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Abstract—In a heterogeneous unreliable multiaccess network,
wherein terminals share a common wireless channel with dis-
tinctive error probabilities, existing works have showed that
a persistent round-robin (RR-P) scheduling policy (i.e., greedy
policy) can be arbitrarily worse than the optimum in terms
of Age of Information (AoI) under standard Automatic Repeat
reQuest (ARQ), and one must resort to Whittle’s index approach
for optimal AoI. In this paper, practical Hybrid ARQ (HARQ)
schemes which are widely-used in today’s wireless networks are
considered. We show that RR-P is very close to optimum with
asymptotically many terminals in this case, by explicitly deriving
tight, closed-form AoI gaps between optimum and achievable AoI
by RR-P. In particular, it is rigorously proved that for RR-P,
under HARQ models concerning fading channels (resp. finite-
blocklength regime), the relative AoI gap compared with the
optimum is within a constant of (

√
e − 1)2/4

√
e ∼= 6.4% (resp.

6.2% with error exponential decay rate of 0.5). In addition, RR-P
enjoys the distinct advantage of implementation simplicity with
channel-unaware and easy-to-decentralize operations, making it
favorable in practice.

I. INTRODUCTION

Age of Information (AoI) [1] has been extensively studied
in recent years, which represents the time elapsed since the
generation of the newest received status at a destination.
Compared with conventional end-to-end communication de-
lay metrics, AoI captures the timeliness of information and
is intrinsically related to the effectiveness of critical status
information, e.g., in connected autonomous driving and time-
sensitive networked control systems. Therefore, there is a
growingly strong motivation of optimizing AoI in wireless
networks, as the future wireless systems are more and more
concerned with machine-type applications.

In wireless systems, one of the most prevalent and repre-
sentative settings can be modeled as unreliable multiaccess
networks, wherein terminals share a common wireless channel
(error-prone due to noise and channel fading) to communi-
cate with a master node, e.g., a central controller or base
station. Kadota et. al [2] considered the independently identi-
cally distributed (i.i.d.) channels with terminal-dependent error
probabilities, standard Automatic Repeat reQuest (ARQ) and
active sources (i.e., sources generate a fresh status whenever
scheduled), in which case AoI is in fact identical with the
definition of time-since-last-service in [3]. It was shown that,
intuitively, the optimal policy that minimizes the time-average
AoI should serve the terminals both timely and regularly.

The timeliness requirement is related to the first-order metric
which is known as peak-age (i.e., equivalent with inter-delivery
time in [4]); and the regularity requirement is related to the
second-order moment of peak-age. A stationary randomized
policy with optimized access probabilities is proved that can
minimize the peak-age [5], but only 2-optimal which means its
AoI is within twice the optimum due to its non-regularity. A
Persistent Round-Robin (RR-P) policy (i.e., greedy policy in
[2] since it selects the terminal with highest current AoI) is as
regular as it can be, but falls short for peak-age and is shown
to not have a constant multiplicative optimality guarantee. In
the literature, it is found that a Whittle’s index policy [6]–[8]
is practically and asymptotically optimal with many terminals
since it schedules a terminal based on a scaled age, i.e.,
approximately

√
pihi where pi and hi are success probability

and AoI of terminal-i respectively, which jointly accounts for
timeliness and regularity in an optimal way1. Although several
works have proposed optimization techniques, the explicit AoI
analysis is relatively scarcely treated—an AoI lower bound is
obtained in [2] which is conjectured to be asymptotically tight.

Hybrid ARQ (HARQ) is widely-used in modern wireless
systems, which differs from standard ARQ in the way pre-
vious transmissions are treated—HARQ effectively combine
historical transmissions of same packets whereas standard
ARQ discards them. At the expense of affordable additional
complexity, the transmission reliability is significantly im-
proved and hence HARQ is adopted in almost every wireless
system in today’s networks. The consideration of HARQ in the
context of AoI presents distinct challenges. Unlike conven-
tional packet transmissions wherein only reliability matters,
optimizing AoI forces the HARQ mechanism to consider
whether it is worthwhile to repeat an old packet—the tradeoff
lies in that repetition is definitely more likely to succeed
but sacrificing timeliness. In [9], it is found that the optimal
policy to minimize AoI with HARQ follows a threshold-based
manner, for a single-link scenario.

In this paper, we are particularly interested in the RR-P
policy. It was shown in [10] that round-robin scheduling is
asymptotically optimal when stochastic arrivals and reliable
channels are considered. However, as mentioned previously,
RR-P in scenarios with heterogeneous terminals’ channels ren-

1The max-weight policy [2] is effectively observing the same rule.
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ders arbitrarily worse performance compared with optimum,
due to the fact that, intuitively, a terminal with a very bad
channel would jam the system for a long time. Despite of this,
RR-P has several practically desirable merits, and surprisingly,
it will be shown that its performance is in fact very close to
optimum when HARQ is considered. Major advantages of RR-
P include:

Channel-agnostic: Unlike Whittle’s index policy which
needs to be aware of the channel conditions of all terminals,
effectively entailing a pilot overhead which is often omitted in
existing works, RR-P does not need any channel knowledge.

Easy-to-decentralize: A round-robin-type scheduling is
friendly to decentralized access. A token ring passing channel
access scheme, e.g., in IEEE 802.5 [11], can be utilized
to realize round-robin scheduling. Distributed terminals only
need to know their local AoI, which is in fact easy by a simple
acknowledgment feedback. In contrast, index-based policies
need to compare all terminals’ states, hindering decentralized
implementation.

Near-optimality: Even with its simplicity, RR-P is proved
to be very close to optimum with a large number of terminals.
Specifically, we can prove rigorously that under practical
HARQ models, the asymptotic AoI loss, in terms of relative
AoI increase compared with optimum with many terminals, is
within a constant of 6.4% in a typical scenario. In practice,
the real AoI loss is even smaller exhibited by computer
simulations.

In Section II, we will introduce the system model under
consideration, including HARQ models and AoI evolution; the
main results are presented in Section III, wherein we derive
theoretical AoI lower bound and achievable AoI by RR-P,
and further show that they are close. Simulation results to
numerically exhibit the performance is given in Section IV.
Several proof details are presented in the Appendix.

II. SYSTEM MODEL

We consider a one-hop wireless network wherein a cen-
tral node communications with N distributed terminals. The
terminals share the wireless channel based on a scheduling
policy denoted by π. A time-slotted status update system is
considered. The status packet generation is assumed to be
generate-at-will, i.e., a fresh status for terminal-n is generated
whenever it is scheduled. We are interested in average AoI.
Concretely, the T -horizon time-average AoI of the system is
defined by

∆(T )
π ,

1

TN

T∑
t=1

N∑
n=1

E[hn,π(t)], (1)

where T is the time horizon length, and hn,π(t) denotes the
AoI of terminal-n at the t-th time slot under policy π. The
long-time average AoI if defined by

∆̄π , lim sup
T→∞

∆(T )
π . (2)

A. Status Updates with HARQ

We assume a perfect (i.e., error- and delay-free) one-bit
feedback channel from the status update destination to the
source node. In case of a successful reception of a status
update packet, the destination feeds back an ACK; otherwise
a NACK is fed back to indicate a transmission failure. In
principle, retransmissions based on the feedback have the
potential to improve the performance. Therefore, HARQ is
considered in this paper. There are many different HARQ
schemes in the literature. As a convention, they are categorized
into two types. First, the type-I HARQ schemes, by which
the destination node discards previous transmitted packets and
treats each (re)transmissions are new—this is similar with
standard ARQ except for the naming convention. Secondly, the
type-II HARQ schemes combine (re)transmissions of the same
packet for lower packet error performance, at the expense of
more complicated buffer and algorithm design. Furthermore,
there two widely-used type-II HARQ schemes:
• Chase Combining HARQ (CC-HARQ): The receiver uses

Maximum Ratio Combining (MRC) to achieve a signal
power gain, and all (re)transmissions carry the same
coded bits. The MRC is implemented on the symbol level
before the channel decoder.

• Incremental Redundancy HARQ (IR-HARQ): The in-
formation bits are coded with incremental redundant
bits for error correction, each increment is carried in a
retransmission. The receiver combines the coded bits of
(re)transmissions and feeds into the channel decoder.

One distinct tradeoff for type-II HARQ in status update is
between the transmission success probability and the status
freshness, in light of the fact that retransmissions carry the
same old information dated back to the original transmission.
Whereas type-I HARQ discards old packets anyway, it can
always transmit fresh information. Without going into much
details about HARQ which is out of the scope of this paper,
we consider two models of packet error probability, i.e.,

gn,1(r) =
pn,0
r + 1

, gn,2(r) = pn,0λ
r, (3)

where gn,i(r) denotes the packet error probability after the
r-th (re)transmissions, r ∈ {0, 1, 2, ...}. The packet error
probability of the first transmission (or type-I HARQ retrans-
missions) for terminal-n is denoted by pn,0 ∈ [0, 1], which can
be different among terminals, and λ ∈ (0, 1) is a parameter
related to HARQ protocol and channel conditions. It is noted
that g1(r) is suited for an i.i.d. fading scenarios with sufficient
coding blocklength [12], whereas g2(r) is more appropriate
to model finite blocklength effects in quasi-static channels
[9]. A detailed justification is presented in Appendix A. We
further assume that the packet lengths and transmit power of
(re)transmissions are the same, and the maximum number of
retransmissions is unlimited. Each packet transmission is a
independent Bernoulli trail with fail probability given above.
The following lemma is useful in our analysis, regarding the
average consecutive transmission attempts for a successful
delivery.



Lemma 1: With Eq. (3), the first and second moments of the
number of consecutive transmission attempts for a successful
delivery satisfy

E[K1] ,
+∞∑
r=0

[
r−1∏
i=0

g1(i)(1− g1(r))(r + 1)

]
= ep0 ,

E[K2
1 ] ,

+∞∑
r=0

[
r−1∏
i=0

g1(i)(1− g1(r))(r + 1)2

]
= (1 + 2p0)ep0 ,

E[K2] ,
+∞∑
r=0

[
r−1∏
i=0

g2(i)(1− g2(r))(r + 1)

]

≤ 1 +

(
1 +

√
2π

− log λ

)
p0,

E[K2
2 ] ,

+∞∑
r=0

[
r−1∏
i=0

g2(i)(1− g2(r))(r + 1)2

]

≤ 2 log p0 − 2

log λ
− 1 +

(
2− 2 log p0

log λ

)
E[K2], (4)

respectively, where the terminal index is omitted, and we
prescribe gi(−1) = 1, i = 1, 2.

Proof: See Appendix B.

B. State, Action and Problem Formulation

At each time slot, the state of terminal-n is defined as
sn(t) , (hn(t), rn(t)), wherein rn(t) denotes the number
of previous (re)transmissions of the same packet. Note that a
reasonable policy would not re-send an older packet, since the
policy has decided to transmit a new packet in previous time
slots.

The scheduling action includes deciding which terminal to
be scheduled, and whether it should re-transmit, if any, an old
packet, or transmit a new one. Formally, the action space is
denoted by A , {nx|n ∈ {1, ..., N}, x ∈ {n, o}}}, wherein
x = n and x = o denote transmitting a new packet and
re-transmitting an old one, respectively. The state transition
probability is hence written as

Pr{hn + 1, 1|hn, rn, nn} = g(0);

Pr{1, 0|hn, rn, nn} = 1− g(0);

Pr{hn + 1, rn + 1|hn, rn, no} = g(r);

Pr{rn + 1, 0|hn, rn, no} = 1− g(r); (5)

and when terminal-n is not scheduled,

Pr{hn + 1, rn|hn, rn, ix, i 6= n} = 1, (6)

and other transition probabilities equal zero.
We assume that in each time slot, only one terminal can be

scheduled. The objective is to find a policy π that minimizes
the long-term average AoI in (2), and to analyze its perfor-
mance. In most part of the paper, we consider a large number
of terminals, i.e., N →∞.

III. OPTIMALITY OF RR-P WITH TYPE-II HARQ

In this section, the asymptotic optimality of RR-P when the
number of terminals N is large is shown. The method is based
on first finding an AoI lower bound which leverages a similar
method in [2], and then deriving an achievable AoI analytical
results (upper bound) by the RR-P. By showing that the gap
in between is vanishing, it can be concluded that RR-P is
asymptotically optimal.

A. AoI Lower Bound with HARQ

The AoI is shown to have the following property [3, Lemma
1], [2, Theorem 6].

Lemma 2: For a scheduling policy that schedules every
terminal infinitely often, i.e., ergodic, the long-time average
AoI satisfies

∆̄π ≥
1

2N

N∑
n=1

M̄[δ2n]

M̄[δn]
+

1

2
, (7)

where M̄(·) denotes the sample mean, and δn is the inter-
delivery time of terminal-n, i.e., number of time slots between
consecutive successful deliveries. In addition, if the policy is
also renewal,

∆̄πR ≥
1

2N

N∑
n=1

E[δ2n]

E[δn]
+

1

2
, (8)

where Ē(·) denotes the expectation.
Proof: The proposition is satisfied with equality in previ-

ous works without considering HARQ, i.e., the corresponding
AoI is reset to 1 after each successful delivery. Therefore,
the AoI with HARQ is lower bounded by the expressions in
the lemma, considering that the AoI would be reduced to the
time duration since the first transmission of the current packet
which is larger or equal to one (in case of this is the first
attempt, the AoI would return to one).

This Lemma clearly shows the relationship between inter-
delivery time and AoI, and is leveraged in the rest of the paper.
Note that the condition of ergodicity is not restrictive, since a
policy that starves any terminal is apparently sub-optimal. Also
note that a renewal policy is defined as one that results in i.i.d.
inter-delivery time. Hence a stationary policy that schedules
any terminal based on a time-invariant probability is included;
the RR-type policy is also included based on the definition.

Lemma 3 (Lower Bound): The long time-average AoI is
lower bounded by

∆̄π ≥
1

2N

(
N∑
n=1

√
E[Ki,n]

)
+

1

2
(9)

Proof: Denote the number of successful deliveries of
terminal-n up to the L-th time slot as Dn(L), and the number
of transmission attempts of terminal-n up to the L-th time slot
as An(L), then

∆̄π

(a)

≥ 1

2N

N∑
n=1

M̄[δn] +
1

2



(b)
=

1

2N

N∑
n=1

lim
L→∞

L

Dn(L)
+

1

2

(c)

≥ 1

2N
lim
L→∞

N∑
n=1

An(L)

N∑
m=1

1

Dm(L)
+

1

2

(d)

≥ 1

2N

(
N∑
n=1

√
lim
L→∞

An(L)

Dn(L)

)2

+
1

2

(e)

≥ 1

2N

(
N∑
n=1

√
E[Ki,n]

)2

+
1

2

=
N

2
M̄
[√

g(ωi,n)

]2
+

1

2
, (10)

which concludes the proof. Denote by M̄
[√

E[Ki,n]
]

,∑√
E[Ki,n]
N as the sample mean among the terminals, and

g(ωi,n) , E[Ki,n] is a function of channel parameters, i.e.,
ω1,n = [pn,0] and ω2,n = [pn,0, λ]. The inequality (a) follows
from M̄[δ2n] ≥ M̄[δn]2, wherein the equality holds when the
variance is zero. The equality (b) is obtained by definition.
The inequality (c) is because L ≥

∑N
n=1An(L) since there

are altogether L time slots. The Cauchy-Schwarz inequality
gives (d), and the last inequality (e) follows from the fact
that the minimum average transmission attempts required to
reach a successful delivery by HARQ is obtained by successive
repetitive transmissions of old packets. The average is given
by Lemma 1.

Remark 1: When type-I HARQ is considered, i.e., equiva-
lent with standard ARQ in this context, the lower bound results
in [2] is a special case of this lemma, wherein An(L)

Dn(L)
tends to

the inverse of the transmission error probability.
Denote the AoI lower bound in Lemma 3 as ∆̄LB, then the

following corollary follows straightforwardly.
Corollary 1:

∆̄LB ≤
N

2
M̄ [g(ωi,n)] +

1

2
(11)

Proof: The inequality follows from M̄[x]2 ≤ M̄[x2]. In
the subsequent section, we will see that this corollary reflects
the gap between the lower bound and the achievable AoI by
the RR-P policy, as RR-P achieves (approximately) the RHS
of (11).

B. Achievable AoI by RR-P

Definition 1: The RR-P scheduling policy schedules the
terminals in a round-robin manner. When scheduled, the
terminal will transmit and re-transmit the same packet until
successful delivery.
The achievable AoI by RR-P is shown by the following
theorem.

Theorem 1: Under the HARQ models in (3), the long time-
average AoI achieved by RR-P is

∆̄RR P,i = M̄ [g(ωi,n)] +
1

2

E
[(∑N

n=1[Ki,n]
)2]

M̄ [g(ωi,n)]
− 1

2
, (12)

which satisfies

∆̄RR P,i ≤
N + 1

2
M̄ [g(ωi,n)] +

1

2

M̄
[
E[K2

i,n]
]

M̄ [g(ωi,n)]
− 1

2
. (13)

Furthermore,
N

2
M̄ [g(ωi,n)]− 1

2
≤ ∆̄RR P,i ≤

N

2
M̄ [g(ωi,n)] + c, (14)

where c is a constant irrelevant with N . This inequality gives
the asymptotic scaling factor when the number of terminals is
large, i.e.,

lim
N→∞

∆̄RR P,i

N
=

M̄ [g(ωi,n)]

2
(15)

Proof: See Appendix C.
Armed with this theorem, in particular the asymptotic

results, the relative AoI gap between RR-P and the optimum
(i.e., (1+γ)-optimality where γ denotes the relative gap) with
a large number of terminals can be studied. In the following
subsection, explicit and tight results will be presented.

C. Asymptotic (1 + γ)-Optimality of RR-P

We investigate the asymptotic order-optimality of RR-P, that
is, the relative AoI gap compared with optimum when the
number of terminals is large. Define the asymptotic relative
AoI gap of RR-P as

γi , lim
N→∞

∆̄RR P,i − ∆̄opt

∆̄opt
. (16)

Based on Lemma 3 and Theorem 1, the gap is smaller or equal
to

γi ≤ lim
N→∞

∆̄RR P,i − ∆̄LB

∆̄LB
=

M̄ [g(ωi,n)]− M̄
[√

g(ωi,n)
]2

M̄
[√

g(ωi,n)
]2 .

(17)
The following theorem explicitly bound the gap.

Theorem 2: Under the HARQ models in (3) with relative
gaps γi, i ∈ {1, 2}, RR-P is within (1 + γi)-optimality with
N →∞, and

γ1 ≤
(
√
e− 1)2

4
√
e

∼= 6.4%,

γ2 ≤

(√
2 +

√
2π
− log λ − 1

)2

4

√
2 +

√
2π
− log λ

. (18)

Proof: Following (17),

γi ≤
V̄
[√

g(ωi,n)
]

M̄
[√

g(ωi,n)
]2

(a)

≤

(√
gmax,i − M̄

[√
g(ωi,n)

])(
M̄
[√

g(ωi,n)
]
−√gmin,i

)
M̄
[√

g(ωi,n)
]2

≤
(√
gmax,i −

√
gmin,i

)2
4
√
gmax,igmin,i

,



wherein V̄[·] denotes the variance operator, and the inequality
(a) stems from [13]. Based on Lemma 1, we select

gmin,i = 1, i = 1, 2. (19)

gmax,1 = e, gmax,2 = 2 +

√
2π

− log λ
, (20)

and hence the conclusion follows immediately.
Remark 2: Based on Theorem 2, it is shown that when

the number of terminals is large, the relative AoI increase by
RR-P compared with optimum is within 6.4 percents with the
first HARQ model; for a practical value of λ = 0.5, the gap
is within 17.1 percents with the second HARQ model. Note
that this does not mean the performance loss with the second
model is larger—this is mainly due to the fact that we can
only obtain an upper bound with K2, which is often loose. In
fact, applying a better bound by Corollary 2 with R = 4, we
can show the γ2 ≤ 6.2% with λ = 0.5.

In contrast, based on [2, Theorem 8], no constant γ can be
found for RR-P with type-I HARQ, or equivalently standard
ARQ in this context. In other words, RR-P can be arbitrarily
worse than optimum with standard ARQ (transmitting a new
packet at each opportunity). In fact, as far as we know,
the best proven bound for standard ARQ with unequal error
probabilities is γ = 1 (i.e., 2-optimal), using a stationary
randomized policy with optimized transmission probabilities.
Policies with simulated better performance, e.g., Whittle index
policy, can only be proven with very loose bounds which ren-
der meaningless due to their the non-renewal nature, resulting
in difficulties in age analysis. The bounds in this paper are
much tighter, in scenarios with HARQ which essentially favors
retransmissions and hence makes the analysis more tractable.

IV. SIMULATION RESULTS

We run computer simulations for RR-P for 106 time slots
and take the time-average AoI. The AoI lower bound in
Lemma 3 and achievable AoI upper bound by RR-P in Theo-
rem 1 are calculated and compared in the figures. The number
of terminals N varies from 3 to 100. The corresponding initial
transmission error probabilities pn,0, n = 1, · · · , N are set
to [1/N, 2/N, · · · , 1], respectively. The AoI is normalized by
the lower bound derived by Lemma 3. It is observed that,
with both HARQ models, the relative AoI increase by RR-P
approaches very small with the number of terminals greater
than, e.g., 20. The upper bound that is used to prove the
main result follows this trend closely, and moreover, the actual
RR-P performance obtained by Monte-Carlo simulations is
even closer to the lower bound, indicating that RR-P can
performance even better than the proved theoretical results in
practice.

V. CONCLUSIONS

This paper has shown that RR-P is provably near-optimal
for AoI optimizations with HARQ in heterogeneous unreli-
able multiaccess channels wherein terminals have distinctive
transmission error probabilities and the number of terminals
is large. Concretely, it is proved that the relative AoI gap

by RR-P compared with the optimum is within a constant
of (
√
e−1)2/4

√
e ∼= 6.4% (resp. 6.2% with error exponential

decay rate of 0.5) with fading channels (resp. finite block-
length scenarios) asymptotically. In reality, the gap becomes
even smaller than the theoretical bounds, which is shown by
computer simulations. The simulation results also reveal that
the number of terminals required for the asymptotic results to
hold is approximately 20. Moreover, the gap increases with the
terminals transmission error heterogeneity, i.e., the variance of
terminals’ transmission error probabilities.

The results in this paper relies crucially on the renewal
structure of RR-P. It is still difficult to obtain closed-form
AoI analysis for non-renewal policies, as evidenced by several
studies in the literature [2], [8]. More advanced mathematical
tools are needed to address this issue in future works.

APPENDIX A
JUSTIFICATION OF HARQ MODELS OF (3)

Without loss of generality, let us consider one representative
terminal. Assuming a block-fading Rayleigh channel based
on which the complex baseband channel stays constant dur-
ing each HARQ transmission round and changes to another
value based on an i.i.d. complex Gaussian distribution. The
block error probability in each round is approximated by
the information outage probability which is defined to be
the probability that instantaneous spectral efficiency given by
Shannon formula is smaller than the target spectral efficiency.
Furthermore, assume that the transmission power stays the
same and CC-HARQ is adopted. Then the block error rate in
the r-th round can be well approximated by the first model in
(3) based on [12, Theorem 1]. More precisely, the probability
that the first l transmissions all fail is approximately

pout,l ∼=
plout,1
l!

+O(pl+1
out,1), (21)

wherein the factorial term represents the power gain by CC-
HARQ.

On the other hand, consider the finite blocklength regime
and a non-fading AWGN channel, wherein the block error,
instead of fading, is mainly caused by insufficient channel
coding bits and white noise. For ease of exposition, consider
a Binary Erasure Channel (BEC) for each bit with erasure
rate of δ. Consider IR-HARQ, a message can only be correctly
decoded when the total number of successful bits is more than
C, and the total number of transmitted bits is lB where B is
the blocklength of one transmission and l is total transmission
rounds. Therefore, it follows that the error probability follows
the cumulative distribution function of binomial distribution,
i.e.,

pe,l =

C−1∑
c=0

(
lB

c

)
(1− δ)cδlB−c. (22)

It is well-known that when lB is large enough compared with
C,2 a reasonable approximation of the binomial distribution

2A common condition is that [14] |1−2δ|√
lBδ(1−δ)

< 1
3

.
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Fig. 1. AoI normalized by the lower bound in Lemma 3, achieved by the RR-P through Monte-Carlo simulations and its upper bound in Theorem 1. HARQ
models in (3) are both shown in subfigure (a) and (b), respectively. λ = 0.5 in subfigure (b), and the upper bound is calculated based on Corollary 2 with
R = 4.

is Gaussian distribution of N (lBδ, lBδ(1 − δ)), i.e., the
probability mass function can be approximated by

fe,l,c ∼=
1√

2πlBδ(1− δ)
e

−(c−lBδ)2
2lBδ(1−δ) . (23)

Therefore, the success probability after l rounds is approxi-
mated by

pe,l ∼= Q

(
|C − lBδ|√
lBδ(1− δ)

)
/ e−

(C−lBδ)2
2lBδ(1−δ)

lB�C∼= e−
lBδ

2(1−δ) , (24)

which coincides with the second model in (3) whereby the
error probability scales down exponentially with the number
of (re)transmission attempts. Note that by definition, l = r+1.
A similar, in fact much stronger arguments can be made based
on [15], wheres the present paper provides a more intuitive
explanation.

It can be observed that the two models in (3) suit i.i.d.
Rayleigh fading with CC-HARQ and finite blocklength with
IR-HARQ methods, respectively.

APPENDIX B
PROOF OF LEMMA 1

Considering K1, we obtain

E[K1] ,
+∞∑
r=0

[
r−1∏
i=0

g1(i)(1− g1(r))(r + 1)

]

=

+∞∑
r=0

pr0
r!

(
1− p0

r + 1

)
(r + 1)

=

+∞∑
r=0

pr0
r!

(r + 1)−
+∞∑
r=0

pr0
r!
r

=

+∞∑
r=0

pr0
r!

= ep0 . (25)

E[K2
1 ] ,

+∞∑
r=0

[
r−1∏
i=0

g1(i)(1− g1(r))(r + 1)2

]

=

+∞∑
r=0

pr0
r!

(
1− p0

r + 1

)
(r + 1)2

=

+∞∑
r=0

pr0
r!

(2r + 1)

= (1 + 2p0)ep0 . (26)

Similarly, with K2,

E[K2] ,
+∞∑
r=0

[
r−1∏
i=0

g2(i)(1− g2(r))(r + 1)

]

=

+∞∑
r=0

pr0λ
r(r−1)

2 (1− p0λr) (r + 1)

=

+∞∑
r=0

pr0λ
r(r−1)

2 (r + 1)−
+∞∑
r=0

pr0λ
r(r−1)

2 r

=

+∞∑
r=0

pr0λ
r(r−1)

2 = 1 + p0 +

+∞∑
r=2

pr0λ
r(r−1)

2

(a)

≤ 1 + p0 +

∫ +∞

1

px0λ
x(x−1)

2 dx, (27)

where inequality (a) is due to the fact that for a monotonically
decreasing function f(x) = px0λ

x(x−1)
2 , x ∈ [2,+∞),

+∞∑
r=2

f(r) ≤
∫ +∞

1

f(x)dx. (28)

Denote α , − log λ
2 and β , − log p0, then following (27),

E[K2] ≤ 1 + p0 + e
(α−β)2

4a

∫ +∞

1
2+

β
2α

e−αx
2

dx,

= 1 + p0 + e
(α−β)2

4a

√
π

α
Q

(
α+ β√

2α

)
(a)

≤ 1 + p0 +

√
π

α
e−β



= 1 +

(
1 +

√
2π

− log λ

)
p0, (29)

where Q(x) , 1√
2π

∫ +∞
x

e−t
2/2dt is the Q-function, and in-

equality (a) follows from the Chernoff bound Q(x) ≤ e−x2/2.
The following corollary gives a tighter bound.

Corollary 2:

E[K2]≤
R−1∑
r=0

pr0λ
r(r−1)

2 +

(
1 +

√
2π

− log λ

)
pR0 λ

R(R−1)
2 , (30)

wherein R ∈ N+.
Proof:

E[K2] ≤
R∑
r=0

pr0λ
r(r−1)

2 +

+∞∑
r=R+1

pr0λ
r(r−1)

2

≤
R∑
r=0

pr0λ
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2 +
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R

px0λ
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2 dx,

=

R∑
r=0

pr0λ
r(r−1)

2 + e
(α−β)2

4a

√
π

α
Q

(
(2R− 1)α+ β√

2α

)

≤
R∑
r=0

pr0λ
r(r−1)

2 + e
(α−β)2−((2R−1)α+β)2

4a

√
π

α

=

R∑
r=0

pr0λ
r(r−1)

2 + e−(R(R−1)α+Rβ)
√
π

α
, (31)

which concludes the proof.

E[K2
2 ] ,

+∞∑
r=0

[
r−1∏
i=0

g2(i)(1− g2(r))(r + 1)2

]

=

+∞∑
r=0

pr0λ
r(r−1)

2 (1− p0λr) (r + 1)2

=
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r=0
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+∞∑
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pr0λ
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=
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pr0λ
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2 (2r + 1)

=

+∞∑
r=0
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r(r−1)

2 2

(
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2α
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(
2− β
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)
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=
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r=1

pr0λ
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2 2

(
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2α

)
+
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)
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β

α
− 1

≤ e
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4α
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0

e−α(x−α−β
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2
(
x− α− β

2α
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(
2− β

α

)
E[K2] +

β

α
− 1

=

(
2− β

α

)
E[K2] +

β + 1

α
− 1, (32)

which concludes the proof.
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Fig. 2. AoI evolution of terminal-n under HARQ.

APPENDIX C
PROOF OF THEOREM 1

Note that RR-P is a renewal policy that for each terminal,
the j-th successful delivery interval is

S
(j)
n,RR P ,

N∑
m=1

K(j)
m , ∀n ∈ {1, ..., N}, (33)

and {K(j)
m |j = 1, 2, ...} are i.i.d. This is because based on

RR-P, the successful delivery interval of every terminal is
the total time that all terminals delivers an update. Therefore,
without loss of generality, a sample path of the AoI evolution
of terminal-n is shown in Fig. 2. The time between the i−1-th
and i-th deliveries is denoted by the i-th round, during which,
the moment that the terminal is scheduled and transmits its
first packet is denoted by a

(i)
n in Fig. 2. The retransmissions

continue until a successful delivery based on RR-P, and hence
the age hn(t) drops to K(i)

n upon that—the time of which is
denoted by s(i)n .

Following the same arguments in, e.g., [16], the time-
average AoI can be readily calculated by the sum of the
geometric areas Q(i)

n in Fig. 2:

E[hn(t)] = lim
T→∞

D

T

1

D

I∑
i=1

Q(i)
n =

E[Qk,n]

η
, (34)

where D denotes the number of successful deliveries until time
T , and

η , E
[
S
(j)
n,RR P

]
=

N∑
m=1

E
[
K(i)
m

]
. (35)

When T goes to infinity, D also goes to infinity. The last
equality is based on the elementary renewal theorem [17]. It
then follows that

E[hn(t)] =
1

η
E

[
S
(i)
n,RR PK

(i−1)
n +

(
S
(i)
n,RR P − 1

) S(i)
n,RR P

2

]
(a)
=

1

η

(
E
[
S
(i)
n,RR P

]
E
[
K(i−1)
n

]
+

1

2

(
E
[(
S
(i)
n,RR P

)2]
− E

[
S
(i)
n,RR P

]))

= E
[
K(i−1)
n

]
+

1

2η
E

( N∑
m=1

K(i)
m

)2
− 1

2



(b)

≤ E [Kn] +
1

2η

(
N∑
m=1

E
[
K2
m

]
+
N − 1

N
η2

)
− 1

2

= E [Kn]− η

2N
+

1

2η

N∑
m=1

E
[
K2
m

]
+
η − 1

2
(36)

where the equality (a) is based on the fact that the number
of transmission attempts during the (i − 1)-th round is inde-
pendent with the ones in the i-th round, and the inequality (b)
follows from the fact that for independent random variables
x1, ..., xN ,

E

( N∑
i=1

xi

)2


=

N∑
i=1

E
[
x2i
]

+

N∑
i<j

2E [xi]E [xj ]

=

N∑
i=1

E
[
x2i
]

+

(
1

N
+ 1− 1

N

) N∑
i<j

2E [xi]E [xj ]

=
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i=1

E
[
x2i
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+
N − 1

N

N∑
i=1

E [xi]
2

+
N − 1

N

N∑
i<j

2E [xi]E [xj ]

=

N∑
i=1

E
[
x2i
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+
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(
N∑
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E [xi]

)2

. (37)

Note that after inequality (b), we ignore the index of round
for brevity. Now averaging over all terminals, we obtain

∆̄RR P =
1

N

N∑
n=1

E[hn(t)]

(a)
=

1

N

N∑
n=1

E
[
K(i−1)
n
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+

1

2η
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m

)2
− 1

2

≤ η

2N
+

1

2η

N∑
m=1

E
[
K2
m

]
+
η − 1

2
, (38)

wherein the equality (a) gives (12) directly, and (13) readily
follows given η = NM̄ [g(ωi,n)]. For the asymptotic results
of (14), considering the HARQ models in (3) and Lemma 1,
we obtain respectively for two models,

∆̄RR P,1 ≤
N + 1

2
M̄ [g(ω1,n)] +

1

2η

N∑
m=1

E
[
K2

1,m

]
− 1

2

≤ N + 1

2
M̄ [g(ω1,n)] +

∑N
m=1 pm,0e

pm,0∑N
m=1 e

pm,0

≤ N + 1

2
M̄ [g(ω1,n)] + 1.

Given that

M̄ [g(ω1,n)] =
1

N

N∑
m=1

E [K1,m] ≤ e, (39)

and that the left inequality of (14) is straightforward, we can
conclude the asymptotic results immediately. Similarly,

∆̄RR P,2

≤ N + 1

2
M̄ [g(ω2,n)] +

1

2η

N∑
m=1

E
[
K2

2,m
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− 1

2

≤ N + 1

2
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[
−βmα E[K2,m] + βm+1

α − 1
]

2
∑N
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(a)

≤ N + 1

2
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+
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m=1
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−βmα
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√
π
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)
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]

2
∑N
m=1 E [K2,m]

(b)

≤ N + 1

2
M̄ [g(ω2,n)] +

1

2α
, (40)

wherein βm = − log pm,0, α = − 1
2 log λ, the inequality

(a) follows from Lemma 1 and (b) is obtained by noting
minm [E [K2,m]] ≥ 1. With

M̄ [g(ω2,n)] =
1

N

N∑
m=1

E [K2,m] ≤ 2 +

√
π

α
, (41)

which is irrelevant with N , the conclusion follows immedi-
ately.
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