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Abstract

Generalized Processor Sharing (GPS), which provides the theoretical underpinnings for fair packet

scheduling algorithms, has been studied extensively. However, a tight formulation of the available service

of a flow only exists for traffic that is regulated by affine arrival envelopes and constant-rate links. In

this paper, we show that the universal service curve by Parekh and Gallager can be extended to concave

arrival envelopes and links with time-variable capacity. We also dispense with the previously existing

assumption of a stable system.

I. INTRODUCTION

Generalized Processor Sharing (GPS) [7], [8] provides the foundation for fair packet scheduling

algorithms, a class of traffic algorithms that seek to achieve a (weighted) max-min fair allocation

of the link bandwidth between individual or groups of traffic flows. GPS is an idealized algorithm

in that it takes a fluid-flow view of traffic and allows a link to concurrently transmit traffic from

arbitrarily many traffic flows. In contrast, a packet scheduler can only transmit one packet at

a time and cannot interrupt the transmission of a packet. The relevance of GPS to fair packet

scheduling algorithms is that the departure times of packets in some algorithms, e.g., Weighted

Fair Queueing (WFQ) [3], occur no later than the transmission time of a single packet of

maximum size after the departure times with GPS.

The service available to a flow in GPS is expressed in terms of a service curve, which is a

function that expresses the amount of guaranteed departures of a flow in a time interval where

the flow is backlogged.1 The (strict) service curve of a flow at a link with rate C and GPS

1In the terminology of the network calculus [5], such a service curve is referred to as ‘strict’. In this paper we exclusively

encounter strict service curves.
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scheduling can be computed from the so-called universal service curve derived in [7], [8], given

by

S(t) = max
M⊆N

Ct−
∑

j∈M(σj + ρj t)
∑

j 6∈M φj

, (1)

where N is the set of flows and (φj)j∈N are so-called weights. The service curve makes the

assumption that (1) the arrival traffic of each flow j ∈ N in a time interval of length τ is

bounded by an affine arrival envelope Ej(τ) = σj + ρjτ , and (2) the system is stable in the

sense that the total average arrival rate does not exceed the link capacity (
∑

j∈N ρj ≤ C). The

universal service curve yields a (strict) per-flow service curve Si(t) = φjS(t) for a flow j ∈ N .

For general scenarios, where the Ej are not necessarily affine and the system may be unstable

(
∑

j∈N ρj > C), a pessimistic estimate for the available service can be given by the minimum

guaranteed rate φ∑
j∈N φj

C. This estimate can be somewhat improved by using knowledge of the

arrival envelopes [6], [9], [10]. If the envelopes of the arrivals in (1) are replaced by envelopes

for departures, a generalization to non-affine envelopes is easily achieved. As pointed out in [4,

Sec. IV.C], since a departure envelope of a flow can be expressed as a min-plus deconvolution

of its arrival envelope and per-flow service curve, this only results in implicit expressions for

(minimum) per-flow service curves.

In this paper, we provide the following extensions to the per-flow (strict) service curves

obtained from the universal service curve in (1):

• Arrival envelopes can be arbitrary concave functions;

• The link may have a time-variable capacity;

• The link need not be stable.

These relaxations are achieved by generalizing the concepts of feasible ordering in [7] and

feasible partition in [11]. Note that the extension to time-variable service rates enables the

computation of the available service for hierarchical schedulers [1]. We will show that the

derived service curve is best-possible.

In Sec. II we state the main result. We provide a brief description of max-min fairness in

Section III, and then introduce the key notion of feasible subsets. This notion is used in Sec. IV

to derive backlog and output bounds. In Section V, we prove the main result, Theorem 1. Sec. VI

discusses GPS for general monotone arrival and service processes. We conclude the paper in

Sec. VII.
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II. STATEMENT OF THE MAIN RESULT

Let A and D denote the arrival and departure processes for a flow or an aggregate of flows

arriving at a service element. (Arrivals and departures for different flows will be distinguished

by subscripts). The backlog is denoted by B(t) = A(t)−D(t). The cumulative service process

of the element will be described by a function C(t). The arrivals in a half-open interval [s, t)

are denoted by A(s, t) := A(t)− A(s), and correspondingly for the departures and the service.

We always assume that arrival, departure, and service processes are nondecreasing and left-

continuous, with A(t) = D(t) = C(t) = 0 for t ≤ 0, and D(t) ≤ A(t) for all t.

We say that the service element is workconserving, if D(s, t) = C(s, t) on every interval that

contains no idle period, and D(s, t) ≤ C(s, t) otherwise. An important example is the constant-

rate link, C(t) = Rt, which serves traffic at the constant rate R whenever the backlog is positive.

In case the service process is given as a time-varying rate Ċ(t), then the service element is

workconserving if the departure rate satisfies Ḋ(t) = Ċ(t) whenever there is a backlog at t.

Throughout this paper, we consider a finite set N of flows arriving to a service element. Each

flow j ∈ N is associated with a positive weight φj > 0.

Definition 1. A Generalized Processor Sharing (GPS) scheduler is a workconserving scheduling

algorithm which ensures that for any 0 ≤ s < t and any flow i ∈ N that is backlogged on the

entire interval (s, t), the departures satisfy

Di(s, t)

φi

≥
Dj(s, t)

φj

for all j ∈ N . (2)

Our main result provides a lower bound on Di(s, t) in terms of the parameters of the scheduler,

the service process, and the traffic arriving to each of the flows j ∈ N .

To proceed, we need some more notation. An arrival envelope for an arrival function A is a

nondecreasing function such that

A(s, t) ≤ E(t− s) for all 0 ≤ s ≤ t .

We also say that the arrivals comply to E and write A . E . By convention we set E(τ) = 0 if

τ ≤ 0. Without loss of generality, envelopes can be taken to be subadditive.

A nondecreasing function S is a strict service curve for a flow at a service element if D(s, t) ≥

S(t− s) whenever the flow is backlogged on the entire interval (s, t). By convention, S(τ) = 0

for τ ≤ 0. Without loss of generality, a strict service curve may be taken to be superadditive

and nonnegative.
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We use C to denote the strict service curve offered by a workconserving service element. In

general, C is a strict service curve if

C(s, t) ≥ C(t− s) for all 0 ≤ s ≤ t .

In that case, we say that the service process complies to C and write C & C. As a special case,

C(t) = Rt is the strict service curve for the workconserving link with constant rate R.

Theorem 1 (Leftover service curve). Let N be a finite set of flows arriving to a GPS scheduler,

as in Definition 1. Assume that C & C. Fix i ∈ N . For each j ∈ N \ {i}, let Ej be an envelope

with Aj . Ej . If C is convex and each Ej is concave in t, then

Si(t) := max
M⊆N\{i}

φi
∑

j 6∈M φj

(

C(t)−
∑

j∈M

Ej(t)
)

(3)

is the best-possible strict service curve for flow i.

We refer to Si as the leftover service curve available to flow i under GPS. Note that there are

no hypotheses on the arrivals from flow i. If no envelope is available for some flow j ∈ N , a

conservative estimate can be obtained by setting Ej(t) = +∞ for all t > 0.

By construction, Si is nonnegative, nondecreasing, and convex in t, with Si(0) = 0 and

φi∑
j∈N φj

C ≤ Si ≤ C. We will show that Si(t) equals the service that flow i receives in a

scenario where it is backlogged on (0, t), the flows j 6= i are greedy (Aj = Ej), and the service

element is lazy (C = C), see Lemma 6.

Eq. (3) and the definition of the GPS scheduler are reminiscent of expressions for max-min

fairness. In the proof of the theorem, we will exploit this connection. The convexity and concavity

assumptions will play an important role.

III. MAX-MIN FAIRNESS AND FEASIBLE SUBSETS

Let N be a collection of players. As in Section II, let (φj)j∈N be positive weights. Each player

j ∈ N requests a nonnegative share xj of a resource X . An allocation (yj)j∈N with 0 ≤ yj ≤ xj

for j ∈ N is max-min fair, if
∑

j∈N yj = min
{
∑

j∈N xj , X
}

, and for each i ∈ N with yi < xi

yi

φi

≥
yj

φj

for all j ∈ N . (4)

Here, yi represents the share allocated to player i. The first condition requires the allocation to

be waste-free, that is, the entire resource must be used unless the requests of all players are
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satisfied. Eq. (4) specifies that small requests are satisfied in full while large requests are served

in proportion to their weights (φj). It is known that these conditions uniquely determine the

allocation. Explicitly, yi = min{xi, φif} with

f := max
M⊂N

X −
∑

j∈M xj
∑

j 6∈M φj

. (5)

The value f is called the fair share associated with the allocation problem. By convention,

for M = N the fraction takes the value −∞ if the numerator is negative and +∞ otherwise.

The maximum is attained by the set of satisfied players,

Msat :=
{

j ∈ N
∣

∣ xj ≤ φjf
}

. (6)

Clearly, the fair share is nonnegative and jointly convex in xj and X . It is nondecreasing in X

and nonincreasing in each xj . Its value is finite if and only if
∑

i∈N xi > X , and it satisfies the

lower bound f ≥ X∑
j∈N φj

.

Different from Eq. (3), the maximum in Eq. (5) ranges over all subsets M ⊂ N . The two

formulas are related as follows.

Lemma 1. Let M ⊂ N be a non-empty subset, and i ∈ M . Then either

xi

φi

≤
X −

∑

j∈M\{i} xj
∑

j 6∈M\{i} φj

≤
X −

∑

j∈M xj
∑

j 6∈M φj

or both inequalities are reversed.

Proof. If M = N , then the inequalities hold if and only if
∑

j∈N xj ≤ X . Otherwise, set

x′
i := X −

∑

j∈M xj and φ′
i :=

∑

j 6∈M φj > 0, and write

X −
∑

j∈M\{i} xj
∑

j 6∈M\{i} φj

=
xi + x′

i

φi + φ′
i

= λ
xi

φi

+ (1− λ)
x′
i

φ′
i

= λ
xi

φi

+ (1− λ)
X −

∑

j∈M xj
∑

j 6∈M φj

,

where λ = φi

φi+φ′
i

lies strictly between 0 and 1. Therefore either both inequalities hold, or both

fail.

As a consequence of the lemma, the fair allocation to flow i can also be computed by yi =

min{xi, fi}, where

fi := max
M⊂N\{i}

φi
∑

j 6∈M φj

(

X −
∑

j∈M

xj

)

. (7)
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We next consider the impact that a subset of requests can have on a max-min fair allocation.

Definition 2. Let M ⊂ N , and X > 0. A collection of requests (xj)j∈M is feasible, if

max
j∈M

xj

φj

≤
X −

∑

j∈M xj
∑

j 6∈M φj

. (8)

In that case, M is called a feasible subset of N for the data (φj)j∈N , (xj)j∈M , and X .

Feasibility of (xj)j∈M means that Msat, the set of satisfied players from Eq. (6), contains

M , regardless of the values in the set (xj)j 6∈M . Conversely, for any set of requests (xj)j∈N , the

corresponding subset Msat is feasible. By way of examples, a single request xi is feasible if

xi ≤
φi∑

j∈N φj
X . A full set of requests (xj)j∈N is feasible if

∑

j∈N xj ≤ X .

Remark. Feasible subsets are closely related to the notion of feasible orderings introduced in

[7, Sec. V.C]. By definition, a feasible ordering (“≺”) is a total order on N with the property

that

xk

φk

<
X −

∑

j≺k xj
∑

j�k φj

for all k ∈ N .

One can verify that for any feasible ordering, the downsets Mk := {j | j � k} are feasible

subsets. Feasible subsets are also downsets for the partial order induced by the feasible partition

constructed in [11].

The next lemma will be used to construct chains of feasible subsets. In the case where M = N

and
∑

j∈N xj < X , it implies that orderings of N along which the fraction
xj

φj
is nondecreasing

are feasible. This recovers Lemma 5 in [7]. We note in passing that there exist other feasible

orderings where
xj

φj
is not monotone.

Lemma 2. Let (xj)j∈M be a feasible subset for a resource X > 0. If k ∈ M and xk satisfies

xk

φk

= max
j∈M

xj

φj

,

then M \ {k} is feasible.

Proof. By the maximality of k,

max
j∈M\{k}

xj

φj

≤
xk

φk

≤
C −

∑

j∈M\{k} xj

φk +
∑

j 6∈M φj

,

where the second inequality follows from Eq. (8) by Lemma 1. Thus M \ {k} is feasible.
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Let (yj)j∈N be the max-min fair allocation of a resource X resulting from requests (xj)j∈N .

Denote by ȳi := xi−yi the unmet demand of player i. In terms of the fair share from Eq. (5), the

unmet demand is given by ȳi = [xi−φif ]+. Here, we have used the notation [x]+ = max{x, 0}.

The waste-free property of the allocation is equivalent to
∑

j∈N ȳj =
[
∑

j∈N xj − X
]

+
. The

unmet demand satisfies the following useful inequalities.

Lemma 3. Let (ȳj)j∈N be the unmet demands in the max-min fair allocation of a resource X

resulting from requests (xj)j∈N , and let (ȳ′j)j∈N be defined accordingly from X ′ and (x′
j)j∈N .

Then

∑

j∈N

|ȳj − ȳ′j| ≤
∑

j∈N

|xj − x′
j |+ |X −X ′| . (9)

Moreover, we have the monotonicity property

xj ≤ x′
j for all j ∈ N

X ≥ X ′







=⇒ ȳj ≤ ȳ′j for all j ∈ N .

Proof. We start with the second claim. Fix i ∈ N . By definition, ȳi = [xi − fi]+, and corre-

spondingly for ȳ′i. It is apparent from Eq. (7) that fi is nondecreasing in X and nonincreasing

in the variables xj for j 6= i. This proves monotonicity.

For Eq. (9), let (xj)j∈N and (x′
j)j∈N be as in the statement of the theorem. Denote by (z̄j)j∈N

the unmet demand resulting from the requests min({xj , x
′
j})j∈N for the resource max{X,X ′},

and by (w̄j)j∈N be the unmet demand resulting from requests max({xj, x
′
j})j∈N for the resource

min{X,X ′}. By monotonicity,

z̄j ≤ ȳj ≤ w̄j for all j ∈ N ,

and likewise for ȳ′j . Therefore

∑

j∈N

|ȳj − ȳ′j| ≤
∑

j∈N

(w̄j − z̄j)

=
[

∑

j∈N

max{xj , x
′
j} −min{X,X ′}

]

+

−
[

∑

j∈N

min{xj , x
′
j} −max{X,X ′}

]

+

≤
∑

j∈N

|xj − x′
j |+ |X −X ′| ,

where the second step used the waste-free property.
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The lemma implies that the max-min fair allocation for a fixed value of X , viewed as a

mapping (xj)j∈N 7→ (ȳj)j∈N , contracts the ℓ1-distance and preserves the natural order.

IV. PERFORMANCE BOUNDS

The following theorem says that the aggregate cumulative departures from a feasible subset

(xj)j∈M are at least as large as if each flow j ∈ M were allocated a dedicated link with service

process xjC. Note than no assumption is made on busy periods.

Theorem 2 (Departures). Let (Aj(t))j∈N be arrivals from a set of flows to a GPS scheduler

with service process C(t). Fix M ⊂ N , and let (xj)j∈M be a feasible subset of requests for the

resource X = 1. Then for all t ≥ 0,

∑

j∈M

Dj(t) ≥
∑

j∈M

inf
s≤t

{

Aj(s) + xjC(s, t)
}

. (10)

Proof. We proceed by induction on the number of elements of M . When M = ∅, there is nothing

to show.

For the inductive step, let M ⊂ N be a non-empty feasible subset, and suppose the claim has

already been established for its proper feasible subsets. Choose k ∈ M to maximize the ratio

xj

φj
. By Lemma 2, M \ {k} is feasible. By the inductive hypothesis, for all t ≥ 0,

∑

j∈M\{k}

Dj(t) ≥
∑

j∈M\{k}

inf
r≤t

{

Aj(r) + xjC(r, t)
}

. (11)

Fix t > 0 and let s be the start of the busy period for flow k that contains t. If Dk(s, t) ≥

xkC(s, t), then

Dk(t) = Ak(s) + xkC(s, t) ,

since Dk(s) = Ak(s). Eq. (10) follows by adding Eq. (11).

Otherwise, since flow k is backlogged on (s, t),

Dj(s, t)

φj

≤
Dk(s, t)

φk

<
xk

φk

C(s, t)

for all j ∈ N by Eq. (2). Therefore

∑

j 6∈M

Dj(s, t) <
(

∑

j 6∈M

φj

)xk

φk

C(s, t)

≤
(

1−
∑

j∈M

xj

)

C(s, t) ,

8



where the second inequality is by the feasibility of (xj)j∈M . Since the scheduler is workcon-

serving, it follows that

∑

j∈M

Dj(s, t) >
∑

j∈M

xjC(s, t) ,

and therefore

∑

j∈M

Dj(t) >
∑

j∈M

(

Dj(s) + xjC(s, t)
)

.

Clearly, Dk(s) = Ak(s) by the choice of s. For the flows j 6= k, we use Eq. (11) at time s to

obtain

∑

j∈M\{k}

(

Dj(s) + xjC(s, t)
)

≥
∑

j∈M\{k}

inf
r≤s

{

Aj(r) + xjC(r, t)
}

.

Eq. (10) follows once we add the term for j = k and extend the range of the infima to r ≤ t.

This completes the induction.

In the case where M = {i}, Theorem 2 yields

Di(t) ≥ inf
s≤t

{

Ai(s) +
φi

∑

j∈N φj

C(s, t)
}

.

More generally, the theorem implies the following key estimates.

Corollary 1 (Backlog). Define

B∗
j (t) := sup

r≤t

{Aj(r, t)− xjC(r, t)}

for j ∈ M . Under the assumptions of Theorem 2,

∑

j∈M

Bj(t) ≤
∑

j∈M

B∗
j (t) , t ≥ 0 . (12)

Proof. Write Bj(t) = Aj(t)−Dj(t) and apply Eq. (10).

Corollary 2 (Output burstiness). Under the assumptions of Theorem 2,

∑

j∈M

Dj(s, t) ≤
∑

j∈M

(

B∗
j (t) + xjC(s, t)

)

, 0 ≤ s ≤ t .

9



Proof. By Theorem 2,

∑

j∈M∗

Dj(s, t) ≤
∑

j∈M∗

(

Aj(t)−Dj(s)
)

≤
∑

j∈M∗

sup
r≤s

{

Aj(r, t)− xjC(r, s)
}

≤
∑

j∈M∗

(

B∗
j (t) + xjC(s, t)

)

.

In the last step, we have extended the range of the supremum to r ≤ t and applied the definition

of B∗
j (t).

For later use, we note that if Aj(t) . σj + ρjt and C(t) & R(t− L) with ρj ≤ xjR, then

B∗
j (t) ≤ σj + ρjL , t ≥ 0 . (13)

Corollary 1 implies Theorem 4 in [7] as follows. The assumption in [7] is that the arrivals comply

to token-bucket envelopes, Aj . σj + ρjt, that the link offers a constant-rate service C & Rt,

and that the stability condition
∑

j∈N ρj < R holds. If we choose xj =
ρj
R

, then σj − σt
j equals

B∗
j (t) − Bj(t), where σt

j is defined in [7] as the sum of the filling level of the token bucket

and the backlog at time t. Further, in [7] the set M is assumed to be a downset for a feasible

ordering of N . Under these assumptions, Eq. (12) reduces to the central conclusion in [7] that
∑

j∈M σt
j ≤

∑

j∈M σj .

V. THE LEFTOVER SERVICE CURVE

Consider the definition of the leftover service curve Si in Eq. (3). It follows from Lemma 1

that

min
{

Ei(t),Si(t)
}

= min
{

Ei(t), φiS(t)
}

,

where

S(t) := max
M⊂N

C(t)−
∑

j∈M Ej(t)
∑

j 6∈M φj

. (14)

Note the structural similarities of Eq. (3) to Eq. (7), and of Eq. (14) to Eq. (5). In the special

case where the envelopes Ej are affine, S agrees with the universal service curve in Eq. (1). The

maximum in Eq. (14) is attained by

M∗ := {j ∈ N | Ej(t) ≤ Sj(t)} , (15)

10



see Eq. (6).

Lemma 4. Let N , C and Ej be as in Theorem 1. Given τ > 0, define M∗ by Eq. (15) with t = τ

and Ei = +∞. Then

xj :=
Ėj(τ−)

Ċ(τ−)
, j ∈ M∗

defines a feasible subset for the resource X = 1.

Here, we used the notation f(x−) = supy<x f(y).

Proof. By Eqs. (14) and (15), the subset of requests x′
j :=

Ej(τ)
C(τ) , j ∈ M∗ is feasible for X = 1.

Since Ej(τ) ≥ τ Ėj(τ−) by concavity and C(τ) ≤ τ Ċ(τ−) by convexity, we have x′
j ≥ xj for all

j ∈ M∗. Thus, (xj)j∈M∗ is a feasible subset.

We next consider the special case of token-bucket envelopes and latency-rate service curves.

(The general proof follows immediately afterwards.)

Lemma 5. Under the hypotheses of Theorem 1, suppose additionally that the service curve has

the form C(t) = R(t − L), and the envelopes are given by Ej(t) = σj + ρjt for j ∈ N \ {i}.

Then Eq. (3) defines a strict service curve for flow i.

Proof. Suppose that flow i is backlogged on some interval (s, t). We need to show that Di(s, t) ≥

Si(t− s).

Set τ = t−s. Let M∗ be as in Eq. (15) with τ in place of t and Ei = +∞, and set xj =
ρj
R

for

j ∈ M∗. By Lemma 4, the subset of requests (xj)j∈M∗ is feasible for X = 1. By Corollary 2,

∑

j∈M∗

Dj(s, t) ≤
∑

j∈M∗

{

B∗
j (t) + xjC(s, t)

}

.

Since the scheduler is workconserving, it follows that

∑

j 6∈M∗

Dj(s, t) ≥
(

1−
∑

j∈M∗

xj

)

C(s, t)−
∑

j∈M∗

B∗
j (t)

≥
(

R−
∑

j∈M∗

ρj

)

(t−s−L)−
∑

j∈M∗

{σj + ρjL}

= C(t− s)−
∑

j∈M∗

Ej(t− s) .

11



In the first line, the coefficient of C(s, t) is nonnegative by the feasibility of (xj)j∈M∗. In the

second line, we have used that C(t) & R(t− L) and applied Eq. (13). In the last line, we have

canceled the terms ρjL and inserted the envelopes and service curves. By Eq. (2),

Di(s, t) ≥
φi

∑

j 6∈M∗ φj

∑

j 6∈M∗

Dj(s, t)

≥
φi

∑

j 6∈M∗ φj

(

C(t− s)−
∑

j∈M∗

Ej(t− s)
)

= Si(t− s) .

The final step used the maximality of M∗ in Eq. (3).

We are ready to tackle the main result.

Proof of Theorem 1. Given 0 ≤ s < t, set τ = t− s, and fix i ∈ N . For j ∈ N \ {i}, consider

the tangent line to the graph of Ej at τ , defined by E ′
j(u) = σj + ρju with

ρj := Ėj(τ−) , σj := Ej(τ)− ρjτ ≥ 0 .

Since Ej ≤ E ′
j by concavity, the arrival process Aj complies to the token-bucket envelope E ′

j .

Also consider the tangent line to C at τ , defined by C′(u) = R(u− L) with

R := Ċ(τ−) , L := τ − C(τ)
R

≥ 0 .

Since C ≥ C′ by convexity, the service process C complies to the latency-rate service curve C′.

By Lemma 5,

S ′
i := max

M⊆N\{i}

φi
∑

j 6∈M φj

(

C′ −
∑

j∈M

E ′
j

)

is a strict service curve for flow i. In particular, if flow i is backlogged on (s, t) then

Di(s, t) ≥ S ′
i(t− s) = Si(t− s) ,

where the equality is by the choice of τ = t−s. We conclude that Si is a strict service curve. By

Lemma 6 below, there are scenarios where the departures saturate the service curve. Therefore

Si is best possible.

Lemma 6 (The greedy/lazy scenario). In the setup of Theorem 1, let the service process be

C(t) = C(t), and the arrival processes Aj(t) = Ej(t) for j ∈ N and t ≥ 0. Then

Dj(t) = min
{

Ej(t),Sj(t)
}

, j ∈ N . (16)
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Proof. Let t > 0 be given. Since the scheduler is workconserving, the aggregate departures

satisfy

∑

j∈N

Dj(t) = inf
0≤s≤t

{

∑

j∈N

Aj(s) + C(s, t)
}

.

Inserting the assumptions on the arrival and service processes, we obtain

∑

j∈N

Dj(t) = inf
0≤s≤t

{

∑

j∈N

Ej(s) + C(t)− C(s)
}

= min
{

∑

j∈N

Ej(t), C(t)
}

=
∑

j∈N

min
{

Ej(t),Sj(t)
}

. (17)

The second step follows since the minimum is attained at s = 0 or s = t by concavity. In the

last step, we have used that yj = min{Ej(t),Sj(t)} is a max-min fair allocation of the resource

X = C(t), and therefore waste-free.

On the other hand, since Sj is a service curve for flow j,

Dj(t) ≥ inf
0≤s≤t

{

Ej(s) + Sj(t)− Sj(s)
}

= min
{

Ej(t),Sj(t)
}

.

Since this holds for every j ∈ N , by Eq. (17) it holds with equality.

Lemma 6 demonstrates that the departures from a GPS scheduler in the greedy scenario

necessarily satisfy Eq. (16). For completeness of the argument, we show that these departures

actually conform to Definition 1. The workconserving property follows from the waste-free

property of the max-min fair allocation. It remains to verify Eq. (2) on an arbitrary interval

where flow i is backlogged.

Eq. (16) yields Bj(t) =
[

Ej(t) − Sj(t)]+. By concavity, the ratio
Bj(t)

t
is nonincreasing in t.

Therefore, if flow i is backlogged at time t, then it is backlogged for all 0 < s ≤ t. By Eq. (4),

Di(t)
φi

≥ Dj(t)

φj
, with equality if flow j is backlogged as well. If flow j is backlogged at time

s, then
Di(s)
φi

=
Dj(s)

φj
, and Eq. (2) follows. Otherwise, flow j is not backlogged at time s, and

Dj(s) = Ej(s). The difference

Di(s, t)

φi

−
Dj(s, t)

φj

=
Si(t)− Si(s)

φi

−
Ej(t)− Ej(s)

φj

is concave in s, and nonnegative at s = 0, t. Therefore it is nonnegative for every 0 ≤ s ≤ t,

proving Eq. (2) also in this case.

13



VI. THE BACKLOG PROCESS

We briefly address the question how to describe the departures from a GPS scheduler with a

general nondecreasing service process C(t) and nondecreasing arrival processes Aj(t), j ∈ N .

We will argue that the workconserving property together with Eq. (2) completely determines the

backlog process, and hence the departures.

Consider once more the relation between the GPS scheduler and max-min fairness, as ev-

idenced by Eq. (2) and Eq. (4). The departures Dj(s, t) over a time interval [s, t) define an

allocation of the resource X = C(s, t) among a set of flows j ∈ N , each of which requests a

share xj = Bj(s) + Aj(s, t). The backlog Bj(t) plays the role of the unmet demand.

On any interval where the arrival processes Aj(t) are concave and C(t) is convex, the

departures are given by the max-min fair allocation

Dj(s, t) = min
{

Bj(s) + Aj(s, t), φjf
}

, j ∈ N ,

where f is defined by Eq. (5) with xj = Bj(s) + Aj(s, t) and X = C(s, t). This follows by

applying Lemma 6 to the time-shifted processes A′
j(τ) = Bj(s) + Aj(s, s + τ) and C ′(τ) =

C(s, s+ τ), and then setting τ = t− s. The backlog satisfies the difference equation

Bj(t) =
[

Bj(s) + Aj(s, t)− φjf
]

+
, j ∈ N . (18)

However, Eq. (18) cannot hold for general arrival and service processes on arbitrary intervals.

Flows that are backlogged at time t but are idle at an earlier time s < t receive less service

than indicated by Eq. (18). The underlying reason is that Eq. (2) provides no explicit service

guarantees for such flows.

Since Eq. (18) is valid when s is so close to t that the set of backlogged flows remains constant

from s to t, taking the limit s → t yields the differential equation

Ḃi(t) = Ȧi(t)−
φi

∑

j 6∈M(t) φj

(

Ċ(t)−
∑

j∈M(t)

Ȧj(t)
)

, (19)

so long as Bi(t) > 0. Here, M(t) = {j ∈ N | Bj(t) = 0} is the set of flows that are not

backlogged at time t. The differential equation holds at every time t where the arrival and

service processes are differentiable, except at instants where M(t) changes. (If the arrival and

service processes are not absolutely continuous, the differential equation should be supplemented

by equations that account for their jumps and singular continuous components.)

14



Eq. (19) determines the backlog process on intervals where M(t) is constant. These intervals

in turn depend on the departures, rendering the differential equation nonlinear. Standard theorems

that guarantee the existence and uniqueness of solutions for nonlinear differential equations do

not apply, because the right hand side of Eq. (19) does not have the requisite continuity properties.

We construct the backlog process as follows. Given arrival and service processes Aj(t) and

C(t), we approximate them with piecewise linear nondecreasing functions. Specifically, we

consider the class of functions that are linear on intervals (tℓ, tℓ+1], where the breakpoints tℓ form

an increasing sequence with t0 = 0 and lim tℓ = +∞. Jumps are permitted at each tℓ. Since linear

functions are simultaneously convex and concave, Lemma 6 implies that the backlog process for

the approximating scenario satisfies Eq. (18) on each interval (tℓ, tℓ+1]. Then Bj(t) and Dj(t) lie

again in the piecewise linear class, with at most |N | additional breakpoints appearing between

tℓ and tℓ+1 at instants where some flow ceases to be backlogged. By Lemma 3, all errors can

be bounded explicitly in terms of the original discretization error. Consequently, the backlog

process does not depend on the precise approximation scheme that was used in its construction.

Thanks to Lemma 3, the backlog evolves by an order-preserving family of contractions. One

implication is that the backlog process at a GPS scheduler with random stationary arrival and

service processes that is started with empty queues is stochastically increasing, in analogy to [2,

Lemma 9.1.4]. As t → ∞, the flows separate into two groups, one consisting of underloaded

flows whose backlog process approaches a steady state, and the other of overloaded flows whose

backlog becomes unbounded.

VII. CONCLUSIONS

We have addressed a longstanding open problem in the theory of fair queueing algorithms,

and extended the strict service curve formulation for GPS schedulers by Parekh and Gallager

to concave arrival envelopes and links with time-variable capacity. We show that the service

curves holds under any load condition, and is not limited to stable systems. With this paper, the

leftover service curve formulation for GPS has a comparable degree of generality as existing

leftover formulations of other ‘classical’ scheduling algorithms, such as Static Priority, FIFO,

and Earliest-Deadline-First.
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