depicted 

in Fig. 6.7 [RB17c]. In the first reduction step, an equivalent task is found for each of the k-shortest paths 
that connects the nodes (𝑜, 𝑑)𝑗. For path 𝑖 (𝑖 = 1, … , 𝑘), this task is represented by the random variable 

𝑇𝑖 . In Fig. 6.7, for Pass1 and Pass2, 𝑇𝑖  is the processing time of a signalling message through all 
intermediate nodes 𝑗 in the path 𝑖 plus the propagation delay 𝐷𝑖: 

𝑇𝑖 = ∑ 𝑇𝑖𝑗
𝑁𝑖
𝑗 + 𝐷𝑖            ,𝑖 = 1, … , 𝑘                                  (6.8) 
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Figure 6.7: Task graph for the 3WHS protocol and its intermediate reduction steps [RB17c]. 

This means that in path 𝑖 , a signalling message is processed by 𝑁𝑖 + 1 tasks which are sequentially 
executed. By performing successive aggregations of pairs of tasks in path 𝑖, from Equation (6.2) we have 
that 𝑇𝑖  has PDF given by: 

𝑓𝑇𝑖
(𝑡) = 𝑓𝑇𝑖1

(𝑡) ⊗ 𝑓𝑇𝑖2
(𝑡) ⊗ … ⊗ 𝑓𝑇𝑖𝑁𝑖

(𝑡) ⊗ 𝑓𝐷𝑖
(𝑡),𝑖 = 1, … , 𝑘(6.9)

After calculating 𝑓𝑇𝑖
(𝑡) for all 𝑖, the protocol task graph simplifies to the graph shown in the first reduction 

step in Fig. 6.7. In the second step, the goal is to calculate the PDFs of 𝑇𝑃𝑎𝑠𝑠1 and  𝑇𝑃𝑎𝑠𝑠2. From Fig. 6.7, 
it is seen that 𝑇𝑃𝑎𝑠𝑠1 is a random variable that represents the parallel processing of 𝑘 tasks which have to 
be completed before starting 𝑇𝑃1, i.e. before executing the PIR step. (Recall that in Pass1, the k-message 
probes must arrive at the destination node before the PIA may run the PIR.) Hence we have: 

𝑇𝑃𝑎𝑠𝑠1 = 𝑚𝑎𝑥 (𝑇1, 𝑇2, … , 𝑇𝑘−1, 𝑇𝑘)                                              (6.10) 

By successive aggregations of pairs of tasks with Equation (6.3), the PDF of  𝑇𝑃𝑎𝑠𝑠1 is found to be:  

𝑓𝑇𝑃𝑎𝑠𝑠1
(𝑡) =

𝑑

𝑑𝑡
∏ 𝐹𝑇𝑖

(𝑡)𝑘
𝑖=1 (6.11)

where 𝐹𝑇𝑖
(𝑡) is the CDF of 𝑇𝑖 , with 𝑓𝑇𝑖

(𝑡) = 𝑑𝐹𝑇𝑖
(𝑡)/𝑑𝑡. Equation (6.11) assumes that the 𝑘 variables 𝑇𝑖  

are independent. Regarding Pass2, from Fig. 6.7, we have that 𝑇𝑃𝑎𝑠𝑠2 is a random variable that models the 
alternative split among the k-shortest paths. The reason is that in this pass, signalling only takes place on 
the path over which the connection is to be established. Therefore, if 𝑞𝑖 is the probability that the PIR 
decides to route a connection on the path 𝑖, then by applying Equation (6.5) we have: 

𝑓𝑇𝑃𝑎𝑠𝑠2
(𝑡) = ∑ 𝑞𝑖

𝑘
𝑖=1 ∙ 𝑓𝑇𝑖

(𝑡)                                                   (6.12) 

with ∑ 𝑞𝑖
𝑘
𝑖 = 1 . The probabilities 𝑞𝑖  can be obtained from statistical analyses made on the routing 

decisions made by the PIA. Having calculated 𝑓𝑇𝑃𝑎𝑠𝑠1
(𝑡) and 𝑓𝑇𝑃𝑎𝑠𝑠2

(𝑡), the six tasks resulting from step 
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two are sequentially aggregated in the third reduction step. Thus, with Equation (6.2) it is found that the 

connection setup time 𝑇𝑆𝑒𝑡𝑢𝑝  has a probability distribution function defined by: 

𝑓𝑇𝑆𝑒𝑡𝑢𝑝
= 𝑓𝑇𝐶𝑅

(𝑡) ⊗ 𝑓𝑇𝑃𝑎𝑠𝑠1
(𝑡) ⊗ 𝑓𝑇𝑃1

(𝑡) ⊗  𝑓𝑇𝑃𝑎𝑠𝑠2
(𝑡) ⊗ 𝑓𝑇𝑃2

(𝑡) ⊗ 𝑓𝑇𝑋𝐶
(𝑡)           (6.13) 

Therefore, the mean connection setup latency between the nodes (𝑜, 𝑑)𝑗 is: 

𝐸[𝑇𝑆𝑒𝑡𝑢𝑝]  = ∫ 𝑡 ∙ 𝑓𝑇𝑆𝑒𝑡𝑢𝑝
∙ 𝑑𝑡

∞

0
                                                 (6.14) 

which from Equation (6.13) simplifies to [RB17c]:  

𝐸[𝑇𝑆𝑒𝑡𝑢𝑝] = 𝐸[𝑇𝐶𝑅] + 𝐸[𝑇𝑃𝑎𝑠𝑠1] + 𝐸[𝑇𝑃1] + 𝐸[𝑇𝑃𝑎𝑠𝑠2] + 𝐸[𝑇𝑃2] + 𝐸[𝑇𝑋𝐶]             (6.15a) 

where: 

𝐸[𝑇𝐶𝑅]  = ∫ 𝑡 ∙ 𝑓𝑇𝐶𝑅
(𝑡) ∙ 𝑑𝑡

∞

0
                                                 (6.15b) 

𝐸[𝑇𝑃𝑎𝑠𝑠1]  = ∫ 𝑡 ∙
𝑑

𝑑𝑡
∏ 𝐹𝑇𝑖

(𝑡)𝑘
𝑖=1 ∙ 𝑑𝑡

∞

0
                                          (6.15c) 

𝐸[𝑇𝑃1]  = ∫ 𝑡 ∙ 𝑓𝑇𝑃1
(𝑡) ∙ 𝑑𝑡

∞

0
                                                 (6.15d) 

𝐸[𝑇𝑃𝑎𝑠𝑠2]  = ∑ 𝑞𝑖
𝑘
𝑖=1 ∙ ∫ 𝑡 ∙ 𝑓𝑇𝑖

(𝑡) ∙ 𝑑𝑡
∞

0
                                         (6.15e) 

𝐸[𝑇𝑃2]  = ∫ 𝑡 ∙ 𝑓𝑇𝑃2
(𝑡) ∙ 𝑑𝑡

∞

0
                                                 (6.15f) 

𝐸[𝑇𝑋𝐶]  = ∫ 𝑡 ∙ 𝑓𝑇𝑋𝐶
(𝑡) ∙ 𝑑𝑡

∞

0
                                                (6.15g) 

Equations (6.15) define a performance evaluation model that estimates the connection setup latency of 
the 3WHS protocol.  For class-j connections established between a pair of nodes (𝑜, 𝑑)𝑗, the equations are 

used as follows: 
 

1. Define the PDFs and the mean values of the variables 𝑇𝐶𝑅 , 𝑇𝑃1, 𝑇𝑃2, 𝑇𝑖𝑗  and 𝑇𝑋𝐶 . Moreover, for 

each path 𝑖 in the set Γ𝑗, calculate the propagation delay as 𝐷𝑖 = 𝐿𝑖/𝐶. 

 

2. For each path 𝑖, use the PDFs 𝑓𝑇𝑖𝑗
(𝑡) and 𝑓𝐷𝑖

(𝑡) to calculate, with Equation (6.9), the PDF 𝑓𝑇𝑖
(𝑡) 

of the path processing time 𝑇𝑖 . Observe that 𝑓𝐷𝑖
(𝑡) = 𝛿(𝑡 − 𝐷𝑖) since the propagation delay is 

deterministic, with 𝛿 being the Dirac delta function. 

 

3. Use 𝑓𝑇𝑖
(𝑡), 𝑖 = 1, … 𝑘, to calculate 𝐸[𝑇𝑃𝑎𝑠𝑠1] with Equation (6.15c). For this, the CDFs 𝐹𝑇𝑖

(𝑡) 

are determined by solving the differential equation 𝑓𝑇𝑖
(𝑡) = 𝑑𝐹𝑇𝑖

(𝑡)/𝑑𝑡. 

 

4. Use 𝑓𝑇𝑖
(𝑡), 𝑖 = 1, … 𝑘, to calculate 𝐸[𝑇𝑃𝑎𝑠𝑠2] with Equation (6.15e). 

 

5. Calculate 𝐸[𝑇𝑆𝑒𝑡𝑢𝑝] with equation (6.15a). 

 
This calculation procedure shows that, besides the path propagation delays, 𝐸[𝑇𝑃𝑎𝑠𝑠1] and 𝐸[𝑇𝑃𝑎𝑠𝑠2] are 
strongly dependent on the stochastic properties of the node processing times 𝑇𝑖𝑗 . (This can be understood 

by noticing that 𝑓𝑇𝑖
(𝑡) is determined by 𝑓𝑇𝑖𝑗

(𝑡) and 𝑓𝐷𝑖
(𝑡).) In order to illustrate this dependence better, 

let us study two examples where 𝐸[𝑇𝑆𝑒𝑡𝑢𝑝] is calculated for the case of random and deterministic node 

processing times 𝑇𝑖𝑗 .  

6.3.1 Example of a Model with Stochastic Task Processing Times 
To illustrate the applicability of the performance model for the 3WHS protocol, consider the case where 

the expected values 𝐸[𝑇𝐶𝑅] = 𝑇𝐶𝑅 ,  𝐸[𝑇𝑃1] = 𝑇𝑃1 , 𝐸[𝑇𝑃2] = 𝑇𝑃2  and 𝐸[𝑇𝑋𝐶] = 𝑇𝑋𝐶  are known from 
their corresponding PDFs. The path propagation delays 𝐷𝑖 = 𝐿𝑖/𝐶 are deterministic and known as well. 
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Let us calculate 𝐸[𝑇𝑆𝑒𝑡𝑢𝑝]  for the case of exponentially distributed processing times 𝑇𝑖𝑗  with mean 

E[𝑇𝑖𝑗] = 𝑇𝑆𝑃. Therefore, the PDF of  𝑇𝑖𝑗  is defined as:  

𝑓𝑇𝑖𝑗
(𝑡) =

1

𝑇𝑆𝑃
𝑒𝑥𝑝 (−

𝑡

𝑇𝑆𝑃
) , ∀ 𝑖, 𝑗      𝑡 ≥ 0                                  (6.16) 

Then to estimate 𝐸[𝑇𝑆𝑒𝑡𝑢𝑝] it is necessary to calculate 𝐸[𝑇𝑃𝑎𝑠𝑠1] and 𝐸[𝑇𝑃𝑎𝑠𝑠2] . For that, the first step is 

to determine the PDF and the CDF of the random variables 𝑇𝑖 . By plugging Equation (6.16) into Equation 
(6.9), the distribution of the processing time 𝑇𝑖  of a Pass1/Pass2 signalling message on path 𝑖 is: 

𝑓𝑇𝑖
(𝑡) = {

0, 𝑡 < 𝐷𝑖

[(𝑡−𝐷𝑖)/𝑇𝑆𝑃]
𝑁𝑖−1

𝑇𝑆𝑃∙(𝑁𝑖−1)!
𝑒𝑥𝑝 (−

(𝑡−𝐷𝑖)

𝑇𝑆𝑃
) , 𝑡 ≥ 𝐷𝑖

                                   (6.17) 

with a corresponding CDF given by: 

𝐹𝑇𝑖
(𝑡) = {

0, 𝑡 < 𝐷𝑖

∫
[(𝑦−𝐷𝑖)/𝑇𝑆𝑃]

𝑁𝑖−1

𝑇𝑆𝑃∙(𝑁𝑖−1)!
𝑒𝑥𝑝 (−

(𝑦−𝐷𝑖)

�̅�𝑆𝑃
) ∙ 𝑑𝑦

𝑡

𝐷𝑖
, 𝑡 ≥ 𝐷𝑖

                            (6.18)  

which shows that 𝑇𝑖  is a gamma distributed random variable. As a result, from Equation (6.17) a signalling 
message has on path 𝑖 a mean processing delay equal to: 

𝐸[𝑇𝑖]  = ∫ 𝑡 ∙ 𝑓𝑇𝑖
(𝑡) ∙ 𝑑𝑡 = 𝐷𝑖 + 𝑁𝑖 ∙ 𝑇𝑆𝑃

∞

𝐷𝑖
                                         (6.19) 

Furthermore, by plugging Equation (6.18) into Equation (6.15c), it is verified that 𝐸[𝑇𝑃𝑎𝑠𝑠1] is given by: 

𝐸[𝑇𝑃𝑎𝑠𝑠1] = ∫ 𝑡 ∙
𝑑

𝑑𝑡
∏ 𝐹𝑇𝑖

(𝑡)𝑘
𝑖=1 ∙ 𝑑𝑡

∞

𝑚𝑎𝑥 (𝐷1,…,𝐷𝑘)
                                     (6.20) 

whereas from Equations (6.17) and Equation (6.15e), we find that E[𝑇𝑃𝑎𝑠𝑠2] is equal to: 

𝐸[𝑇𝑃𝑎𝑠𝑠2] = ∑ 𝑞𝑖 ∙ [𝐷𝑖 + 𝑁𝑖 ∙ 𝑇𝑆𝑃]𝑘
𝑖=1                                             (6.21) 

Thus, if the node processing times 𝑇𝑖𝑗  are exponentially distributed with mean 𝑇𝑆𝑃, then between the nodes 

(𝑜, 𝑑)𝑗 a connection is expected to have a setup latency:     

𝐸[𝑇𝑆𝑒𝑡𝑢𝑝] = 𝑇𝐶𝑅  +  ∫ 𝑡 ∙
𝑑

𝑑𝑡
∏ 𝐹𝑇𝑖

(𝑡)𝑘
𝑖=1 ∙ 𝑑𝑡

∞

𝑚𝑎𝑥 (𝐷1,…,𝐷𝑘)
 + 𝑇𝑃1 +  

             ∑ 𝑞𝑖 ∙ [𝐷𝑖 + 𝑁𝑖 ∙ 𝑇𝑆𝑃]𝑘
𝑖=1 + 𝑇𝑃2 + 𝑇𝑋𝐶                                  (6.22) 

Observe that this latency depends on the number k of shortest paths in the set Γ𝑗.  

6.3.2 Example of a Model with Deterministic Task Processing Times 

Consider the case where the variables 𝑇𝐶𝑅 = 𝑇𝐶𝑅 ,  𝑇𝑃1 = 𝑇𝑃1, 𝑇𝑃2 = 𝑇𝑃2 , 𝑇𝑋𝐶 = 𝑇𝑋𝐶 , 𝐷𝑖 = 𝐿𝑖/𝐶  and 

𝑇𝑖𝑗 = 𝑇𝑆𝑃 are deterministic. Thus, on path 𝑖, a signalling message has a processing delay 𝑇𝑖  equal to: 

𝑇𝑖  = 𝐷𝑖 + 𝑁𝑖 ∙ 𝑇𝑆𝑃                                                           (6.23)  

which is deterministic as well. Then from Equation (6.15c) it follows that 𝐸[𝑇𝑃𝑎𝑠𝑠1] is: 

𝐸[𝑇𝑃𝑎𝑠𝑠1] = 𝑚𝑎𝑥 (𝑇1, … , 𝑇𝑖 , … , 𝑇𝑘)                                              (6.24) 

Likewise, according to Equation (6.15e), we find that E[𝑇𝑃𝑎𝑠𝑠2] is given by: 

𝐸[𝑇𝑃𝑎𝑠𝑠2] = ∑ 𝑞𝑖 ∙ [𝐷𝑖 + 𝑁𝑖 ∙ 𝑇𝑆𝑃]𝑘
𝑖=1                                             (6.25) 
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Figure 6.8: Optical network with distances in Km and definition of parameters [RB17c]. 

Therefore, if the task processing times are deterministic, then between the nodes (𝑜, 𝑑)𝑗 a connection is 

expected to have a setup latency:     

𝐸[𝑇𝑆𝑒𝑡𝑢𝑝] = 𝑇𝐶𝑅  +  𝑚𝑎𝑥 (𝑇1, … , 𝑇𝑘)  + 𝑇𝑃1 +  ∑ 𝑞𝑖 ∙ [𝐷𝑖 + 𝑁𝑖 ∙ 𝑇𝑆𝑃]𝑘
𝑖=1 + 𝑇𝑃2 + 𝑇𝑋𝐶  (6.26) 

Note that although the task processing times are deterministic,  𝑇𝑆𝑒𝑡𝑢𝑝 is a random variable. The reason 

is that unlike 𝑇𝑃𝑎𝑠𝑠1, the delay 𝑇𝑃𝑎𝑠𝑠2 is random since its actual value (for a given connection request) 

depends on the path selected by the PIR to allocate resources. Thus, in Equation (6.26) Pass2 has a latency 

estimated by 𝐸[𝑇𝑃𝑎𝑠𝑠2], which is the weighted average of the path processing delays 𝑇𝑖 . The weights are 

the probabilities 𝑞𝑖.  
The performance evaluation models in Equation (6.22) and Equation (6.26) are not alike. This shows 

that the statistical properties of the task processing times are key to the estimation of the connection setup 

latency. In the next section, simulations are used to study how well these two models estimate 𝐸[𝑇𝑆𝑒𝑡𝑢𝑝]. 

6.4. Evaluation of the Analytical Performance Model 

for Connection Setup Latency 

In this section we assess the analytical performance model defined by Equations (6.15). For that, consider 

the optical network in Fig. 6.8, which has 10 nodes and 16 links with capacities of 𝐶𝑙 = 32 slots. The 10 

network nodes define 45 node-pairs, each one serving two connection classes, namely, a narrowband and 

a wideband class that request 𝑏𝑗 = 2 and 𝑏𝑗 = 8 adjacent slots, respectively. Thus, the network serves 90 

connection classes, all of them with reward parameters 𝑟𝑗 = 1 (ru). The holding-times are exponentially 

distributed with mean 𝜇𝑗
−1 = 1 s for narrowband and 𝜇𝑗

−1 = 10  s for wideband traffic. Connection 

requests arrive following a Poisson process with mean rate 𝜆𝑗 = 0.01 (con/s). Therefore, the network is 

offered a traffic load of 𝐴 = ∑ 𝐴𝑗
90
𝑗=1 ≅ 5.0 Erlangs. At the end of Pass1, lightpaths are calculated by the 

PIA with the MDP-PGMC rule. For the 45 node-pairs, the sets Γ𝑗 contain 𝑘 = 2 shortest paths. Since the 

network is offered a traffic of 𝐴 ≅ 5.0 Erlangs, from the performance evaluation results in Table 5.13 - 

Chapter 5, we have that for the PIA applying the MDP-PGMC rule, 𝑞1 ≅ 0.76 and 𝑞2 ≅ 0.24.  
The connection setup latency is assessed in two cases, namely, for exponentially distributed and for 

deterministic task processing times. In the former case, the analytical model is given by Equation (6.22), 
whereas in the latter by Equation (6.26). In both cases, the variables 𝑇CR, 𝑇𝑃1, 𝑇𝑃2, 𝑇𝑋𝐶  and 𝑇𝑖𝑗  have the 

mean values shown in Fig 6.8, which were originally proposed in [CCC+12, SCG+12, SN09]. Furthermore, 
to investigate the effect of the propagation delays, both cases are evaluated for four different network sizes. 
Let 𝐷𝑖  be the path propagation delays calculated from the link lengths in Fig. 6.8 by assuming the speed 
of light in a fibre link as 𝐶 = 250000 km/s . We then evaluate the latencies when the propagation delays 
scale as 𝐷𝑖x0, 𝐷𝑖x0.1, 𝐷𝑖x1 and 𝐷𝑖x10. (For the sake of clarity, 𝐷𝑖xα represents a scenario where all link 
lengths are multiplied by the factor α.) 

A further remark is needed regarding the analytical model for the case of exponentially distributed task 
processing times. For 𝑘 = 2 shortest paths, the integral in Equation (6.22) that defines 𝐸[𝑇𝑃𝑎𝑠𝑠1] is solved 
by the PDF: 
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𝑓𝑇𝑃𝑎𝑠𝑠1
(𝑡) =

[(𝑡−𝐷1)/𝑇𝑆𝑃]
𝑁1−1

𝑇𝑆𝑃∙(𝑁1−1)!
𝑒𝑥𝑝 (−

(𝑡−𝐷1)

𝑇𝑆𝑃
) ∙

𝛾(𝑁2,
𝑡−𝐷2
𝑇𝑆𝑃

)

(𝑁2−1)!
+  

[(𝑡−𝐷2)/𝑇𝑆𝑃]
𝑁2−1

𝑇𝑆𝑃∙(𝑁2−1)!
𝑒𝑥𝑝 (−

(𝑡−𝐷2)

𝑇𝑆𝑃
) ∙

𝛾(𝑁1,
𝑡−𝐷1
𝑇𝑆𝑃

)

(𝑁1−1)!
                                (6.27) 

which is obtained by plugging Equation (6.18) into Equation (6.11). Furthermore, in Equation (6.27), 

𝛾 (𝑁𝑖 ,
𝑡−𝐷𝑖

𝑇𝑆𝑃
) is the lower incomplete gamma function given by: 

𝛾 (𝑁𝑖 ,
𝑡−𝐷𝑖

𝑇𝑆𝑃
) = ∫ 𝑦𝑁𝑖−1 ∙ 𝑒𝑥𝑝(−𝑦) ∙ 𝑑𝑦

(𝑡−𝐷𝑖)/𝑇𝑆𝑃

0
                                    (6.28) 

The analytical result for 𝐸[𝑇𝑃𝑎𝑠𝑠1] is not shown here, as it is too voluminous and can easily be derived 

from Equation (6.15c) by solving the integral 𝐸[𝑇𝑃𝑎𝑠𝑠1]  = ∫ 𝑡 ∙ 𝑓𝑇𝑃𝑎𝑠𝑠1
(𝑡) ∙ 𝑑𝑡

∞

0
. 

For each case (and node-pair), discrete event simulations were carried out to determine the mean values 
and 95% confidence intervals of 𝑇Setup. The results are compared with the latencies predicted by Equation 

(6.22) and Equation (6.26). All simulations were performed in a simulation framework implemented in R 
[Rpr17, LDL13], running on a 6-core Intel X86 server with 64 GB RAM.  

6.4.1 Analytical and Simulated Connection Setup Latencies 
In Fig. 6.9 and Fig. 6.10 we present the results for the case of deterministic and exponentially distributed 

task processing times, respectively. For each node-pair, the figures compare the mean connection setup 

latency obtained by simulations (plotted with 95% confidence intervals) with the numerical results given 

by the analytical models. As seen, for all considered network sizes (or equivalently propagation delays), 

the analytical evaluations give precise estimates of 𝐸[𝑇Setup]. As expected, the latency increases with the 

network size. However, note that in both cases, independently of the network size, the task processing 

times 𝑇𝐶𝑅 , 𝑇𝑃1, 𝑇𝑃2 and 𝑇𝑋𝐶  contribute 22 ms to the connection setup time. (Recall that the mean values 

of these variables - as defined in Fig. 6.8 - are the same regardless of their PDFs, and thus, 𝐸[𝑇𝐶𝑅] +
𝐸[𝑇𝑃1] + 𝐸[𝑇𝑃2] + 𝐸[𝑇𝑋𝐶] = 1 + 5 + 1 + 15 = 22 ms in Equation (6.22) and Equation (6.26).) Since 

these four delays are independent of the path propagation delays 𝐷𝑖 , we have that the network size only 

influences 𝐸[𝑇Setup] through the latencies of Pass1 and Pass2 (which use the network links to transport 

their signalling messages). In Fig. 6.11 and Fig. 6.12 we depict the simulated and the analytical 𝐸[𝑇𝑃𝑎𝑠𝑠1] 
and 𝐸[𝑇𝑃𝑎𝑠𝑠2] for the latencies in Fig. 6.9 and in Fig. 6.10, respectively.  For all node-pairs, it is observed 

that 𝐸[𝑇𝑃𝑎𝑠𝑠1] ≥ 𝐸[𝑇𝑃𝑎𝑠𝑠2], which shows that Pass1 is the pass that impacts 𝐸[𝑇Setup] the most.  

To gain a more comprehensive insight into the properties of the connection setup latency, consider the 
stacked bar charts in Fig 6.13 and Fig 6.14. These charts depict the percentage contribution of the protocol 
tasks to the latencies shown in Fig. 6.9 and Fig. 6.10, respectively. From the charts we draw the following 
observations common to both considered cases: 

 
1. When the propagation delays are low, i.e. for short link lengths (see in the charts the results for 

𝐷𝑖 = 0 and 𝐷𝑖x0.1), the dominant delay contributor is the cross-connection time 𝑇𝑋𝐶 . (Recall 

that, as seen in Fig. 6.2,  𝑇𝑋𝐶  is the time that the node "𝑜" needs to cross-connect to the client 

ports.) This delay represents approximately 65% of the total connection setup latency. The 

second contributor is 𝑇𝑃1, i.e. the time needed to process the Pass1 signalling messages and to 

execute the PIR. This delay accounts (on average) for 22% of the total latency.  On the other 

hand, the effect of 𝑇𝑃𝑎𝑠𝑠1 and 𝑇𝑃𝑎𝑠𝑠2 is marginal. However, these delays are not zero because 

although the path propagation delays are negligible, the Pass1/Pass2 messages are processed by 

the nodes in the paths they traverse. (Actually, in the charts for 𝐷𝑖 = 0, the bars depicting 𝑇𝑃𝑎𝑠𝑠1 

and 𝑇𝑃𝑎𝑠𝑠2 solely include the sum of the processing times 𝑇𝑖𝑗  of the intermediate path nodes.) 

 

2. As the network size grows (see the bar charts for 𝐷𝑖x1 and 𝐷𝑖x10), 𝑇𝑃𝑎𝑠𝑠1 and 𝑇𝑃𝑎𝑠𝑠2 become 

dominant (with  𝑇𝑃𝑎𝑠𝑠1 being higher than 𝑇𝑃𝑎𝑠𝑠2). Hence, in networks with large links, the path 

propagation delays are the determinant factors in the connection setup latency. It is worth noting 

that even for large network sizes, the cross-connection time 𝑇𝑋𝐶  is not negligible. For instance, 

when the propagation delays scale as 𝐷𝑖x10, 𝑇𝑋𝐶  accounts (on average) for 17% of the overall 

latency. 
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Figure 6.9: Connection setup latencies for the case of deterministic task processing times. 
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Figure 6.10: Connection setup latencies for the case of exponential processing times. 
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Figure 6.11: Pass1 and Pass2 latencies for the case of deterministic task processing times. 
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Figure 6.12: Pass1 and Pass2 latencies for the case of exponential processing times. 
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Figure 6.13: Latency contributors for the case of deterministic task processing times. 
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Figure 6.14: Latency contributors for the case of exponential processing times. 
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From the results, on the one hand, it can be seen that key properties of the connection setup protocol are 

not strongly dependent on the PDFs of the task processing times. On the other hand, for the exponentially 

distributed and deterministic task processing times the analytical results match well to the simulation 

results. This supports the hypothesis that the task-graph reduction method can be conveniently applied 

to determine the connection setup latency for arbitrary PDFs of 𝑇𝐶𝑅 , 𝑇𝑃1, 𝑇𝑃2, Tij and 𝑇𝑋𝐶 . 

6.4.2 Estimating Boundaries on the Protocol Parameters 
Besides estimating the connection setup latency, the analytical model is useful to study how the protocol 

parameters influence the performance. For example, it may quantify the requirements needed from the 

task processing times in order to meet a given performance objective. Let 𝑋 be a desired upper bound on 

the connection setup latency 𝑇𝑆𝑒𝑡𝑢𝑝, and let 𝜌 be the probability that 𝑇𝑆𝑒𝑡𝑢𝑝 ≤ 𝑋. Then from the PDF of 

𝑇𝑆𝑒𝑡𝑢𝑝 we have: 

𝜌 = 𝑃{𝑇𝑆𝑒𝑡𝑢𝑝 ≤ 𝑋} = ∫ 𝑓𝑇𝑆𝑒𝑡𝑢𝑝
∙ 𝑑𝑡

𝑋

0
                                           (6.29) 

For a given 𝜌 and 𝑋, Equation (6.29) can be used to determine the variables 𝑇𝐶𝑅 , 𝑇𝑃1, 𝑇𝑃2, 𝑇𝑖𝑗 , and 𝑇𝑋𝐶  

so as to meet more stringent setup times (as defined by 𝑋). As an example, assume the analytical model 

for deterministic task processing times in Equation (6.26), and assume the mean values 𝑇𝐶𝑅 , 𝑇𝑃1, 𝑇𝑃2 

and 𝑇𝑋𝐶 to be known. From Equation (6.29), for a given node-pair, the maximum node processing times 

𝑇𝑖𝑗 = 𝑇𝑆𝑃 for which 𝑇𝑆𝑒𝑡𝑢𝑝 ≤ 𝑋, with probability 𝜌 = 1, are obtained by solving the inequality: 

𝑇𝐶𝑅 + 𝑇𝑃𝑎𝑠𝑠1 + 𝑇𝑃1 + 𝑇𝑃𝑎𝑠𝑠2 + 𝑇𝑃2 + 𝑇𝑋𝐶 ≤ 𝑋                                  (6.30) 

where 𝑇𝑃𝑎𝑠𝑠1 = 𝑚𝑎 𝑥(𝑇1, … , 𝑇𝑘). Since 𝜌 = 1, the inequality must be solved for the worst-case scenario, 

which occurs when a connection is established on the largest path in Γ𝑗. In that case, 𝑇𝑃𝑎𝑠𝑠2 = 𝑇𝑃𝑎𝑠𝑠1 =

𝑚𝑎 𝑥(𝑇1, … , 𝑇𝑘), thereby from Equation (6.8) Pass1 and Pass2 have latencies equal to: 

𝑇𝑃𝑎𝑠𝑠2 = 𝑇𝑃𝑎𝑠𝑠1 = 𝐷𝑚𝑎𝑥 + 𝑁𝑚𝑎𝑥 ∙ 𝑇𝑆𝑃                                           (6.31) 

with 𝐷𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥  being, respectively, the propagation delay and the number of intermediate nodes of 

the path with the maximum processing time 𝑇𝑖 . Equation (6.30) then simplifies to: 

𝑇𝐶𝑅 + 𝑇𝑃1 +  2 ∙ (𝐷𝑚𝑎𝑥 + 𝑁𝑚𝑎𝑥 ∙ 𝑇𝑆𝑃) + 𝑇𝑃2 + 𝑇𝑋𝐶 ≤ 𝑋                            (6.32) 

Therefore, to guarantee that 𝑇𝑆𝑒𝑡𝑢𝑝 ≤ 𝑋, with probability 𝜌 = 1, the node processing times must fulfil: 

𝑇𝑆𝑃 ≤
𝑋−(𝑇𝐶𝑅+𝑇𝑃1+𝑇𝑃2+𝑇𝑋𝐶)−2∙𝐷𝑚𝑎𝑥

2∙𝑁𝑚𝑎𝑥
                                              (6.33) 

In [Sal06, Sal07,CCC+12, SCG+12, SN09] it is argued that, in a future, optical connections with very fast 

setup times might need to fulfil  𝑇𝑆𝑒𝑡𝑢𝑝 ≤ 𝑅𝑇𝐷 + 50 ms, with RTD being the round trip fibre propagation 

delay. Thus, with the mean values 𝑇𝐶𝑅, 𝑇𝑃1,  𝑇𝑃2 and 𝑇𝑋𝐶  in Fig. 6.8, if 𝑋 = 𝑅𝑇𝐷 + 50 ms and 𝑅𝑇𝐷 =
2 ∙ 𝐷𝑚𝑎𝑥, from Equation (6.33): 

𝑇𝑆𝑃 ≤
𝑅𝑇𝐷+50−(1+5+1+15)−𝑅𝑇𝐷

2∙𝑁𝑚𝑎𝑥
                                                 (6.34) 

𝑇𝑆𝑃 ≤
14

𝑁𝑚𝑎𝑥
                                                               (6.35) 

In [SCG+12] a basic latency model is derived for the 3WHS protocol from which it is concluded that for 

paths with 𝑁𝑚𝑎𝑥 = 25, 𝑇𝑆𝑃 ≤ 0.58 ms. This result approximates that obtained by Equation (6.35), i.e. 

𝑇𝑆𝑃 ≤
14

25
= 0.56 ms. However, it is worth pointing out that the latency analysis presented in [SCG+12] 

oversimplifies the calculation of 𝑇𝑆𝑒𝑡𝑢𝑝. It assumes that the network node-pairs are connected by a single 

shortest path. Furthermore, it disregards any effect that the PDFs of the task processing times have on 
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𝑇𝑆𝑒𝑡𝑢𝑝. More specifically, from the analysis in [SCG+12], given that 𝑇𝑆𝑒𝑡𝑢𝑝 is distributed as 𝑓𝑇𝑆𝑒𝑡𝑢𝑝
, it is 

not possible to estimate 𝑇𝑆𝑃 for a desired 𝜌 and 𝑋.  

Recall that the results in Fig. 6.9-6.14 are derived by setting 𝑇𝑆𝑃 = 0.2 ms (see Fig. 6.8). This value 
has been suggested as a reasonable estimate of 𝑇𝑖𝑗  by the results in [SN09]. With that estimate, we have 

that the connection setup latencies in Fig. 6.9-6.10 fulfil 𝑇𝑆𝑒𝑡𝑢𝑝 ≤ 𝑅𝑇𝐷 + 50 ms, i.e. they satisfy Equation 

(6.35). The reason is that in the network, the node-pairs with the largest count of intermediate nodes have 

𝑁𝑚𝑎𝑥 = 5, thereby  𝑇𝑆𝑃 ≤
14

5
= 2.8 ms, which is verified by the estimate 𝑇𝑆𝑃 = 0.2 ms.  

Equation (6.33) can also be reformulated to answer the question: for a given estimate of  𝑇𝑆𝑃, what is 
the maximum number 𝑁𝑚𝑎𝑥   for which 𝑇𝑆𝑒𝑡𝑢𝑝 ≤ 𝑋, with probability 𝜌 = 1? The answer follows from: 

𝑁𝑚𝑎𝑥 ≤
𝑋−(𝑇𝐶𝑅+𝑇𝑃1+𝑇𝑃2+𝑇𝑋𝐶)−2∙𝐷𝑚𝑎𝑥

2∙𝑇𝑆𝑃
                                            (6.36) 

If 𝑋 = 𝑅𝑇𝐷 + 50 ms and 𝑅𝑇𝐷 = 2 ∙ 𝐷𝑚𝑎𝑥 , with the values in Fig. 6.8, every node-pair must have 

𝑁𝑚𝑎𝑥 ≤ 70.  This inequality if fulfilled by the partial-mesh network in Fig. 6.8. (This analysis has been 

originally tackled in [SN09].) 
Equations (6.33) and (6.36) are two examples that illustrate how to derive boundaries on the protocol 

parameters from Equation (6.29), for a given 𝑓𝑇𝑆𝑒𝑡𝑢𝑝
 , 𝜌 and 𝑋.  

6.5. Chapter Summary  

In this chapter a hybrid implementation approach has been proposed for the approximate PIA. The VDO 

and the PIR steps are realized, respectively, by centralized and decentralized signalling mechanisms. In 

particular, given that connection admission control must be applied on the time scale of connection 

interarrival times (which implies that CAC algorithms must be fast), we have studied an implementation 

of the PIR that uses the 3WHS protocol for connection setup. This protocol has recently been proposed 

in the literature as an alternative (or extension) to GMPLS that guarantees the stringent connection setup 

latencies envisioned for dynamic optical networks. Unlike GMPLS, upon arrival of a connection request, 

the 3WHS protocol is able to probe different candidate paths simultaneously, and hence, it provides the 

network nodes with all the information needed to execute the PIR step. These capabilities render the 

3WHS protocol faster than GMPLS, which justifies its suitability to perform online resource allocation 

with the PIA. Furthermore, the protocol fits well as an implementation alternative for resource allocation 

algorithms that use the link independence assumption. Under the assumption, to solve the RSA and CAC 

problems, it is only necessary to know the states of the k-shortest paths that connect the source/destination 

nodes. The fast collection of such information is what the protocol performs by its decentralized probing 

mechanism.  
To study the properties of the 3WHS protocol, a task graph reduction methodology was proposed for 

the analytical evaluation of the protocol latency. By using as input the PDFs of the task processing times, 
the methodology calculates the PDF of the protocol delay. From this PDF, all statistical properties of the 
connection setup latency can be determined. The simulations show that the analytical performance model 
gives precise estimates of the mean connection setup latencies. Therefore, the approach is appropriate for 
the validation of the protocol design specifications. As an example, it has been shown how the analytical 
model can be used to quantify the requirements from the task processing times in order to meet a desired 
performance objective (e.g. a desired upper bound on the connection setup latency). 
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Chapter 7 

Modelling Infrastructure Costs in 

Dynamic Optical Networks 

The life-cycle of a telecommunication network is driven by techno-economic evaluations that rely on 

network planning and cost calculation methods. For a given network, starting from its initial deployment, 

network planning performs the dimensioning of the network infrastructure. Then the CAPEX and OPEX 

of this infrastructure are calculated so as to determine the financial feasibility of the network deployment 

plan. In this chapter, this issue is tackled by outlining a bottom-up framework for the calculation of the 

CAPEX and OPEX of telecommunication networks. The framework is further applied to the definition 

of a CAPEX model for dynamic optical networks, with focus on the network infrastructure costs. The 

goal is to provide insight into the main cost drivers that influence the deployment of this type of networks 

in the market. Section 7.1 describes the bottom-up framework for CAPEX and OPEX calculation within 

the context of the network life-cycle. In Section 7.2 the framework is used to formulate a CAPEX model 

for dynamic optical networks. Section 7.3 presents cost evaluation results. This chapter is based on the 

cost evaluation models proposed and published by the author in [REB15, RB17b, RAB18]. 

7.1. Bottom-Up Calculation of the Total Cost of the 

Network Ownership 

In Chapter 2 - Section 2.3, a four-step method was outlined for the techno-economic evaluation of 
telecommunication networks. The method defines a bottom-up approach to dimensioning the network 
infrastructure and to calculating the corresponding TCO. As explained in Chapter 2 (recall Fig. 2.5), the 
first step of the method (denoted as input information processing) is responsible for forecasting the service 
demand over a planning period 𝑇𝑖 . For this predicted demand, the second step (denoted as cost and revenue 
calculation) applies network planning methods to dimension the infrastructure and to calculate the TCO. 
The third step calculates the network financial metrics, and the last step assesses the financial feasibility 
of the network deployment plan. In this chapter, we focus our attention on the first two steps to formulate 
a bottom-up approach to calculating the network TCO. The approach will then be used to determine the 
CAPEX for dynamic optical networks.   

 To start assume that at time 𝑡𝑖 an operator needs to estimate the TCO of a network design that has to 
serve an expected demand over an interval 𝑇𝑖 . The target design may represent a new network deployment 
or the upgrade/migration of an existing infrastructure. Forecasting is used to estimate the service demand 
within 𝑇𝑖 . Having estimated this demand, the network TCO is then calculated as the sum of the total 
CAPEX and OPEX. This calculation relies on network planning in order to design an infrastructure that 
minimizes the TCO. To this end, offline optimization algorithms are used for topology planning, demand 
routing and network dimensioning. These algorithms take into account the existing infrastructure at 𝑡𝑖 and 
the predicted demands. The purpose is to design a cost-effective network while providing QoS guarantees 
to the customers. Topology planning involves the definition (or redefinition in the case of an upgrade or 
migration) of the network nodes and links. Routing and dimensioning determines the resources needed by 
the network nodes and links, as well as the traffic routing. The resulting design provides a list of materials 
that specifies the infrastructure to deploy within 𝑇𝑖 . With this information the network CAPEX and OPEX 
are determined with the bottom-up calculation framework shown in Fig. 7.1.  
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Figure 7.1: Bottom-up framework for TCO calculation [RB17b]. 

The CAPEX is the cost to buy, upgrade and install the infrastructure, and is a cash outflow stream in 
𝑇𝑖 . This cost is calculated from the list of materials provided by the network planning algorithms. For that, 
the operator needs to define price books with the costs of network components, software, installation, etc. 
Request for Quotation (RFQ) and Request for Proposals (RFP) can be sent to vendors to obtain this 
information. The cost depreciation of the network equipment over 𝑇𝑖  has to be regarded in the calculation.  
For the network design, a CAPEX outflow event at time 𝑡 ∈ 𝑇𝑖  may comprise three contributors, and is 
calculated as [REB15, RB17b]: 

𝐶𝐴𝑃𝐸𝑋(𝑡) = 𝐶𝐼𝑛𝑓(𝑡) + 𝐶𝐼𝑛𝑠 (𝑡) + 𝐶𝑛𝑡𝑠𝑖(𝑡) ,     𝑡 ∈  𝑇𝑖                                  (7.1)   

where 𝐶𝐼𝑛𝑓(𝑡) are the network infrastructure costs (which includes network software), 𝐶𝐼𝑛𝑠 (𝑡) are the 

installation costs, and 𝐶𝑛𝑡𝑠𝑖(𝑡) are non-telco specific infrastructure costs (e.g. buildings for personnel). 

Installation costs are considered as CAPEX, since they are non-recurring charges. Besides, infrastructure 

costs can be either a one-time expenditure or a cost spread over 𝑇𝑖 . The total CAPEX over 𝑇𝑖  is the sum 

of the CAPEX cash outflow events in this interval: 

𝐶𝐴𝑃𝐸𝑋 = ∑ 𝐶𝐴𝑃𝐸𝑋(𝑡)𝑡 ∈ 𝑇𝑖
                                                     (7.2) 

As for OPEX calculation, a complete study on the definition, classification and estimation of these 
expenditures is found in [VPW+05]. OPEX are the costs to keep the network operational and are split into 
continuous costs of infrastructure, costs of operational processes and non-telco specific operational costs. 
Since OPEX are ongoing costs, it is essential to define before their calculation a time frame, e.g. annual, 
monthly, over which the expenditures are estimated. Thus, OPEX can be seen as a periodic cash outflow 
stream within 𝑇𝑖 . The continuous costs of infrastructure referred to in Fig. 7.1, are cash outflows for a 
network in failure free operation [VPW+05]. This expenditure at a time 𝑡 in 𝑇𝑖  is given by: 

𝑂𝐶𝐶(𝑡) = 𝑂𝐸𝐶(𝑡) + 𝑂𝑆(𝑡) +𝑂𝐿(𝑡),    𝑡 ∈  𝑇𝑖                                                (7.3) 

where 𝑂𝐸𝐶 (𝑡) is the cost due to the energy consumption of the network components, 𝑂𝑆(𝑡) is the cost for 

leasing space to host network equipment, fibre links, etc., and 𝑂𝐿(𝑡) is the cost for leasing network 

infrastructure (e.g. leasing of a copper line in order to provide a transport service). The continuous costs 

of infrastructure are strongly dependent on the network technologies and on the type of services offered 

by the operator. Besides these expenditures, we have the costs of operational processes. The network 

operator has to implement and run processes in order to guarantee full operation and continuity of the 

business. As seen in [VPW+05], these processes are: service provisioning, operational network planning, 

marketing, maintenance and reparation, as well as pricing and billing. The activity based modelling 

approach in [CW03, VPW+05] can be used to estimate the cost of any process over the predetermined 

time frame. Therefore, the OPEX cost 𝑂𝑂𝑃(𝑡) due to operational processes is the sum of the costs 

contributions from each process. An OPEX cash outflow event at time 𝑡 ∈ 𝑇𝑖 , is calculated as follows: 
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Transponder Type Bit-rate (Gbps) Reach (Km) 

1 
40 2500 

100 2000 

 
2 
 

100 2500 
200 2000 
400 500 

3 
500 2000 
1000 500 

Table 7.1: Typical technical specifications of flex-grid optical transponders. 

𝑂𝑃𝐸𝑋(𝑡) = 𝑂𝐶𝐶(𝑡) + 𝑂𝑂𝑃(𝑡) + 𝑂𝑛𝑡𝑠𝑖(𝑡),   𝑡 ∈  𝑇𝑖                                     (7.4) 

where the total OPEX over 𝑇𝑖  is the sum of the OPEX cash outflow events in this interval: 

𝑂𝑃𝐸𝑋 = ∑ 𝑂𝑃𝐸𝑋(𝑡)𝑡 ∈ 𝑇𝑖
                                                        (7.5) 

𝑂𝑛𝑡𝑠𝑖(𝑡) are non-telco specific ongoing costs (e.g. energy consumption and leasing of premises for 

personnel). In Equations (7.4)-(7.5) time 𝑡 may represent the end of a time frame, e.g. a month, a year. 

OPEX is not subject to depreciation, and thus, its expected growth must be forecast over 𝑇𝑖 . As with 

CAPEX, price books for electricity and leasing costs, salaries for personnel, etc., are needed for OPEX 

evaluation. From Equations (7.2) and (7.5), we have that the TCO of the network design is then calculated 

as: 

𝑇𝐶𝑂 = ∑ (𝐶𝐴𝑃𝐸𝑋(𝑡)𝑡∈𝑇𝑖
+ 𝑂𝑃𝐸𝑋(𝑡))                                              (7.6) 

7.2. Calculation of Infrastructure Costs in Dynamic 

Optical Networks 

The novel architectural concepts brought about by dynamic optical networking have a direct influence 

on the network TCO. In this section we tackle this issue by studying how the three technology drivers of 

dynamic optical networking (i.e. flex-grid WDM, flexible ROADMs and bandwidth variable and tunable 

transponders) define the infrastructure cost 𝐶𝐼𝑛𝑓(𝑡) of the CAPEX in Equations (7.1)-(7.2). Thus, in the 

following, installation costs 𝐶𝐼𝑛𝑠 (𝑡) and non-telco specific costs 𝐶𝑛𝑡𝑠𝑖(𝑡) are not regarded in the analysis.  
Let us assume that at time 𝑡𝑖 an operator deploys and pays for a network infrastructure that copes with 

an expected demand over a period 𝑇𝑖 . Since the infrastructure cost is assumed to be a one-time payment 
incurred at 𝑡𝑖, we omit the dependence on the time variable 𝑡, and calculate this cost as [REB15, RB17b]: 

𝐶𝐼𝑛𝑓 = 𝐶𝑇 + 𝐶𝑅𝑂𝐴𝐷𝑀𝑠 + 𝐶𝑂𝐿𝐴𝑠                                                   (7.7) 

where 𝐶𝐼𝑛𝑓 comprises three contributors: the costs due to optical transponders 𝐶𝑇, the ROADM costs 

𝐶𝑅𝑂𝐴𝐷𝑀𝑠, and the costs of the optical inline amplifiers (OLA) 𝐶𝑂𝐿𝐴𝑠. (The OLAs are installed along the 

fibre links to compensate the attenuations suffered by the optical signals.) If the network has 𝑁 nodes 

and 𝐿 links, the cost contributors can be calculated as: 𝐶𝑇 = ∑ 𝐶𝑇(𝑛)𝑁
𝑛=1 , 𝐶𝑅𝑂𝐴𝐷𝑀𝑠 = ∑ 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛)𝑁

𝑛=1  

and 𝐶𝑂𝐿𝐴𝑠 = ∑ 𝐶𝑂𝐿𝐴(𝑙)𝐿
𝑙=1 , where 𝐶𝑇(𝑛) and 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) are, respectively, the cost of the transponders 

and the cost of the ROADM installed at the network node 𝑛. (Recall from Chapter 2 that the transponders 

are provisioned in shared pools so that they are assigned on demand to connection requests.) Moreover, 

𝐶𝑂𝐿𝐴(𝑙) is the cost of the inline amplifiers provisioned on link 𝑙. Equation (7.7) can then be expressed as: 

𝐶𝐼𝑛𝑓 = ∑ [𝐶𝑇(𝑛) + 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛)]𝑁
𝑛=1 + ∑ 𝐶𝑂𝐿𝐴(𝑙)𝐿

𝑙=1                                  (7.8)  

To calculate the cost 𝐶𝑇(𝑛) of the transponders required in the pool at node 𝑛, it is important to note 
that transponders are available with different specifications such as the supported bit-rates, the required 
bandwidth and the transparent reach (i.e. the maximum attainable transmission distance without requiring 
signal regeneration). Table 7.1 presents typical transponder types and their specifications as published in 
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[RKD+13].  These transponders may operate in the C-band (which spans the wavelength range 1530 nm -
1565 nm) and may be tuned at any frequency defined by the flex-grid ITU-T standard G.694.1 [ITU12]. 

Example 7.1 In Table 7.1 a transponder of type 2 is a device that can be installed to provide line bit-
rates of 100, 200 or 400 Gbps. In all cases, this capacity is provisioned on channels that can be tuned at 
any carrier frequency defined in the C-band. Note that the transparent reach of the transponder decreases 
as the offered line bit-rate increases. 

In general, the pool of transponders at a node 𝑛 may comprise different transponder types. Therefore, 
if 𝑚𝑖 is the number of transponders of type 𝑖 installed in the pool, then  𝐶𝑇(𝑛) is calculated as:  

𝐶𝑇(𝑛) = ∑ 𝑚𝑖 ∙ 𝐶𝑖𝑖                                                              (7.9) 

where 𝐶𝑖 is the cost a transponder of type 𝑖. The sum is over all transponder types provisioned in the node. 
The dimensioning rules used to size the shared pool of transponders determine 𝑚𝑖. 

To calculate the ROADM cost 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛), it is important to select a ROADM design and to perform 
its dimensioning according to the expected demand. In Chapter 2 - Section 2.2, three ROADM designs 
were discussed, namely, basic, colorless and colorless & directionless (recall Fig. 2.4). In principle, any 
of these three variants can be used to design a dynamic optical network, each one provides a solution with 
a distinct level of flexibility at a given cost. To evaluate that cost, let us determine 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) for each 
ROADM design. For that, consider Fig. 7.2, which describes the three ROADM types by using as a 
reference an optical node with degree two (i.e. with two bidirectional links connected to the ROADM).  
As explained in Chapter 2, the main building blocks of a ROADM are: arrayed waveguide gratings (AWG) 
- used to implement WDM multiplexers and demultiplexers - passive optical splitters and wavelength 
selective switches (WSS). In industry the most common WSS variants are WSS(1x9), WSS(1x20) and 
WSS(9x9), where 𝑚 × 𝑘 denotes two separate groups of ports. The WSS takes a WDM signal from one 
of the ports in the group of 𝑚 ports and switches each of its constituent channels to ports in the group of 
𝑘 ports. (The WSS can also switch channels from the group of 𝑘 ports to the group of 𝑚 ports, i.e. the 
WSS switching capability is bidirectional [RKD+13].)  Before studying each design in detail, it is worth 
mentioning that, for a given ROADM, an add/drop section can be installed for each node degree (i.e. for 
each bidirectional link attached to the ROADM). This guarantees that the ROADM is able to drop traffic 
coming from, and add traffic onto, a given ROADM link. This does not imply that pools of transponders 
are separately provisioned for each node degree. Instead, a single pool suffices and its transponders are 
connected to their corresponding add/drop sections. 

7.2.1 Calculation of the Cost of a Basic ROADM  
To understand the basic ROADM, let us study the configuration of the components that handle the traffic 

served by a ROADM link.  As seen in Fig. 7.2, each link is bidirectional, and hence, a link consists of an 

incoming and an outgoing fibre. The incoming fibre of a link carries a WDM signal entering the ROADM. 

That signal contains connections which may individually be dropped at the node or switched to a desired 

outgoing fibre. For that, the incoming fibre connects to a pre-amplifier that compensates the attenuation 

suffered by the signal. Then a splitter directs copies of that signal to the drop section of the link and to 

WSSs installed at outgoing fibre links. This allows the ROADM to select the traffic to be dropped and 

switched from the incoming WDM signal.  On the other hand, the outgoing fibre of a link is fed by a 

WSS. This switch is responsible for generating the WDM signal that exits the ROADM through the link. 

To accomplish this, the WSS receives (from the splitters) copies of the WDM signals that enter the 

ROADM from other links. It also receives from the add section of the link a WDM signal with 

connections originating at the node. The WSS then switches to the outgoing fibre the channels (from the 

incoming signals) that must exit the ROADM. A booster amplifier is placed between the WSS and the 

fibre to give the signal the appropriate transmission power. The WSSs are of the type WSS(1xk), where 

𝑘 is the number of input ports of the switch. (Notice that the WSSs only have an output port, which is 

that connected to the booster amplifier.) With the aid of Fig. 7.2, it is easy to observe that, for a basic 

ROADM, the number of input ports used at each WSS equals the node degree of the ROADM, i.e. one 

port is seized by an add section, and one port is seized by each splitter installed at other incoming fibre 

links.  
Example 7.2 If the basic ROADM in Fig. 7.2 implements switches of type WSS(1x9), only two input 

ports are used per switch. For instance, the switch connected to link 𝐴 assigns one port for the add section 
of the link and one port to receive the incoming traffic from link 𝐵. This ROADM could be upgraded to 
support up to 9 bidirectional links without changing the installed WSSs. 

In the basic ROADM, the add/drop sections are implemented by AWGs. Today a typical AWG device 
can be used to install a multiplexer or a demultiplexer with 40 channels capacity [RKD+13]. To increase 
this capacity, an interleaver is used to combine the WDM signals from two multiplexers into a signal with 
higher channel density (see Fig. 7.2). The multiplexers need to operate at frequencies  that do not overlap  



Modelling Infrastructure Costs in Dynamic Optical Networks 112 

Figure 7.2: Design of ROADM architectures (a two-degree node is shown). 
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with each other, thereby the interleaver combines both signals without interference. A typical application 

of this solution is the combination of two WDM signals, each one with 40 channels spaced at 100 GHz. 

The interleaver creates a new signal with a spectrum grid consisting of 80 channels with 50 GHz spacing. 

If an interleaver is used at every add section of the ROADM, another one is needed at every drop section 

for the demultiplexers to be able to separate the WDM channels.  
By using Fig. 7.2 as a reference, the cost 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) of a basic ROADM with node degree 𝐷 is: 

𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) = 𝐷 ∙ [𝐶𝑊𝑆𝑆(1x𝑘) + 𝐶𝑆𝑝 + 𝐶𝑃𝑎𝑚𝑝 + 𝐶𝐵𝑎𝑚𝑝 + 2(𝑖 + 1) ∙ 𝐶𝐴𝑊𝐺 + 2𝑖 ∙ 𝐶𝐼𝑛𝑡]    (7.10) 

with 𝑖 = 0,1. The term in square brackets contains the costs of the components that support a node degree. 

These costs are, the cost 𝐶𝑊𝑆𝑆(1x𝑘) of a WSS(1xk) switch, the splitter cost 𝐶𝑆𝑝, the pre-amplifier cost 

𝐶𝑃𝑎𝑚𝑝, the booster amplifier cost 𝐶𝐵𝑎𝑚𝑝, the interleaver cost 𝐶𝐼𝑛𝑡, and the cost of a single multiplexer or 

demultiplexer 𝐶𝐴𝑊𝐺 . (The abbreviation AWG is adopted given that multiplexers and demultiplexers are 

implemented by arrayed waveguide gratings.) The constant 𝑖 is introduced to evaluate two different 

ROADM designs. If 𝑖 = 0, the case is considered where each add/drop section has a multiplexer and 

demultiplexer with capacity of 40 channels, i.e. only two AWG devices are needed without interleavers. 

Otherwise, if 𝑖 = 1, two multiplexers and two demultiplexers are required so as to serve 80 channels per 

link. In this case two interleavers are needed, one for the add and one for the drop section. The type of 

WSS to install depends on the node degree 𝐷. If  2 ≤ 𝐷 ≤ 9, a WSS(1x9) suffices at each outgoing fibre. 

Otherwise, if 10 ≤ 𝐷 ≤ 20, the variant WSS(1x20) is to be used.  
The major drawback of the basic ROADM architecture is that the multiplexers and demultiplexers 

provide coloured add/drop ports. This implies that the transponders connected to the add/drop sections 
cannot dynamically tune their frequencies. Instead, they have to be tuned at the frequencies predefined by 
the ports of the AWG devices. This limitation is overcome by the colorless ROADM design. 

7.2.2 Calculation of the Cost of a Colorless ROADM 
Compared with the basic ROADM, the colorless design (as seen in Fig. 7.2) differs in that the add/drop 

sections employ WSSs rather than AWG multiplexers and demultiplexers. These WSSs are of the type 

WSS(1xq), where the number of ports 𝑞 determines the add/drop capacity handled by the switch. The 

per link add/drop capacity is given by the product 𝑝 × 𝑞, where 𝑝 is the number of switches installed at 

the add and at the drop sections of the link. Therefore, in a colorless ROADM, the switches of the add 

sections seize 𝑝 input ports from the WSS(1xk) switches that feed the outgoing fibre links. Likewise, the 

switches in the drop sections seize 𝑝 output ports from the splitters connected to the incoming fibres.  
Example 7.3 Assume that the colorless design in Fig. 7.2 uses WSS(1x20) switches to implement the 

add/drop sections. To support an add/drop capacity of 80 channels (or connections) per link, we have that 
𝑝 = 4, i.e. four switches need to be installed at both the add and the drop sections of the ROADM links. 
Moreover, each add section uses four input ports from its corresponding WSS(1xk) switch, whereas each 
drop section uses four output ports from its link splitter. 

By using Fig. 7.2 as a reference, the cost 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) of a colorless ROADM with node degree 𝐷 and 
with per link add/drop capacity 𝑝 × 𝑞 is given by [RAB18]: 

𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) = 𝐷 ∙ [𝐶𝑊𝑆𝑆(1x𝑘) + 𝐶𝑆𝑝 + 𝐶𝑃𝑎𝑚𝑝 + 𝐶𝐵𝑎𝑚𝑝 + 2𝑝 ∙ 𝐶𝑊𝑆𝑆(1x𝑞)
𝑎𝑑𝑑/𝑑𝑟𝑜𝑝

]               (7.11) 

The term in square brackets contains the costs of the components that support a single node degree. These 

costs are, the cost 𝐶𝑊𝑆𝑆(1x𝑘) of the WSS(1xk) switch, the splitter cost 𝐶𝑆𝑝, the pre-amplifier cost 𝐶𝑃𝑎𝑚𝑝, 

the booster amplifier cost 𝐶𝐵𝑎𝑚𝑝, and the cost 𝐶𝑊𝑆𝑆(1x𝑞)
𝑎𝑑𝑑/𝑑𝑟𝑜𝑝

 of the WSS(1xq) switch used to implement the 

add/drop sections. The constant 2𝑝 accounts for the number of WSS(1xq) switches employed to add/drop 

connections at each ROADM link. In Equation (7.11) the inequality: 𝐷 − 1 + 𝑝 ≤ 𝑘 must be verified. It 

guarantees that at most the 𝑘 input ports of each WSS(1xk) switch are used. Based on Fig. 7.2, we see 

that, in a WSS(1xk) switch, 𝐷 − 1 of its input ports are seized by the WDM signals coming from 𝐷 − 1 

splitters, and 𝑝 input ports are used by the switches of its add section. Hence, the WSS(1xk) switches 

must be selected so that they can provide at least 𝐷 − 1 + 𝑝 input ports. 
In the colorless ROADM design, the transponders are connected to the ports of the WSS(1xq) switches. 

Given that these ports are colorless, the transponders can dynamically tune their operating frequencies by 
software control. This represents an advantage over the basic ROADM design. However, the colorless 
ROADM constrains the transponders to serve a predetermined network link. For example, in Fig. 7.2, the 
transponders connected to the add/drop section of link 𝐴 are free to adjust their frequencies on demand, 
but they can only serve traffic carried over that link. If the link fails, the traffic added by the transponders 
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cannot automatically be re-routed over link 𝐵. This type of deficiency is overcome by using a colorless & 
directionless design which allows all transponders in the pool to access any ROADM link. 

7.2.3 Calculation of the Cost of a Colorless & Directionless ROADM  
In Fig. 7.2 it is shown how the directionless property can be added to a colorless ROADM. Instead of 

directly connecting the add/drop sections to the splitters and to the WSS(1xk) switches, two additional 

switches of the type WSS(bxb) are added to the ROADM. One switch connects all the add sections to all 

the WSS(1xk) switches installed in the node. The second switch connects all the splitters to all the drop 

sections. By this approach, both switches guarantee that any transponder can drop/add traffic from/to any 

network link. 
By using Fig. 7.2 as a reference, the cost 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) of a colorless & directionless ROADM with node 

degree 𝐷, and with per link add/drop capacity 𝑝 × 𝑞 is given by [RAB18]: 

𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) = 𝐷 ∙ [𝐶𝑊𝑆𝑆(1x𝑘) + 𝐶𝑆𝑝 + 𝐶𝑃𝑎𝑚𝑝 + 𝐶𝐵𝑎𝑚𝑝 + 2𝑝 ∙ 𝐶
𝑊𝑆𝑆(1x𝑞)

𝑎𝑑𝑑

𝑑𝑟𝑜𝑝 ] + 2 ∙ 𝐶𝑊𝑆𝑆(𝑏x𝑏)    (7.12) 

This expression is Equation (7.11) plus the cost of the two WSS(bxb) switches, where a single switch 

has a cost 𝐶𝑊𝑆𝑆(𝑏x𝑏). Unlike the colorless design, the inequality 𝐷 − 1 + 𝑝 ≤ 𝑘 does not apply as the add 

sections are not directly connected to the WSS(1xk) switches. Instead, the size of the WSS(1xk) and 

WSS(bxb) switches must be dimensioned so as to guarantee that any add/drop port can be connected to 

any node degree. (If this design criterion is verified in practice, the ROADM said to be contentionless 

[GBS+10, RKD+13].) 

7.2.4 Bottom-Up Calculation of the Network Infrastructure Cost 
In Table 7.2 and Table 7.3 we summarize the infrastructure cost model for dynamic optical networks as 
defined by Equations (7.7)-(7.12). The application of the model (to a specific network design) requires the 
adoption of a ROADM type common to all network nodes. With that, the cost calculation is performed by 
the following bottom-up methodology [RAB18]: 
 

1. Dimensioning of the shared pools of transponders and the add/drop capacity: based on the 
traffic demand, determine the number and the type of the transponders required at each network 
node. Besides, define the add/drop capacity (in connections) to be handled by each ROADM.  
 

2. Calculation of the transponder costs: for each node 𝑛, calculate the transponder costs 𝐶𝑇(𝑛) 
with Equation (7.9). Then calculate the overall transponder cost as 𝐶𝑇 = ∑ 𝐶𝑇(𝑛)𝑁

𝑛=1 . 
 

3. Calculation of the ROADM costs: for each node 𝑛, calculate the ROADM cost 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛). 
For that, use the add/drop capacity calculated for the ROADM to dimension its add/drop sections, 
splitters and WSS(1xk) switches. The goal is to define a list of materials that provides the number 
of components for the ROADM with their size (e.g. the number of input/output ports for each 
WSSs).  With the list of materials, the cost 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) is determined by using the equation that 
corresponds to the selected ROADM design. Finally, the overall ROADM costs are calculated as 
𝐶𝑅𝑂𝐴𝐷𝑀𝑠 = ∑ 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛)𝑁

𝑛=1 . 
 

4. Calculation of the OLA costs: from the link lengths and the amplification span (i.e. the distance 
between adjacent OLAs), determine the number 𝑥𝑙  of OLAs required on link 𝑙. Then calculate 
𝐶𝑂𝐿𝐴(𝑙) =  𝑥𝑙  ∙ 𝐶𝑂𝐿𝐴, where 𝐶𝑂𝐿𝐴 is the cost of a single amplifier. The overall amplification cost 

is calculated as 𝐶𝑂𝐿𝐴𝑠 = ∑ 𝐶𝑂𝐿𝐴(𝑙)𝐿
𝑙=1 . 

 
5. Calculation of the network infrastructure cost: use Equation (7.8) to calculate 𝐶𝐼𝑛𝑓. 

 
It is worth clarifying that in practice different implementation alternatives are valid for the three ROADM 
designs. In this section we have outlined three possibilities which are plausible with the components (i.e. 
WSSs, AWGs, splitters, etc.) available today. Our approach is motivated by the cost models proposed in 
[RKD+13] for multilayer transport networks (which includes models for fixed-grid and flex-grid WDM 
infrastructures). Moreover, in [RKD+13] a price book is provided with reference costs for the components 
used to implement the ROADM designs. Such information will be used in the next section to apply the 
cost model in Tables 7.2-7.3 to the evaluation of infrastructure costs for selected network scenarios. 
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Table 7.2: Definition of relevant component costs for dynamic optical networks. 

Table 7.3: Calculation of infrastructure costs for dynamic optical networks. 

7.3. Evaluation of Network Infrastructure Costs 

In this section we assess the infrastructure costs for the partial-mesh and the ring networks in Fig. 7.3. 

Both networks consist of 10 nodes connected by links with capacities of 𝐶𝑙 = 32 slots, and define 45 

node-pairs, each one serving two connection classes: a narrowband and a wideband class that request, 

respectively, 𝑏𝑗 = 2 and 𝑏𝑗 = 8 adjacent slots. Sets of 𝑘 = 2 shortest paths are defined (for every node-

pair) to route connections. The performance of these networks was evaluated in Chapter 5 for different 

traffic loads 𝐴. (The results are summarized in Section 5.3, Figures 5.7-5.10 and Tables 5.13-5.15.)  In 

this section, for each network and traffic load 𝐴, we perform the dimensioning and the cost evaluation of 

the infrastructure that provides the performance assessed in Chapter 5. Three solutions are assessed for 

each network, which are based on the implementation of basic, colorless and colorless & directionless 

ROADMs.  

Component Cost Definition 

𝐶𝑖 Cost of a transponder of type 𝑖 

𝐶𝑂𝐿𝐴 Cost of an optical inline amplifier 

𝐶𝑆𝑝 Cost of an optical splitter 

𝐶𝑃𝑎𝑚𝑝 Cost of a pre-amplifier 

𝐶𝐵𝑎𝑚𝑝 Cost of a booster amplifier 

𝐶𝐴𝑊𝐺  Cost of an AWG device (i.e. either a multiplexer or a demultiplexer) 

𝐶𝐼𝑛𝑡 Cost of an interleaver 

𝐶𝑊𝑆𝑆(1x𝑘) Cost of a WSS(1xk) switch used to feed outgoing fibre links 

𝐶
𝑊𝑆𝑆(1x𝑞)

𝑎𝑑𝑑
𝑑𝑟𝑜𝑝

 Cost of a WSS(1xq) switch used to implement add/drop sections 

𝐶𝑊𝑆𝑆(𝑏x𝑏) Cost of a WSS(bxb) switch used to implement directionless ROADMs 

Cost Type Cost Calculation 

Infrastructure cost for a 

network with 𝑁 nodes 

and 𝐿 bidirectional links 

𝐶𝐼𝑛𝑓 = ∑ [𝐶𝑇(𝑛) + 𝐶𝑅𝑂𝐴𝐷𝑀(𝑛)]𝑁
𝑛=1 + ∑ 𝐶𝑂𝐿𝐴(𝑙)𝐿

𝑙=1   

Cost of the transponders 

installed at node 𝑛  

𝐶𝑇(𝑛) = ∑ 𝑚𝑖 ∙ 𝐶𝑖𝑖  . Total number of transponders in the pool: ∑ 𝑚𝑖𝑖 ,                            

                                  where 𝑚𝑖 transponders of type 𝑖 are used 

Basic ROADM with 

degree 𝐷, with per link 

add/drop capacity of 40 

(𝑖 = 0) or 80 channels 

(𝑖 = 1) 

𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) = 𝐷 ∙ [𝐶𝑊𝑆𝑆(1x𝑘) + 𝐶𝑆𝑝 + 𝐶𝑃𝑎𝑚𝑝 + 𝐶𝐵𝑎𝑚𝑝                          

+ 2(𝑖 + 1) ∙ 𝐶𝐴𝑊𝐺 + 2𝑖 ∙ 𝐶𝐼𝑛𝑡] 

Colorless ROADM with 

degree 𝐷, with per link 

add/drop capacity 𝑝 × 𝑞 

𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) = 𝐷 ∙ [𝐶𝑊𝑆𝑆(1x𝑘) + 𝐶𝑆𝑝 + 𝐶𝑃𝑎𝑚𝑝 + 𝐶𝐵𝑎𝑚𝑝 + 2𝑝 ∙ 𝐶𝑊𝑆𝑆(1x𝑞)
𝑎𝑑𝑑/𝑑𝑟𝑜𝑝

]                

Colorless & directionless 

ROADM with degree 𝐷, 

with per link add/drop 

capacity 𝑝 × 𝑞 

𝐶𝑅𝑂𝐴𝐷𝑀(𝑛) = 𝐷 ∙ [𝐶𝑊𝑆𝑆(1x𝑘) + 𝐶𝑆𝑝 + 𝐶𝑃𝑎𝑚𝑝 + 𝐶𝐵𝑎𝑚𝑝 + 2𝑝 ∙ 𝐶
𝑊𝑆𝑆(1x𝑞)

𝑎𝑑𝑑
𝑑𝑟𝑜𝑝 ]

+ 2 ∙ 𝐶𝑊𝑆𝑆(𝑏x𝑏) 
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Figure 7.3: Network topologies with link lengths in Km and definition of component costs. 

Figure 7.4: Dimensioning of the number of transponders to install at a network node. 

To calculate the infrastructure costs, we follow the methodology outlined in Section 7.2.4 that uses the 
cost model in Tables 7.2-7.3. As price book for the cost model, we use the component costs defined in 
[RKD+13] for booster/pre-amplifiers, transponders, interleavers, OLAs, WSSs and AWGs. Such costs are 
shown in Fig. 7.3 and are expressed in strongest cost units (SCU). As defined in [RKD+13], an SCU is the 
cost of a 10 Gbps transponder with transparent reach of 750 km in the year 2012. 

7.3.1 Network Infrastructure Dimensioning 
In general, for any given network, the dimensioning of the shared pools of transponders and the add/drop 
capacity depends on the ROADM type used. For a basic ROADM, since the multiplexers/demultiplexers 
provide coloured ports, then for each ROADM link, the number of transponders is equal to the number of 
carrier frequencies in the spectrum grid. This number is 32 for the partial-mesh and the ring networks in 
Fig. 7.3, and it determines the add/drop capacity per link. Therefore, a node 𝑛 with degree 𝐷 requires 32 ×
𝐷 transponders. To illustrate this, consider the two-degree ROADM in Fig. 7.4. In a basic design, such a 
node requires 64 transponders (32 per link). In order to provide this capacity, each link add/drop section 
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is implemented by AWG multiplexers/demultiplexers with capacity of 40 channels (eight ports are free at 
each AWG device). The cost of this component is listed in Fig. 7.3. Thus, to implement the partial-mesh 
and the ring networks with basic ROADMs, there is no need for interleavers as the capacity of a single 
AWG supports the grid with 32 slots. By this design, every ROADM add/drop section provides the carrier 
frequencies that may be required by a connection request.  

The dimensioning of transponders differs in colorless and colorless & directionless ROADM designs. 
For these two ROADM types, the transponders connected to the add/drop ports may re-tune their carrier 
frequencies on demand, and therefore, the number of transponders (per ROADM link) needs not equal the 
grid size. Instead, it suffices to install the transponders required to cope with the actual carried traffic. To 
achieve this, we use a simulation-based method for transponder dimensioning similar to that in [SW10, 
CCC+12, SCG+12]. The idea is to determine the number of transponders from the carried traffics observed 
in the simulations run in Chapter 5 to assess the performance of both networks. (Recall that, as mentioned 
in Section 5.3, the simulations were run under the assumption that all network nodes had enough resources 
to serve connections.) For a given network and offered traffic load 𝐴, the method works as follows. In a 
colorless ROADM, the number of transponders needed to add/drop class-j connections over a ROADM 
link equals the maximum class-j carried traffic (observed over time) which is added/dropped over the link. 
As an example, consider the two-degree ROADM in Fig. 7.4, which is depicted with its per link carried 
traffics. It is seen that according to the traffic carried over link X, three transponders suffice at the add/drop 
section of the link. Similarly, two transponders are needed for link Y. Thus, the ROADM (in a colorless 
configuration) would require five transponders to add/drop class-j connections. (Recall that the traffic 
carried at a given instant is the number of connections being carried simultaneously. Therefore, the number 
of transponders - for each link add/drop section - equals the maximum number of concurrent connections 
observed over time.) For a colorless & directionless ROADM the dimensioning method varies. In this case 
(unlike the basic and colorless designs) the transponders are not limited to serve a specific ROADM link. 
Therefore, it suffices to observe the overall class-j carried traffic added/dropped at the ROADM, thereby 
the number of transponders equals the maximum overall carried traffic. (Note that the overall traffic is the 
sum of the carried traffics added/dropped over all ROADM links.) For the ROADM in Fig. 7.4, the overall 
class-j carried traffic (shown at the bottom of the figure) is the sum of the class-j traffic added/dropped 
over links X and Y. In a colorless & directionless configuration, such a ROADM would only require four 
transponders to add/drop class-j traffic (i.e. by adding the directionless property to a colorless ROADM, 
the number of transponders is reduced.) The proposed simulation-based dimensioning method tailors (for 
a selected ROADM design) the number of transponders to an expected traffic load 𝐴. This method cannot 
be applied to basic ROADMs because (regardless of the traffic) the add/drop sections need a transponder 
for each carrier frequency in the grid.   

For the partial-mesh and the ring networks, the add/drop sections of the colorless and the colorless & 
directionless designs are implemented by WSS(1xq) switches, which (according to the typical variants 
available on the market) can be of type WSS(1x9) or WSS(1x20). From the cost model in Tables 7.2-7.3, 
each add/drop section in a ROADM has capacity 𝑝 × 𝑞 connections. Based on this, we use the following 
rule for the dimensioning of the add/drop capacity of a network ROADM. Let 𝑘  be the number of 
transponders (as determined by the simulation-based method) required to serve the ROADM link that 
handles the highest (add/drop) carried traffic across all ROADM links. Then the add/drop sections of the 
ROADM are implemented by the minimum number 𝑝 of switches of type WSS(1xq) such that 𝑘 ≤ 𝑝 ×

𝑞, where 𝑞 = argmin
𝑞∈{9,20}

[𝑝 ∙ 𝐶𝑊𝑆𝑆(1x𝑞)] is the switch type that yields the minimum cost. As an example, for 

the ROADM in Fig. 7.4, we have that 𝑘 = 3 (as link X carries the highest traffic load). Then the minimum 
cost is obtained if 𝑝 = 1 and  𝑞 = 9, i.e. a WSS(1x9) switch is used at each add and drop section at a cost 
of 𝐶𝑊𝑆𝑆(1x9) = 5.20 (SCU) - see price book in Fig. 7.3. This dimensioning rule guarantees that, for a given 

ROADM, all links have the same add/drop capacity at minimum cost. The results obtained by this rule are 
applicable to both the colorless and the colorless & directionless versions of the ROADM (as seen in the 
previous section, these designs, for a given ROADM, have the same add/drop sections). Depending on the 

calculated switch type, in the cost model in Tables 7.2-7.3, we have that 𝐶𝑊𝑆𝑆(1x𝑞)
𝑎𝑑𝑑/𝑑𝑟𝑜𝑝

 can be equal to either 

𝐶𝑊𝑆𝑆(1x9) or 𝐶𝑊𝑆𝑆(1x20). These component costs are defined in Fig. 7.3. 

Two additional comments are needed regarding the dimensioning of the ROADMs. First, for the three 
ROADM designs, the WSS(1xk) switches are of type WSS(1x9), given that the nodes of the partial-mesh 
and the ring networks have degrees 𝐷 < 9 . Therefore, in the cost model in Tables 7.2-7.3, we use 
𝐶𝑊𝑆𝑆(1x𝑘) = 𝐶𝑊𝑆𝑆(1x9). This cost (see Fig. 7.3) includes the cost 𝐶𝑆𝑝 of the splitter used by the incoming 

fibre of the link served by the switch. Secondly, in the colorless & directionless design, the WSS(bxb) 
switches are of type WSS(9x9), as they are available in the market and fulfil the capacity requirements for 
the networks in Fig. 7.3. 

The relationship between the class-j bandwidth 𝑏𝑗 (expressed in slots) and the connection bit-rate 𝑅𝑗 

(in Gbps) is defined as 𝑏𝑗  = 2 ∙ ⌈(𝑅𝑗/𝐼 +  𝐺 )/12.5⌉, where 𝐼 is the spectral efficiency (in Gbps/GHz) of 

the modulation format  applied by the transponders, and 𝐺 is the guard band (in GHz) [KRV+13, REB15,  
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Partial-Mesh Network Ring Network 

A (Erl) 𝑹𝑳 (%) A (Erl) 𝑹𝑳 (%) 

1.7 0.001 0.6 0.001 

2.2 0.004 0.8 0.009 

2.8 0.012 1.1 0.028 

3.3 0.018 1.4 0.068 

3.9 0.060 1.7 0.159 

4.4 0.102 1.9 0.277 

5.0 0.172 2.2 0.510 

Table 7.4: Summary PIA performance with the MDP-PGMC rule (first-fist spectrum allocation). 

RB17b]. The constant 12.5 = 2 × 6.25 has units of GHz and it accounts for the fact that, in a flex-grid 

network, the bandwidth 𝑏𝑗 consists of an integer number of spectrum blocks with 12.5 GHz bandwidth. 

Each block is built by two 6.25 GHz adjacent slots [ITU12]. By using 𝐼 = 2 Gbps/GHz, which is a 

typical modulation efficiency envisioned for flex-grid systems [Sal07], and by setting 𝐺 = 0 GHz, we 

have that 𝑅𝑗 = 20  Gbps for narrowband ( 𝑏𝑗 = 2)  and 𝑅𝑗 = 100  Gbps for broadband ( 𝑏𝑗 = 8) 

connections. Therefore, from the transponder types listed in Table 7.1, the transponder of type 1 suffices 

to serve both connection classes in the partial-mesh and the ring networks. In particular, to serve a 

narrowband connection, the transponder is used to offer the bit rate of 20 Gbps, assuming a transparent 

reach of 2500 Km. For a broadband connection, a bit-rate of 100 Gbps is used, thereby attaining a 2000 

Km reach (see Table 7.1). 
In both networks, regenerators are installed (if needed) for connections that use paths with lengths that 

exceed the transparent reach of the transponders. A regenerator is implemented as a pair of transponders 
(back to back connected) installed at the pool of transponders of a network node. Thus, if a regenerator is 
required, it has a cost of 2 × 18 = 36 (SCU), where 18 is the cost a type 1 transponder (see Fig. 7.3). The 
regenerator costs are included in the transponder costs 𝐶𝑇. As for inline optical amplification, according 
to the OLA specifications in Fig. 7.3, every 80 Km an amplifier is installed on each fibre link.  

7.3.2 Numerical Results 
In this section the acronyms B, C and CD are used in figures and tables to refer to the basic (B), colorless 

(C) and colorless & directionless (CD) solutions. Moreover, the results are presented for the traffic loads 

𝐴 considered in Chapter 5 for the partial-mesh and the ring networks. In particular, for a network serving 

a traffic 𝐴, the infrastructure is designed for the three ROADM types on condition that the three solutions 

have the same performance. Such a performance (i.e. the reward losses 𝑅𝐿 assessed in Chapter 5 - Section 

5.3) and the corresponding traffic loads 𝐴 are summarized in Table 7.4. The reward losses are those 

observed (in both networks) when the PIA is run with the MDP-PGMC rule using first-fit as spectrum 

allocation method. (The information in Table 7.4 has been taken from Tables 5.14-5.15 in Chapter 5.)  
Figure 7.5 shows the infrastructure costs calculated for the partial-mesh and the ring networks. The 

costs are split into their three components, namely, 𝐶𝑇, 𝐶𝑅𝑂𝐴𝐷𝑀𝑠 and 𝐶𝑂𝐿𝐴𝑠. As seen, for both networks in 
all traffic loads, the solutions based on basic ROADMs are the most costly, whereas the lowest costs are 
provided by the colorless solutions. The higher costs of the basic solutions stem from the large number of 
transponders required to provide connectivity at all frequencies in the grid. This evinces that implementing 
coloured add/drop sections renders the basic solution prohibitively expensive.  On the other hand, Fig. 7.5 
shows that, in both networks, the infrastructure costs for the colorless and the colorless & directionless 
solutions depend on (and therefore, vary with) the traffic load. For the considered traffic loads, the cost 
component more sensitive to traffic variations is the overall transponder costs 𝐶𝑇 (see Fig. 7.5). These 
costs are driven by the number of transponders installed in the network. This number, as shown in Fig. 
7.6, grows with the traffic load 𝐴. 

Based on Fig 7.6, we have that on average, with respect to the colorless & directionless solutions, there 
is an increment in the colorless designs of 70% and of 35% in the number of transponders for the partial-
mesh and the ring networks, respectively. This shows that the directionless property substantially reduces 
the size of the transponder pools, and therefore, the infrastructure cost component 𝐶𝑇 (note that in Fig. 7.5 
the transponder costs in the colorless & directionless solutions are less than in the colorless case). By using 
directionless ROADMs, the transponders are better utilized as idle transponders are always available for 
connections routed over any ROADM link. In contrast, in the colorless solutions, idle transponders can 
only serve connections over a fixed ROADM link. This constraint increments the number of transponders 
required to provide the same performance as the directionless-based designs. Another disadvantage of this  
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Figure 7.5: Infrastructure costs vs traffic load for the three ROADM designs. 

Figure 7.6: Transponders required by the colorless and the colorless & directionless solutions. 
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Figure 7.7: Percentage contribution of ROADMs, transponders and OLAs to the overall cost. 

constraint is that in case of link failures, the colorless ROADMs cannot automatically switch the add/drop 

traffic onto another ROADM link.  This limitation is easily overcome by the directionless designs as by 

software control, the affected traffic can be re-routed to selected back-up paths. Therefore, although more 

costly than the colorless solutions, the colorless & directionless designs are more suitable to cope with 

the stringent requirements of dynamic optical networks. More specifically, the infrastructure costs for 

the colorless & directionless solutions in the partial-mesh network (as seen in Fig. 7.5) are on average 

17% higher than the colorless approaches. For the ring network, the cost increment is on average 50%.  

The colorless & directionless solutions are more expensive due to the WSS(9x9) switches that are needed 

to add the directionless capability. 
In Fig. 7.7 the percentage contributions to the infrastructure costs of the cost components 𝐶𝑇, 𝐶𝑅𝑂𝐴𝐷𝑀𝑠 

and 𝐶𝑂𝐿𝐴𝑠 are shown. As seen, in the basic and colorless solutions the main cost driver (or contributor) is 
the overall cost of the transponders. This cost represents more than 95% and 60% of the infrastructure cost 
in the basic and colorless designs, respectively. In contrast, in the colorless & directionless solutions, the 
ROADM costs are the major contributors, accounting for more than 50% of the total cost. In all three 
solutions, the amplification costs 𝐶𝑂𝐿𝐴𝑠  represent the minimum cost contributor. It is important to note that 
the aforementioned percentage contributions tend to be similar in the partial-mesh and the ring networks 
in all considered traffic loads 𝐴. 
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7.4. Chapter Summary 

The cost evaluations of this chapter have shown that to serve a traffic demand (while guaranteeing a 

desired performance) the implementation of colorless ROADMs provides the lowest infrastructure costs. 

However, this solution suffers a severe technical limitation such as the inability to automatically re-route 

connections in case of link failures. This deficiency can be overcome by adding the directionless property 

to colorless ROADMs. Although the resulting solution is more costly, it allows more efficient utilization 

of the network resources. More specifically, a colorless & directionless architecture, substantially reduces 

the number of transponders required to serve an expected traffic demand, which represents a remarkable 

advantage over the basic and the purely colorless-based approaches. 
Regardless of the ROADM type, the results show that the transponders represent a relevant cost driver, 

especially in the case of basic and colorless designs. This cost is reduced by the directionless ROADM 
designs in both the partial-mesh and the ring topologies considered in the study. 
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Chapter 8 

Conclusion 

The emergence of grid computing and cloud-based services is imposing new connectivity requirements 
on the optical layer. This has raised awareness on the need for a changeover to dynamic optical networks. 
Instead of providing long-term installed constant bit-rate connectivity, these networks are envisioned to 
serve connections with different bit-rate requirements, with random interarrival and holding times, and 
with low connection setup latencies. To efficiently utilize their capacity, dynamic optical networks require 
algorithms for online resource allocation that are fast, adaptive and state-dependent. In this thesis, this 
issue has been addressed by approaching online resource allocation as a reward-based Markov decision 
process. By modelling the network as a large-scale stochastic system, it has been shown that the decision 
process can be implemented by an approximate PIA. The purpose of the PIA is to calculate a resource 
allocation policy that aims at maximizing the reward earned by the network. Compared to existing online 
RSA algorithms, the PIA has two relevant advantages: first, any desired performance objective can be 
defined by properly setting the connection reward parameters; secondly, adaptive GoS control can be 
performed on individual connection classes, thereby the PIA is not limited to the minimization of overall 
blocking (as it is the case of existing online RSA algorithms). These PIA capabilities are validated by the 
performance evaluation results for the selected full-mesh, partial-mesh and ring network topologies.  

The adoption of a reward-based MDP approach is advantageous as it provides a mechanism to estimate 
the impact that carried connections cause in the network. This impact is state, policy and traffic load 
dependent, and can be quantified by the long-term reward gains. The purpose of the approximate PIA is 
to assign connection requests to lightpaths that cause positive long-term reward gains. For most networks, 
the exact estimation of these gains is unfeasible given the huge cardinality of the network state-space. It 
has been shown, however, that this limitation is circumvented by the approximate PIA, which resorts to 
the link independence assumption, and to a macrostate-dependent estimation of the gains. From the 
considered performance evaluation scenarios, it can be argued that although the link independence 
assumption is not always accurate, the performance of the approximate PIA can be improved by defining 
simple admission decision strategies, such as the MDP-SP, the MDP-PG and the MDP-PGMC rules. The 
performance of these rules depends on the spectrum allocation algorithm used to calculate lightpaths. In 
particular, it was observed that, compared to random-fit, the rules perform better when first-fit is used as 
the spectrum allocation method. In fact, with first-fit, the MDP rules admit connections on lightpaths that 
tend to reduce the spectrum fragmentation, thereby leading to less blocking in the network. The best 
performance is attained by the PIA variant that uses the MDP-PGMC rule with first-fit as spectrum 
allocation method. It is worth noting that the differences in the PIA performance for first-fit and random-
fit prove that the reward gains need not be alike for lightpaths routed on the same path. 

From the performance evaluation results, it can be concluded that an exact description of the 
configuration of the optical grid is not always necessary to perform adaptive/state-dependent resource 
allocation. Instead, the stochastic properties of the network can be described by the macrostate-dependent 
approach used by the approximate PIA. This method not only reduces computational complexity, but 
provides a mechanism to detect and reject adverse connection requests that, despite the availability of 
resources, would prevent admission of more valuable connections. The proposed PIA extends the 
applicability of MDP theory to the control of stochastic networks subject to contiguity and continuity 
constraints. Besides, it demonstrates the benefits of modelling resource allocation as a decision process 
that is adaptive to changing traffic load conditions. 

In dynamic optical networks connections can be rapidly set up and torn down. Ongoing research has 
shown that in some cases connections might require setup times in the range of milliseconds to seconds. 
To meet these stringent requirements, signalling protocols are needed to enable low setup latencies without 
manual intervention. Given that resource allocation is part of the connection setup process, the design of 
resource allocation algorithms must consider the connection setup signalling procedures. This issue has 
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been tackled by investigating an implementation of the approximate PIA with a 3WHS protocol which is 
known for providing very fast connection setup. The proposed implementation is enabled by the link 
independence assumption which assumes that a connection only modifies the reward rates of the links that 
it uses. The implications of this assumption, from a performance perspective, were discussed before (i.e. 
it reduces computational complexity while introducing - in some cases - inaccuracies in the estimation of 
the reward gains which are mitigated by MDP-based admission decision rules). From an implementation 
point of view, the assumption has another implication: it substantially reduces the signalling workload in 
the network. The reason is that upon arrival of a connection request, it is only necessary to know the state 
of the k-shortest paths that connect the source/destination nodes. The collection of the actual states of these 
paths is easily accomplished by the probing mechanism of the 3WHS protocol. (Note that this probing 
mechanism, which simultaneously collects information from k-shortest paths, is not enabled by current 
GMPLS connection setup procedures.) Therefore, the link independence assumption, as embraced by the 
approximate PIA, reduces the information (or equivalently, the exchange of signalling messages) needed 
to perform online resource allocation. It is worth noting that for the exact PIA (which is computationally 
intractable for large-size networks), neither GMPLS nor the 3WHS protocol are suitable to provide fast 
connection setup. The reason is that to establish a connection, the exact PIA must know the actual network 
state. The collection of such information in real time may cause large signalling delays that might preclude 
fast connection setup. This statement is true for any online resource allocation algorithm that needs global 
information for the provisioning of resources. The proposed implementation shows that the approximate 
PIA can be used with the 3WHS protocol so as to attain low connection setup latencies. 

To provide a thorough analysis of the connection setup latency, an analytical method was proposed to 
evaluate the performance of the 3WHS protocol. In the method, the protocol is modelled as a task graph 
that represents the signalling delays incurred in the connection establishment phase. By using reduction 
techniques, the graph is simplified so as to obtain a performance model that estimates the mean connection 
setup latency. The results show that the model provides accurate estimates of the protocol performance. 
For the proposed PIA implementation, it has been found that, regardless of the network size, the cross-
connection times of the ROADMs are relevant contributors to the setup latency. For large-size networks, 
on the other hand, the connection setup latencies are mainly driven by the propagation delays of the 
signalling messages on the k-shortest paths. The advantage of the analytical method is that it can be 
extended to study the latencies incurred by any connection setup protocol and resource allocation 
algorithm. 

Network planning plays a predominant role in the deployment of dynamic flex-grid optical networks. 
It guarantees that sufficient infrastructure is installed to cope with an expected traffic demand. The cost 
study performed on selected network scenarios indicates that, although not the least costly, colorless & 
directionless network infrastructures are the best solution alternatives in terms of flexibility. More 
specifically, from the study, it was observed that by adding the directionless property to colorless 
ROADMs, the number of transponders in the network is substantially reduced (compared to purely 
colorless-based solutions). Furthermore, this property allows the transponders installed at a given network 
ROADM to add/drop connections over any ROADM link. With this feature, the network is able to 
automatically re-route traffic by software control, while providing quick recovery from link failures. These 
capabilities justify the additional costs incurred by the directionless property w.r.t. colorless-based network 
designs. 

The research contributions in this thesis can be further extended in different directions. First, regarding 
the approximate PIA, an open research question is how to tune the connection reward parameters (during 
network operation) to either provide a desired GoS or to perform equalization of the class-specific blocking 
probabilities. Also it would be interesting to investigate different solution methods for the systems of linear 
equations defined by the approximate PIA. In this thesis, an existing VIA has been used, however, it is 
necessary to study in more detail the performance of this and other solution methods for different network 
scenarios (e.g. very-large capacity networks, large number of connection classes, more stringent 
connection setup latencies, etc.). Regarding the implementation of the approximate PIA, the solution based 
on the 3WHS protocol is a plausible alternative, but not the only one. This motivates further research on 
SDN-based implementation scenarios. In this case, an important issue to address is the definition of the 
control plane procedures and the signalling messages that would support the execution of the PIA. In 
particular, the signalling mechanisms need to guarantee that (like the 3WHS protocol) fast connection 
establishment is provided when needed. For this analysis, the task graph reduction methodology can be 
used to determine the statistical properties of the connection setup latencies.  

In dynamic optical networks the arrival and departure of connections renders the spectral resources 
prone to reach a fragmentation state. This means that, on each link, the spectrum contains idle and non-
contiguous slots which cannot be allocated to future connection requests. The increment in the connection 
blocking probability is a result of a fragmented spectrum. From the perspective of the PIA, it would be 
interesting to investigate admission decision rules to detect and reject connection requests that can increase 
the spectrum fragmentation. For this, it is necessary to study the relationship between the long-term reward 
gains and the fragmentation state of the network. (A highly fragmented spectrum is expected to be defined 
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by link states with negative gains, this effect can easily be detected by the PIA.)  Besides, the reward gains 
could be used as a decision threshold to trigger a spectrum defragmentation procedure in the network. For 
example, negative reward gains suggest that the blocking is high (which has a direct correlation with the 
fragmentation state of the spectrum). Therefore, reference values for the reward gains can be defined to 
decide when to re-accommodate carried connections so as to reach network states with higher gains.  

Another open research challenge is the study of the OPEX in dynamic optical networks. The CAPEX 
analysis presented in this thesis has shown that a colorless & directionless infrastructure brings flexibility 
and configurability by software control. This flexibility has an impact on the operational processes defined 
by the operator to keep its network up and running. More specifically, maintenance and reparation, service 
provisioning and operational network planning are processes that must be redefined in a dynamic scenario. 
Therefore, it is a must to investigate how this processes change and which are their corresponding cost 
contributions to the network TCO. This can be accomplished by applying the bottom-up cost calculation 
framework defined in this thesis. 
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Thesen 
 

1. Nowadays optical transport networks are circuit-switched systems that carry customer demands on 

optical connections. The setup times of these connections are in the order of weeks as in most cases 

manual configuration is required. Once established, connections remain active for months or years. 

The emergence of grid computing and cloud-based services is imposing new connectivity 

requirements on the optical layer. This has raised awareness on the need for a changeover to dynamic 

optical networks. Instead of providing long-term installed constant bit-rate connectivity, these 

networks are envisioned to offer BoD in the form of connections with different bit-rate requirements, 

with random interarrival and holding times, and with low connection setup latencies.  

 

2. To provide BoD the network control plane has to enable automatic configuration of optical 

connections without any manual intervention. Flex-grid WDM, directionless & colorless ROADMs, 

and bandwidth variable & tunable transponders are the technological prerequisites.  

 

3. To design and operate dynamic optical networks, network planning and online resource allocation 

are essential. Network planning ensures that sufficient capacity is installed to cope with an expected 

traffic demand growth. Online resource allocation, on the other hand, ensures that the installed 

capacity is efficiently allocated to connections so as to attain a desired performance objective. This 

is accomplished by implementing network control functions for RSA, CAC and GoS control. Upon 

arrival of a connection request, RSA is responsible for calculating a set of candidate lightpaths. Then 

CAC applies decision rules to select the lightpath on which the connection is carried. Although parts 

of the same problem, RSA and CAC can be solved separately so as to reduce modelling and 

implementation complexity. 

 

4. Extrinsic and intrinsic factors determine the performance of dynamic optical networks. Among the 

extrinsic factors are the statistical properties of the bandwidth requirements, the interarrival and the 

holding times of connections. These properties, in principle, are independent of - and unknown to - 

the network. On the other hand, intrinsic factors include online resource allocation algorithms 

whereby lightpaths are provisioned on demand. The overall network performance (e.g. the overall 

blocking probability) emerges from the interaction between extrinsic and intrinsic factors. 

Understanding this causal relationship is essential for the design of an efficient network control 

policy. With this knowledge, it is possible to cope with the randomness of connection requests. Fast, 

adaptive and state-dependent resource allocation algorithms can be tailored to achieve a desired 

performance objective (or large-scale effect). Given the random nature of connection requests, 

dynamic optical networks behave as large-scale stochastic systems whose state (i.e. the network 

resource occupancy) changes by following the decisions of the resource allocation algorithm. 

 

5. Resource allocation can be tackled as a reward-based online optimization problem. Connections are 

classified into classes which are assigned a reward whose meaning and value is defined by the 

network operator. It quantifies the immediate benefit that a connection brings to the network if 

admitted. The advantage of this approach is that the reward can be set either to optimize any desired 

performance objective (e.g. blocking minimization, maximization of carried traffic or economic 

revenue) or to equalize or differentiate the GoS of the connection classes. The objective of the 

optimization problem is to maximize the rate at which the network earns reward.  

 

6. Online resource allocation is the mechanism whereby the network assigns, on demand, spectrum 

resources to connections (in addition to link spectrum slots, this includes transponders and ROADM 

resources as well). Such a mechanism is a decision making process where for every connection 

request, it is decided whether admission is granted or not. In case of admission, a suitable lightpath 

has to be defined for the connection. A decision depends on two factors: the class of the connection 

request and the network state at the time of the connection arrival. The collection of decisions that 

instruct the network how to process any incoming connection request defines the resource allocation 

policy. MDP theory can be used to formulate the reward-based optimization problem as a Markov 

decision process that is solved by an exact PIA. For that, the network resource allocation is modelled 

as a continuous-time stochastic process where the state is defined as the configuration of the optical 

spectrum on all network links. All feasible network states fulfil the spectrum contiguity and 

continuity constraints. With the exact PIA, it is possible to determine the state-dependent resource 

allocation policy that maximizes the rate at which the network earns reward. 
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7. The exact PIA is based on an iteration procedure that takes an arbitrarily selected resource allocation 

policy to calculate (via a sequence of online iterations) the policy that maximizes the network reward 

rate. The calculation of the policy decisions is based on the concept of long-term reward gain. It 

quantifies the long-term impact that a connection would have on the network reward if it is admitted 

on a specific lightpath. The reward gain is state and policy dependent, and can be either positive or 

negative. If positive, the connection leads to a long-term increment in the reward earned by the 

network. Otherwise, (i.e. if negative), the connection would prevent the network from admitting 

more valuable traffic, thereby causing reward losses. The exact PIA calculates the optimum policy 

so that a connection is admitted on a lightpath that brings the maximum positive reward gain. Given 

the huge cardinality of the network state-space for networks of realistic size, the straightforward 

calculation of the reward gains, and therefore of the optimum policy, is computationally intractable. 

 

8. The computational complexity of the exact PIA can be overcome by an approximate PIA that resorts 

to the link independence assumption, and to a macrostate-dependent estimation of the reward gains. 

The link independence assumption is a decomposition approach, whereby the rate of reward from 

the network is approximated as the sum of the link reward rates. Thus, the problem is decomposed 

into separate link problems by assuming statistical independence of the link state distributions. This 

approach substantially reduces mathematical complexity and the computational effort required to 

calculate the policy decisions. The link macrostate represents the number of connections of each 

traffic class carried by the link at a certain time. It comprises different link states that fulfil the 

spectrum contiguity constraint. In the approximate PIA, it is assumed that a connection only changes 

the reward rates of the links that it uses. The implication of this is that upon arrival of a connection 

request, it is not necessary to know the overall network state to calculate a policy decision. Instead, 

it is sufficient to know the states of selected k-shortest paths that connect the source/destination 

nodes. The connection is admitted on the path that yields the maximum long-term reward gain. This 

gain is calculated as the sum of the macrostate-dependent reward gains of the links comprising the 

path. By this approach it is assumed that all lightpaths routed on the same path yield the same reward 

gain. 

 

9. The approximate PIA overcomes computational complexity, and hence, it makes the reward-based 

optimization problem solvable. However, the resource allocation policies that it calculates are sub-

optimal. In most networks, a performance comparison between the exact and the approximate PIA 

is not possible given that the exact policy cannot be calculated. From the performance evaluation 

results, it can be argued that although the link independence assumption is not always accurate, the 

performance of the approximate PIA is improved by defining simple MDP-based admission decision 

strategies, such as the MDP-SP, the MDP-PG and the MDP-PGMC rules. The performance of these 

rules depends on the spectrum allocation scheme used in the calculation of feasible lightpaths. In 

particular, compared to random-fit, the rules perform better when first-fit is used as spectrum 

allocation method. In fact, with first-fit, the MDP rules admit connections on lightpaths that tend to 

reduce spectrum fragmentation, thereby leading to less blocking in the network. The best 

performance is attained by the PIA variant that uses the MDP-PGMC rule with first-fit as spectrum 

allocation method. The differences in the PIA performance for first-fit and random-fit prove that the 

reward gains need not be alike for optical connections routed on the same path.  

 

10. In dynamic optical networks connections can be rapidly set up and torn down. In some cases setup 

times in the range of milliseconds to seconds are required. To meet these stringent requirements, 

signaling protocols are needed that enable low setup latencies. Given that resource allocation is part 

of the connection setup process, the design and implementation of resource allocation algorithms 

has to consider the connection setup procedures applied in the network. 

 

11. The implementation of the approximate PIA within the 3WHS protocol which provides a fast 

connection setup is feasible. Due to the link independence assumption the signalling load in the 

network remains quite low. The reason is that upon arrival of a connection request, it is only required 

to know the state of the k-shortest paths that connect the source/destination nodes. The collection of 

the actual states of those paths is easily accomplished by the probing mechanism of the 3WHS 

protocol. (This probing mechanism, which simultaneously collects information from k-shortest paths, 

is not enabled by the current GMPLS connection setup procedure.) For the exact PIA, neither 

GMPLS nor the 3WHS protocol are suitable to provide fast connection setup. The reason is that to 

establish a connection, the exact PIA must know the total actual network state. The collection of the 
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total state information via the signaling protocol precludes a fast connection setup. This statement is 

true for any resource allocation algorithm that needs global state information for resource allocation. 

 

12. The latency of the 3WHS protocol can be evaluated by modelling the protocol as a task graph that 

represents the delays incurred in the connection setup process. By using reduction techniques, the 

graph is simplified so as to obtain a performance model that estimates the mean connection setup 

latency. The proposed analytical model provides accurate estimates of the protocol performance. For 

the proposed PIA implementation, the results show that, regardless of the network size, the cross-

connection times of the ROADMs are the relevant contributors to the setup latency. For large-size 

networks, on the other hand, the connection setup latencies are mainly driven by the propagation 

delays of the signaling messages on the k-shortest paths probed by the protocol. The advantage of 

the proposed analytical method is that it can be extended to study the latencies incurred by any 

connection setup protocol and resource allocation algorithm. 

 
13.  The cost study performed on selected network scenarios indicates that, although not the least costly, 

colorless & directionless network infrastructures are the best solutions in terms of flexibility for 
dynamic optical networks. By adding the directionless property to colorless ROADMs, the number 
of transponders required in the network is substantially reduced (compared to purely colorless-based 
solutions). Furthermore, this property allows the transponders installed at a given network ROADM 
to add/drop connections over any ROADM link. With this feature, the network is able to automatically 
re-route traffic while providing quick recovery from link failures. These capabilities justify the 
additional costs incurred by the directionless property w.r.t. only colorless-based network designs. 
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