
DARS: An EDA Framework for Reliability and
Functional Safety Management of System-on-Chips

Ahmed M. Y. Ibrahim and Hans G. Kerkhoff
Testable Design and Test of Integrated Systems Group (TDT),

Centre of Telematics and Information Technology (CTIT), University of Twente,
Enschede, the Netherlands

a.m.y.ibrahim@utwente.nl and h.g.kerkhoff@utwente.nl

Abstract—Electronic design automation tools used for Design-
For-Test infrastructure insertion have often relied on test stan-
dards (e.g. IEEE 1149.1, 1500 and 1687) as a structured method-
ology for IC test access, which consequently reduce the design
cost for DFT. The IEEE 1687 standard introduces an efficient
methodology for the off-chip access of the increasing number of
embedded instruments that are used for test, debug and other
purposes. A subset of these instruments is also used for Reliability
and functional Safety (RaS) management, while accessing them
via an on-chip manager. In this paper, we present a design
automation framework for the RaS management of System-on-
Chips using embedded instruments, by utilizing the IEEE 1687
standard as the key enabler of this automation. The framework
enables the on-chip execution of cross-layer RaS procedures
by the automatic generation of a dedicated design layer for
the procedures execution. The framework utilizes the IEEE
1687-defined PDL language and the pattern retargeting process
for enabling a programming model for developing the RaS
procedures with no regard to the instruments access procedures
and their physical locations, which consequently reduce the
development time of RaS procedures and enable their scalability
and reusability, and hence their automation.

Keywords—IEEE 1687, IJTAG, embedded instruments, de-
pendability, reliability, functional safety.

I. INTRODUCTION

Electronic Design Automation (EDA) tools have been a
main driver of the growth of the semiconductor industry.
They are often used for the insertion of pre-designed and
pre-verified IPs during the chip design phase. Design-For-Test
(DFT) infrastructure insertion is a popular example for such
automation. Recently, EDA vendors have introduced EDA
tools for the insertion of Reliability and functional Safety
(RaS) infrastructure in System-on-Chips (SoCs), in order to
reduce their design cost, while maintaining the high quality
RaS solution required for safety-critical applications [1] [2].

SoCs are being increasingly used in safety- and mission-
critical domains such as automotive, medical and space. Such
applications require a dependable operation along with a pro-
longed lifetime, as in the case of Advanced Driving Assistance
Systems (ADAS) [3]. Consequently, several dedicated soft-
ware solutions have been previously proposed for maintaining
the Reliability and functional Safety of SoCs using Embedded
Instruments (EIs). For instance, on-line logic Built-In-Self-Test
(LBIST) is a popular functional safety procedure that uses
BIST engine EIs. Table I lists examples of RaS procedures.

Table I: Examples of RaS procedures and the utilized EIs.

Procedure Utilized EIs1 Ref.

Dynamic Reliability T, V, PC, [4]Management (DRM) PLL, VR
Dynamic Thermal T,

[5]Management (PLL or VR
(DTM) or CGC)

Dynamic Power PC, IDD , PLL, VR [6]Management (DPM)
Guardband Management CPM, PLL, VR [7]

Online Built-In- CTW, BIST [8]Self-Test
Fault Management FD [9]

1T: Temperature sensor, V: Voltage monitor, PC: Performance Counter, PLL: Phase-Locked Loop, VR: Voltage Regulator,
CGC: Clock Gating Circuit, IDD : Current sensor, CPM: Critical Path Monitor, CTW: Core Test Wrapper, BIST:

Built-In-Self-Test engine, FD: Fault Detectors.

EIs are being increasingly integrated in modern SoCs for
testing, debugging and other functions. During the SoC life-
time, a subset of these EIs are utilized in RaS procedures
to provide online measurements of environmental and perfor-
mance parameters, perform online tests, and detect logical and
physical faults across the chip. EIs can be viewed as relatively
small IPs that are mostly heterogeneous and are arbitrarily
dispersed across the chip. Consequently, their on-chip access
mechanism becomes a design challenge.

Conventional on-chip access mechanisms to EIs range from
direct connections for a small number of EIs [10], reusing the
functional network [11] or using a dedicated EIs network [12].
With the increasing reliability issues in nano-technologies, it is
expected that RaS procedures will become more complex, and
utilize more heterogeneous EIs [13]. Consequently, accessing
and controlling the EIs in those procedures using the conven-
tional methods would become more complex to implement
and will hinder the scalability and reusability of the RaS
procedures, and subsequently, their automation.

On the other hand, and due to the rapid increase of the
on-chip EI count, the IEEE 1687 standard (IJTAG) [14] was
introduced to standardize their off-chip access which was
conventionally done in an ad hoc manner using the IEEE
1149.1 Test Access Port (TAP). The IEEE 1687 standard
enables the ease of EIs integration, portability and reuse. It
introduces a simple, yet scalable network infrastructure for
connecting heterogeneous EIs. As a result, reusing IJTAG
networks for the on-chip access of EIs during the execution

Paper ITC-Asia.3
978-1-7281-4823-6/19/$31.00 c©2019 European Union

INTERNATIONAL TEST CONFERENCE 1

Figure 1: (a) An IJTAG network with its corresponding H-Array and (b) the
resulting configuration for state [C2,C1] = [1,0].

of RaS procedures provides a structured, scalable and cost-
efficient access method.

In this paper, we present the Design Automation for
Reliability and functional Safety (DARS) framework. DARS
is a design automation framework that offers a cost-efficient
solution for implementing RaS software procedures in a SoC
incorporating a plurality of EIs. It enables implementing cross-
layer RaS procedures in a scalable and reusable manner with
no regard to the EIs access mechanism, access procedures and
their physical locations. This is achieved by utilizing both the
IEEE 1687 Procedural Description Language (PDL) in the RaS
procedures development, and the on-chip pattern retargeting
process during the runtime execution of the procedures. The
framework automatically generates a complete design layer
for RaS procedures processing that is decoupled from the
functional one. This includes the IJTAG network connecting
the EIs and dedicated processing units for RaS procedures.

The remainder of the paper is organized as follows: section
II discusses our prior work. In section III the framework is
introduced. Then in section IV the software flow of RaS
procedures is presented, while the hardware architecture of the
RaS processing unit is presented in section V. Experimental
results are presented and discussed in section VI, and finally
conclusions are presented in section VII.

II. PRIOR WORK

This section discusses our prior work on IEEE 1687 network
(IJTAG) structural modelling and the network architectural
modification to enable efficient EI interrupts management.

A. IEEE 1687 Network Structural Modelling

Performing on-chip network access operations requires
maintaining a comprehensive model of the IJTAG network.
Since the IEEE 1687 standard presents a large design space of
flexible network organizations, the model should be formally
derived according to the standard specifications.

IJTAG networks are based on reconfigurable scan [15].
State-of-the-art IJTAG network models are mostly graph-based

Figure 2: The Extended SIB.

which only capture the components connectivity, (e.g. [15]
and [16]). Since resolving the inter-registers structural and
temporal dependencies is required for network operations,
using graph-based models for modeling the network would
require run-time resolution of the dependencies which can be
a complex task for arbitrary networks. Therefore, we proposed
a linear network model that embeds both the connectivity as
well as the dependency information for a more efficient on-
chip access [17]. The model, referred to as the Hierarchical
Array (H-Array), can be formally constructed for arbitrary
IJTAG networks via the procedure detailed in [17]. Figure
1(a) shows an IJTAG network and its corresponding H-Array.

The H-Array consists of several nested dependency sections
identified by their header elements (indicated in Figure 1 by
the coloured section indicators to the right). A dependency sec-
tion represents a structural dependency between the enclosed
elements and the corresponding control bit (or a combinational
function of several ones) which is referenced in the header.

A dependency section is said to be active if the control bit
referenced in the header element has an updated value in the
network that corresponds to the activation condition of such
a section. For instance, the section indicated by the header
(H I11) is active when C1 = ‘1’. Traversing the H-Array
while skipping the inactive sections will result in traversing
a sequence of register elements that are equivalent to the
sequence of registers forming the active scan path. Figure
1(b) shows the network state [C2=1,C1=0] (top), and the
corresponding state of the H-Array (bottom) where the inactive
sections are made blank. It can be shown that traversing the
active array elements of type “scan register” in the H-Array
is equivalent to the active scan path from TDO to TDI [17].

B. Multi-Mode IEEE 1687 Networks

IJTAG networks are of a master-slave type, where the
network controller is the master and the EIs are slaves, and
hence are not originally specified to support delivering an
EI interrupt. Supporting interrupts delivery using hierarchical
IJTAG networks was presented in [18]. We enhanced this
asynchronous delivery mechanism to provide a scalable EIs
interrupts delivery and efficient localization using the hierar-
chical multi-mode IJTAG networks concept in [19].

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 2

Figure 3: DM insertion for sub-network control.

Hierarchical IJTAG networks are based on the Segment
Insertion Bit (SIB) component, where a SIB allows to include
and exclude an attached scan segment. Multi-mode networks
extend SIBs for including in-line bypassable interrupt flag reg-
isters (figure 2(a)). Figure 2(b) shows an example hierarchical
network and Figure 2(c) shows the resulting asynchronous
interrupt propagation network based on the modular Extended
SIB (ESIB) design.

The in-line flags are included or excluded according to the
network mode. Three modes were defined: A) normal access
(no flags in the scan path), B) diagnosis access (flags are
included) and C) on-chip localization (only the flags in the
interrupting instrument hierarchical access path are included).

III. USING IJTAG NETWORKS FOR A HIERARCHICAL AND
CROSS-LAYER EXECUTION OF RAS PROCEDURES

Modern technology nodes introduce increasing variations
and complex failure mechanisms, and consequently, the RaS
procedures are expected to become more processing intensive
[13]. As a result, decoupling the RaS processing from the
functional one becomes required to minimize its impact on
the functional processing. In addition, a decoupled RaS pro-
cessing from the functional one reduces its design overhead
by separating both design concerns, which will further enable
an optimized design space for the RaS processing [20].

Processing of the RaS procedures is performed using three
components: 1) processing unit(s) for the procedures execu-
tion, 2) a network that connects the large number of arbitrarily
dispersed EIs with the processing unit(s) and 3) Embedded
Instruments for measuring environmental and performance
parameters, performing online tests, or detecting faults.

A dedicated processing unit for executing RaS procedures,
referred to as the Dependability Manager (DM), is introduced
in this work. The DM can also access and control the IJTAG
network whenever there is no off-chip controller accessing it.
The DM is introduced in detail in section VI.

As a DFT infrastructure, an IJTAG network is inherently
decoupled from the functional processing. And since it is
standardized, an IJTAG network becomes a cost-efficient on-
chip access mechanism for the heterogeneous EIs found in
modern SoCs. The standard introduces a flexible network
infrastructure that can connect a large number of EIs while
optimizing the access to one EI, or a group thereof, using the
SIB network element. Since SIBs enable to include or exclude

Figure 4: Sense-Process-Adapt Control Loops and Management Policies for a
Cross-Layer Periodic RaS Procedure. Message transmissions over the IJTAG
network are shown in red.

parts of the network, they enable the scalable integration of
EIs.

Furthermore, since IJTAG networks can be organized in a
hierarchical manner, this can be leveraged to enable hierar-
chical RaS management. Hierarchical RaS management has
been shown to enhance the design scalability and reduce its
complexity [21]. This can be carried out by inserting a Cluster
DM to control a sub-network (Figure 3). This sub-network
connects the EIs in a certain cluster of the chip where its
reliability and functional safety is to be managed individually.

A System DM manages the reliability and functional safety
at the chip level by controlling the entire IJTAG network. Fur-
thermore, a software-based DM, referred to as the application
DM, provides the RaS management at the software level [20]
[22] . Cluster/System DMs along with the application DM
provide the hardware- and software-levels RaS management
using both physical sensors and actuators (i.e. EIs) and virtual
ones that are performed in software (e.g. software assertions
and roll-back recovery). Those sensors and actuators act at
different abstraction layers (e.g. circuit, logic, architecture, OS
and application) [22] [23], and consequently, enable a full-
stack coverage of the RaS procedure.

A typical RaS procedure has three main phases: 1) Sensing,
2) Processing and 3) Adaptation, referred to as the Sense-
Process-Adapt (SPA) loop, that is periodically performed
during the lifetime of the SoC. During the Sensing and the
Adaptation phases, the procedure accesses and controls the
sensors and actuators. While the sensor data is processed
and the required adaptations, if any, are determined at the
processing phase.

In order to enable a cross-layer RaS procedure implemen-
tation, the RaS procedure is implemented on the different
level DMs while exchanging status, control and configuration
messages, similar to what has been presented in [20].

Figure 4 shows the different level DMs message exchange
during the SPA loop of the RaS procedure that is executed
on each DM. This provides an execution model of the cross-
layer RaS procedures which is enabled by the use of IJTAG
networks for sensor/actuator access and control since physical

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 3

Table II: Examples of RaS instruments.

Category Instrument Ref

Environment Temperature sensors [28]

sensors and monitors Voltage noise monitor [29]
Current (IDDx) sensor [26]

Aging sensors NBTI degradation sensor [30]

and monitors Oxide degradation sensor [31]
Delay monitors [32]

Logic monitors Performance counters [33]
NoC monitors [34]

Built-In-Self-Test
Logic BIST [35]

Memory BIST [36]
IEEE 1500 CTW [37]

Error and fault Data path checkers [38]

detection NoC/Bus CRC checkers [27]
Memory ECC [39]

Adaptation

PLL control [40]
Voltage regulator [41]

Body biasing generator [42]
Power gating [43]
Clock gating [44]

sensor data and physical actuator controls are read/delivered
using the IJTAG network (shown as red arrows). In addition,
Cluster DMs and the System DM communicates also using the
IJTAG network. Finally, the System DM communicates with
the Application DM via the functional network [24].

IV. DARS: DESIGN AUTOMATION FOR RELIABILITY AND
FUNCTIONAL SAFETY

Design Automation for Reliability and functional Safety
(DARS) is an EDA framework that provides a cost-efficient
solution for the RaS management of complex SoCs that
incorporate a plurality of heterogeneous EIs, by reducing the
design time required for the RaS management. This is achieved
by utilizing the IEEE 1687 standard for the on-chip access of
EIs as the key enabler of the design automation.

The framework enables the automatic generation of a
functionally-decoupled design layer that acts as the execution
platform for RaS procedures, referred to as the RaS layer,
along with the compiled set of RaS procedures that will be
executed on the DMs. DARS realizes the execution model of
the RaS procedures that was discussed in section III. Using
DARS, a RaS procedure developer will be able to provide their
procedures in a scalable and reusable manner with respect to
the utilized EIs, their operating procedures and their physical
location on the chip.

While the execution of the hardware-level RaS procedures is
carried out on the RaS layer, software-level RaS procedures on
the other hand are assumed to be carried out via the application
DM. This is similar to what have been proposed in [20] and
[22], and hence, will not be further discussed in this paper.

A. The RaS Design Layer

A typical SoC comprises several functional IPs or modules
(e.g. CPUs, GPUs, Memories, Accelerators and others) along
with interconnects (e.g. NoC or Bus). Instruments might be
embedded at the module level, where they are responsible
for module-level monitoring or adaptation [25]. Alternatively,
instruments might be embedded at the system (chip) level [26]
or at the interconnect level [27]. Those EIs are increasingly

Figure 5: An IEEE 1687 based clustered design layer of a heterogeneous
MPSoC for executing reliability and functional safety applications.

heterogeneous, for example, Table II shows a non-exhaustive
list of EIs that can be used for RaS management.

The RaS layer comprises a set of EI clusters, where each
cluster includes the set of EIs embedded in a module/IP,
or a group thereof. All EIs inside a cluster are connected
via a cluster-level hierarchical multi-mode IJTAG network.
A cluster can either be a controlled or a non-controlled
one. A controlled cluster incorporates a Cluster-DM which
manages the reliability and functional safety of this cluster
independently, while the reliability and functional safety of
a non-controlled one is managed directly by the System-DM.
The System-DM also controls the EIs that are embedded at the
system level. Each cluster has an IEEE 1687 Client Interface
(CIF) [14] which allows for its integration into the system-
level IJATG network.

Figure 5(a) shows an example of the RaS design layer
that is generated for a NoC-based heterogeneous SoC. The
EIs in the SoC are clustered into six clusters, each with
its own multi-mode IJTAG sub-network, and with a CIF for
the integration with the system-level network. A System-DM
(SDM) is shown to be incorporated at the top level of the
network, and hence, can access and control all the EIs on

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 4

Figure 6: The DARS Framework.

the chip. Figure 5(b) shows the IJTAG organization inside a
controlled-cluster. A Cluster-DM (CDM) is incorporated in
order to manage the RaS of the module(s) represented by this
cluster while accessing and controlling the cluster-level EIs.

A DM is considered as an instrument itself. The System-DM
and the Cluster-DMs incorporate a set of Test Data Registers
(TDRs) in order to be able to communicate with the higher-
level controller. The TDRs of the System-DM are used for
synchronizing the control over the IJTAG network with any
off-chip controller (A tester or a debugger) that seeks to control
the IJTAG network via the TAP port [19]. While those of the
Cluster-DMs are used for communicating with the System-
DM for sub-network control synchronization, providing cluster
performance information or for receiving cluster settings as
explained in Section III.

Finally, the System-DM incorporates a functional net-
work interface which enables it to communicate with the
Application-DM. The architectural organization of the DM
will be later discussed in detail in section VI.

B. The DARS Framework Tool Flow

The DARS tool enables the automatic generation of the RaS
layer for a specific SoC according to the user’s configurations.
The SoC is assumed to incorporate a plurality of EIs, provided
either as IJTAG-wrapped EIs, or as raw EIs to be wrapped by
the tool. Figure 6 shows the DARS tool flow. For each EI in
the SoC, the user provides a corresponding ICL file describing
either the digital interface of a raw instrument, or the TDRs
organization of an IJTAG-wrapped EI. In addition, the user
provides a set of hardware configurations which determines
the organization of the generated RaS layer, including the EIs
clusters, if a cluster is a controlled one, the configuration of
the DMs and the IJTAG network generator configurations.

Furthermore, since the operating procedures of the EIs can
be documented in the IEEE 1687-defined PDL language, and
given that the EIs operating procedures are already becom-
ing complex due to the increasing complexity of the EIs
themselves, therefore, using the PDLs in the development of

the RaS procedures will facilitate their scalable and reusable
implementation. Consequently, for each EI, the user is to
provide a corresponding PDL file documenting the operating
procedures for this EI.

The RaS procedures that are developed in a high-level pro-
gramming language (e.g. C/C++) are provided to be compiled
and linked with the compiled PDLs to produce the machine
code (.bin) which will be loaded to the different DMs.

Given the provided hardware configuration, the tool gen-
erates the hierarchical multi-mode IJTAG network with the
specified clusterization, along with the SDM and CDMs. This
is provided as a set of RTL-level HDL files, where a system
integrator is responsible for integrating this design into the
overall chip RTL design. Finally, the tool also generates the
IEEE 1687 Instrument Connectivity Language (ICL) descrip-
tion of the generated network. This will further be used by
the off-chip network controllers that attempt to access IJTAG
network for testing or debugging purposes.

The tool comprises four main modules:
1) The network generator (section IV-C)
2) The H-Array generator (section IV-D)
3) The hardware generator (section IV-E)
4) The software cross-compilation module (section V)

C. Network Generation

The network generator generates the network hierarchy
according to both the user’s clusterization and the hierarchy
optimization strategy. The user is responsible for defining
the controlled EI clusters which represent the modules that
will have their reliability and functional safety managed in-
dependently via a Cluster-DM. A non-controlled EI cluster
represent the group of EIs in a module, or a group thereof,
that are in a close spatial proximity, and are therefore required
to be grouped together in the same sub-network in order
to optimize the routing of the scan signals. With the user’s
clusterization, the tool automatically generates the system-
level network which connects the CIFs of the defined clusters
with the System-DM and the IEEE 1149.1 TAP controller
using an organization of SIBs as shown in Figure 5(a).

The network inside a cluster is further organized by dividing
the EIs inside a cluster into two categories: 1) Monitoring (e.g.
Enviroment, Aging, etc.), Self-test and Adaptation EIs and
2) Interrupting EIs (e.g. Fault detectors). Two sub-networks
are generated for each EI category (Figure 5(b)), each with a
different hierarchy optimization strategy.

For the Monitoring, Self-test and Adaptation EIs, the hierar-
chical organization is performed by first grouping instruments
with a close spatial proximity together. This is done for opti-
mizing the routing overhead of the scan signals. Alternatively,
instruments that are normally accessed in a close temporal
proximity are grouped together in order to reduce the network
reconfiguration time. The resulting grouped instruments are
further organized in an optimized hierarchy according to their
access schedule. For example, in [45] a methodology was
presented for optimally organizing the SIB hierarchy according
to the access schedules of instruments, where instruments with

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 5

Figure 7: Automatic H-Array Generation [17].

a stricter latency requirement are placed higher in the hierarchy
to reduce their access time.

For the Interrupting EIs, a separate hierarchy is generated
with the goal of minimizing the interrupt localization time.
Examples of such hierarchy optimization methodology has
been shown in [19] and [46].

Finally, the network generator also defines TDRs for the raw
instruments ports as defined in their ICL file. Subsequently, the
corresponding network and wrapped EI ICL files are generated
in order to be used by the off-chip controllers.

D. H-Array Generation

An H-Array generator generates the corresponding H-
Arrays for the different cluster-level sub-networks to be in-
corporated in the corresponding Cluster-DMs and the H-Array
of the entire network to be incorporated in the System-DM.
Figure 7 shows the flow of the automatic H-Array generation.
The resulting network hierarchy from the network generator
is provided to the H-Array generator which is subsequently
converted into a graph representation. The structural dependen-
cies between the network components are further extracted and
finally the H-Array is generated. The generation methodology
has been described in detail in [17].

The H-Array generator also generates mapping files which
maps the TDR entries in the H-Array to their ICL port
identifiers. Those mapping files are used during the software
compilation, in order to link the PDL references to the EIs
ports with the corresponding TDR index in the H-Array. Figure
8(c) shows an example of the mapping file for the TDRs in
an instrument with an ICL module identifier “Temp Sensor”.
Figure 8(a) shows the TDRs organization of this EI, while
figure 8(b) shows the corresponding H-Array section. For
example, using the mapping file, the linker in the software
cross-compiler would link references to the enable “en” port
in the PDL to index (i + 11) in the H-Array.

E. Hardware Generation

The Hardware Generator module generates the RTL-level
HDL files for the RaS layer. It maintains a library of HDL
modules for the IJTAG network elements (SIBs, TDRs, Scan-
Muxs and ESIBs), in addition to a highly parametrized HDL
module of the DM. It subsequently uses the network hierarchy
information generated by the network generator and the set of

Figure 8: (a) A wrapped temperature sensor and (b) its corresponding H-Array
section and (c) the linker mapping file.

hardware configurations provided by the user to generate the
RaS layer design files using its HDL library. In addition, for
each DM, two Read Only Memories (ROMs) are incorporated,
one for the H-Array and the other for an Interrupt Vector
Table (IVT) as will be discussed in section VI. The hardware
generator provides the contents of the different DMs ROMs
among the generated design files to be used by a memory
generator later during design integration.

V. CROSS-COMPILATION OF RAS PROCEDURES ALONG
WITH INSTRUMENT PDLS

The software compilation module in DARS is responsible
for the cross-compilation of the high-level Reliability and
functional Safety procedures and the EI PDL operating proce-
dures, and subsequently linking both to produce the machine
code that will be executed on the DMs.

A RaS procedure could either be periodic or interrupt-
driven, where the interrupt source is usually an EI, and is
handled by a specific Interrupt Service Routine (ISR). For ex-
ample, the periodic estimation and profiling of the reliabilities
of the processing modules in [4] is a periodic procedure, while
for instance in fault management [9], the procedure is activated
only in case a fault is detected by one of the instruments, and
is therefore an interrupt-driven procedure.

DARS introduces a programming model for developing
the RaS procedures, which allows them to be provided as a
library of reusable procedures. In this model, periodic and
event-triggered RaS procedures are written in a high-level
programming language (e.g. C/C++) in a generic manner, and

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 6

Figure 9: Integration of PDL in high-level RaS procedure.

with no regard to the instrument access procedures or the
instruments location in the IJTAG network. The procedures
include instrument-access function calls which are linked to
the PDL procedures (iProc). Figure 9 (a) shows an example
of a high-level RaS procedure including calls to PDLs, and in
Figure 9 (b) an example is shown of a simple PDL-0 procedure
to operate a temperature sensor.

Figure 10 shows the compilation flow of the RaS pro-
cedures. Both the periodic procedures and the ISRs are
compiled using a high-level language cross-compiler for the
target processing unit. References to iProcs are left during the
compilation to be linked to the compiled PDLs. In addition,
the references to the EIs registers that are included in the PDL
access commands (iWrite, iRead and iScan) are linked to their
corresponding index in the network H-Array (as illustrated in
Figure 8). The interrupting EI index in the H-Array is provided
as a directive to the compiler in the beginning of the ISR,
such that the ISR locations in the instruction memory can be
generated and provided as an Interrupt Vector Table (IVT).

PDL is an extension of the TCL scripting language [14], and
is consequently not intended for embedded applications, and is
rather executed using interpreters. As a result, a methodology
for porting the PDL procedures to an embedded processing
environment has been developed. Embedded porting of TCL
commands can be performed in a similar manner as in the
embedded C language. Furthermore, a categorization of the 24
different PDL commands [14] into four different categories is
being proposed: 1) non relevant commands (e.g. iNote), 2) rel-
evant to the compiler but not to the embedded processing (e.g.
iProcsForModule), 3) compiled to native processor instructions
(e.g. iGetMiscompares) and 4) compiled to retargeting engine
instructions (e.g. iWrite).

VI. ARCHITECTURE OF THE DEPENDABILITY MANAGER

A dedicated processing unit for the RaS procedures (i.e.
the DM) is being proposed by the DARS framework, in order
to achieve a functionally-decoupled RaS processing. The DM
executes the RaS procedures and performs the network-access
operations (e.g. retargeting and interrupts localization).

Figure 10: Cross-compilation flow of RaS procedures.

A. Architectural Overview

The DM (Figure 11) consists of a central processor unit (in-
cluding instruction and data memories), a set of co-processors
for network access and a set of peripherals and memories.
The processor unit is considered as an Application Specific
Instruction-set Processor (ASIP) dedicated for RaS procedures
[47]. The Instruction memory can either be a ROM, pre-loaded
at design time with the compiled periodic RaS procedures and
the ISRs, or a cache memory that is loaded at run-time with the
RaS procedures using a cache controller. The cache controller
is controlled via the DM’s TDRs or via the functional network,
such that the cache contents are loaded at runtime by the SDM
or by the application DM respectively.

The DM incorporates three co-processors for network ac-
cess: 1) a retargeting engine, 2) an Interrupt Management Unit
(IMU) and 3) a reconfigurable Built-In-Self-Test (BIST) en-
gine. An IEEE 1149.1 controller that implements the Capture-
Shift-Update (CSU) cycle [14] is included in order to generate
the IJTAG control signals with the correct timings according
to the standard. The DM accesses the network via the IJTAG
host interface only if no external controller is connected [19].
Since the processor unit schedules the operations of the co-
processors, it also controls which co-processor can access the
network via the 1149.1 controller at a certain time.

The BIST engine can perform core-based testing on IEEE
1500 wrapped cores. In this case the wrappers are considered
to be EIs accessed by the retargeting engine, where the written
data to the boundary registers and scan chains (i.e. core
patterns) are generated by the BIST engine [48].

A ROM for the H-Array is included and accessed by both
the retargeting engine and the IMU. Another ROM is also
included for the IVT, which implements a mapping between
the H-Array index of the localized interrupting EI, and the
location of the corresponding ISR in the instruction memory.

In addition, a timers unit is included in order to schedule
the periodic procedures by issuing an internal interrupt to
the processor in the case a procedure is due. Then using the

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 7

Figure 11: Architecture of the Dependability Manager.

IVT, the location of the periodic procedure in the instruction
memory can be located.

Finally, the DM has two communications ports. The first
is the IJTAG client interface that is connected to a set of
TDRs that are accessed by an off-chip IJTAG controller for
coordinating the network control and for quick localization
[19] in the case of the SDM. In addition, the off-chip controller
could reuse the BIST engine for e.g. production testing by
directly controlling the BIST instruments via the TDRs [49].
Alternatively, in the case of the CDMs, the TDRs are accessed
by the SDM to provide cluster settings or read the cluster
performance. The second communication port is an interface
for the functional network which allows for performing cross-
layer RaS procedures as explained earlier.

B. The Retargeting Engine

In order to reuse the PDLs in different networks, the IEEE
1687 standard defines a process referred to as retargeting
which translates the PDL access commands that are written
at the EI-level, to one or more network-level scan vectors.
Retargeting can be performed offline; then the resulting vectors
are shifted in runtime, however this is only suitable for static
procedures in PDL-0 [14]. For dynamic EI procedures where
their control flow is dependent on the EIs runtime data (i.e.
PDL-1), dynamic retargeting should be performed. Therefore,
DARS supports dynamic retargeting for the on-chip execution
of the RaS procedures using a dedicated retargeting engine.

The retargeting engine co-processor translates the EI access
commands (resulting from the compilation of iRead, iWrite
and iScan), to the scan vectors required to configure the
network for accessing the EIs. Consequently, the retargeting
engine allows a generic implementation of the RaS procedures
regardless of the network topology or the locations of the EIs.
It receives a set of register IDs (corresponding to their indices
in the H-Array) from the processor unit to be concurrently
accessed, with the write values for the write instructions. It
subsequently generates the required scan vectors, and then
provides the read values for the read instructions.

The retargeting engine implements a formally devised dy-
namic retargeting methodology which uses the H-Array as a

Figure 12: Hierarchy-aware interrupt localization for I2.

comprehensive network model. Such methodology is referred
to as structured retargeting [50], [51]. Structured retargeting is
a light-weight yet comprehensive dynamic retargeting method
that can be efficiently implemented on-chip.

C. The Interrupt Management Unit

The IMU is responsible for handling the received asyn-
chronous interrupts from the multi-mode IJTAG network. An
interrupt could either be preemptive (PI) (e.g. critical faults)
or non-preemptive (NPI) (e.g. instruments operation status)
[19]. In case of a PI, the processor unit stops its operation
and saves its registers (including the program counter) to an
internal set of temporary registers; then it instructs the IMU
to perform a hierarchy-aware localization using the H-Array.
When the interrupt source is localized, the corresponding ISR
address in the instruction memory is fetched from the IVT,
and the processing unit could start immediately servicing the
interrupt. In case of an NPI, the processing unit is allowed
to finish the on-going periodic procedure before servicing the
interrupt.

In order to be able to perform localization on multi-mode
networks, a dedicated array element type for the Extended
SIBs (ESIB) is introduced to the H-Array. Figure 12(a) shows
the corresponding H-Array section of the ESIB that is inferred
during normal network access.

The hierarchy-aware localization is performed by first set-
ting the network to the localization mode by asserting a
dedicated control signal (Loc). Asserting the ‘Loc’ signal
immediately configures a scan path between the TDI and TDO
ports of the host interface, that is formed of only the flag
register in the ESIBs located on the minimum hierarchical
access path to the interrupting EI [19]. The IMU applies one
CSU cycle using the IEEE 1149.1 controller. During the shift
cycle, it traverses the H-Array according to the shifted-out bits.

The traversal starts with the first ESIB entry in the H-Array.
If a ‘0’ is received, the traversal skips the corresponding ESIB
section, while if a ‘1’ is received, the traversal steps inside the
ESIB section. This process is repeated until a TDR entry is
encountered while stepping into a section. The corresponding
H-Array index of this TDR becomes the ID of the interrupt
in the IVT. Figure 12(b) shows the corresponding H-Array to
the network in Figure 2(b) and the localization steps for the
interrupting EI “I2” shown to the right.

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 8

VII. EXPERIMENTAL SETUP AND RESULTS

An example realization of the DM and its supporting cross-
compilation flow has been developed. We have chosen a 32-
bit MIPS processor as the central processor unit in the DM
(Figure 11), since MIPS is a simple processor with a rich set of
software tools. MIPS defines a set of co-processor instructions
that allow data movements to/from the co-processors. The
MIPS co-processor instructions were extended to implement
specialized ones for the retargeting engine. The retargeting
engine architecture has been described in [17] and then mod-
ified to implement structured retargeting [51]. A wrapper was
further designed for integrating it as a MIPS co-processor.

A PDL cross-compiler was developed for MIPS using the
ANTLR tool [52]. The grammar of both the PDL commands
and a subset of the main TCL commands was developed and
used to construct the cross-compiler. The compiler follows the
PDL embedded porting guidelines described in section V.

We used this setup to evaluate the efficiency and scalability
of the proposed IJTAG controller for the execution of RaS
procedures in terms of the overall registers access time (OAT).
For dynamic retargeting the following holds: OAT = retarget-
ing time + network access time.

A set of balanced rooted tree networks have been considered
for this evaluation, with the TDRs of the EIs at the leaves. The
Binary Trees (BT) are considered as an example of a network
with deep dependencies, and Quinary Trees (QT) (with five
children per SIB) for a more balanced SIBs to TDRs ratio.

For each network, the corresponding H-Array was gener-
ated. A PDL file has been developed with two iApply groups
of an access command (iRead) to a TDR. The first corresponds
to an access after Reset (Rst), and the second corresponds
to a repeated access after network configuration (Cnf). The
compiled PDL is loaded into the instruction memory of the
DM, and using RTL-level simulation, the OAT for this PDL
is reported.

Table III shows the results for BT and QT trees connecting
an increasing number of TDRs. The number of Hierarchical
Levels (HL) and number of SIBs for each network are shown
in columns 2, 3 and 4, 5 respectively. Columns 6 and 7 show
the size of the generated H-Arrays, while columns 8-11 report
the OAT for each tree type and for a Rst and Cnf accesses.

The OAT results show that, while the number of TDRs was
multiplied by 40 (i.e. from 25 to 1000), the OAT was only
multiplied by 2.7 for a BT with Rst access and 1.63 for Cnf
access. For QT it was 3.2 times for Rst and 1.9 for Cnf. This
indicates that using IJTAG for the on-chip access to EIs as
proposed by the DARS framework, the OAT for an EI could
be efficiently scaled for large number of EIs which enables
the scalability and reusability of the RaS procedures.

Furthermore, in order to evaluate the scalability of the
hierarchy-aware localization methodology, a set of balanced
multi-mode networks were developed in HDL, with their
hierarchy optimized for achieving a minimum hierarchical
access path to the instruments, given a certain number of inter-
rupting EIs. For each network, the hierarchy-aware localization

Figure 13: Localization time for balanced SIB tree networks.

procedure discussed in section VI-C was performed for an
interrupting EI, and the localization time was reported. Figure
13 shows the resulting localization times. It can be shown that
while the number of interrupting EIs was multiplied by 40,
the localization time was multiplied by 2.9. This again shows
the scalability of the localization methodology offered by the
DARS framework in terms of interrupts localization time.

VIII. CONCLUSIONS

Design automation has been a major driver of the semi-
conductor industry. By providing reusable, pre-designed and
pre-verified designs, SoC design cost can be reduced signif-
icantly. Reliability and functional safety are becoming major
design concerns for SoCs utilized in mission- and safety-
critical applications. Software procedures for managing the
reliability and functional safety of SoCs are expected to
become increasingly complex and utilize a growing number
of heterogeneous EIs due to the increased SoC complexities
and the decreased reliability of nanotechnologies.

In this work, an EDA framework for reducing the design
cost of reliability and functional safety management has been
introduced. This is achieved by generating a design layer
dedicated for the RaS processing along with the compilation
flow of the RaS procedures which enables their development
in a generic manner. The framework utilizes the IEEE 1687
standard for the execution of the RaS procedures as a scalable,
reusable and cost-efficient solution. PDLs would be an inte-
grated part of the procedures to enable their implementation
in a reusable manner with no regard to the EIs location and
operating procedures. A dedicated processing unit has been
presented and validated along with its software compilation
tool flow. The proposed EDA solution was shown to enable a
scalable and reusable implementation of RaS procedures.

IX. ACKNOWLEDGEMENT

This research was carried out within the EU-PENTA project
“HADES”, financed by the European Commission (EC) and
the Netherlands Enterprise Agency (RVO). Also the authors
would like to thank all the students who have contributed to the
development of the DARS framework, namely, Fadhli Zakiy,
Stephen Geerlings and Florian Mansvelder.

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 9

Table III: Evaluation Results

TDRs
HL # SIBs H-Array Size (DxW bits) OAT

BT QT BT QT BT QT BT QT
Rst Cnf Rst Cnf

25 6 3 49 31 123x11 87x11 169 48 103 48
50 7 4 99 63 248x12 176x12 216 54 165 63
100 8 4 199 125 498x13 350x13 269 60 165 63
200 9 5 399 250 998x14 700x14 328 66 242 78
500 10 5 999 625 2498x16 1750x15 393 72 242 78

1000 11 6 1999 1250 4998x17 3500x16 464 78 334 93

REFERENCES

[1] “Mentor: Tessent MissionMode” [Online], Available: https://go.mentor.com/4SQCg
[2] “Synopsys: DesignWare STAR Hierarchical System” [online], Available:

https://www.synopsys.com/dw/ipdir.php?ds=star-hierarchical-test
[3] U. Backhausen, et al, “Robustness in automotive electronics: An industrial overview

of major concerns,” International Symposium on On-Line Testing and Robust
System Design (IOLTS), pp. 157-162, 2017.

[4] C. Zhuo, D. Sylvester and D. Blaauw, “Process variation and temperature-aware
reliability management,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 580-585, 2010.

[5] K. Skadron, et al, “Temperature-aware microarchitecture,” Int’l Symposium on
Computer Architecture (ISCA), pp. 2-13, 2003.

[6] Canturk Isci, et al,“An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget,” Int’l Symposium on
Microarchitecture (MICRO), pp. 347-358, 2006.

[7] C. R. Lefurgy, et al, “Active Guardband Management in Power7+ to Save Energy
and Maintain Reliability,” IEEE Micro, vol. 33, no. 4, pp. 35-45, 2013.

[8] H. Inoue, Y. Li and S. Mitra, ”VAST: Virtualization-Assisted Concurrent Au-
tonomous Self-Test,” Int’l Test Conf. (ITC), pp. 1-10, 2008.

[9] K. Shibin, S. Devadze and A. Jutman, “On-line fault classification and handling
in IEEE1687 based fault management system for complex SoCs,” Latin-American
Test Symposium (LATS), 2016, pp. 69-74.

[10] M. Saen, et al, “Embedded SoC Resource Manager to Control Temperature and
Data Bandwidth,” IEEE International Solid-State Circuits Conference. Digest of
Technical Papers, 2007, pp. 296-604.

[11] S. Velusamy, et al, “Monitoring temperature in FPGA based SoCs,” International
Conference on Computer Design (ICCD), pp. 634-637, 2005.

[12] S. Madduri, et al, “A monitor interconnect and support subsystem for multicore
processors,” Design, Automation & Test in Europe (DATE), pp. 761-766, 2009.

[13] J. Henkel, et al, “Reliable on-chip systems in the nano-era: Lessons learnt and
future trends,” Design Automation Conference (DAC), pp. 1-10, 2013.

[14] IEEE Standard for Access and Control of Instrumentation Embedded within a
Semiconductor Device, IEEE Std 1687-2014, 2014.

[15] R. Baranowski, M. A. Kochte and H. J. Wunderlich, “Scan pattern retargeting and
merging with reduced access time,” IEEE European Test Symposium (ETS), pp.
1-7, 2013.

[16] F. Ghani Zadegan, et al, “Design, Verification and Application of IEEE 1687,”
Asian Test Symposium (ATS), pp.93-100, 2014.

[17] A. Ibrahim and H. G. Kerkhoff, “Analysis and design of an on-chip retargeting
engine for IEEE 1687 networks,” European Test Symposium (ETS), pp. 1-6, 2016.

[18] A. Jutman, S. Devadze and K. Shibin, “Effective Scalable IEEE 1687 Instrumen-
tation Network for Fault Management,” IEEE Design & Test, vol. 30, no. 5, pp.
26-35, Oct. 2013.

[19] A. Ibrahim and H. G. Kerkhoff, “Efficient utilization of hierarchical IJTAG net-
works for interrupts management,” Int’l Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pp. 97-102, 2016.

[20] Liang Guang, et al, “Hierarchical agent monitoring design approach towards
self-aware parallel systems-on-chip,” ACM Transactions on Embedded Computing
Systems (TECS) , vol. 9, no. 3, pp. 124, Feb 2010.

[21] L. Guang, et al,“Interconnection alternatives for hierarchical monitoring communi-
cation in parallel socs,” Microprocessors and Microsystems, vol 34(5), pp. 118-128,
2010.

[22] N. Dutt, A. Jantsch, and S. Sarma, “Toward smart embedded systems: A self-aware
system-on-chip (SoC) perspective,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 15, no. 2, p. 22, 2016.

[23] E. Cheng, et al, “CLEAR: Cross-layer exploration for architecting resilience:
Combining hardware and software techniques to tolerate soft errors in processor
cores,” Design Automation Conference (DAC), pp. 1-6, 2016.

[24] A. Ibrahim and H. G. Kerkhoff, “Cost-Efficient Dependability Management Frame-
work for Self-aware System-on-Chips based on IEEE 1687,” Int’l Symposium on
On-Line Testing and Robust System Design (IOLTS), pp. 1-2, 2017.

[25] M. Floyd, et al, “Introducing the Adaptive Energy Management Features of the
Power7 Chip,” IEEE Micro, vol. 31, no. 2, pp. 60-75, March-April 2011.

[26] J. Liobe and M. Margala, “Novel Process and Temperature-Stable, IDD Sensor
for the BIST Design of Embedded Digital, Analog, and Mixed-Signal Circuits,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 9, pp.
1900-1915, Sept. 2007.

[27] D. Fick, et al, “Vicis: A reliable network for unreliable silicon,” ACM/IEEE Design
Automation Conference, pp. 812-817, 2009.

[28] P. Chen, et al, “A time-to-digital-converter-based CMOS smart temperature sensor”.
IEEE Journal of Solid-State Circuits, volume 40(8), pp.1642-1648, Aug 2005.

[29] H. Aoki, M. Ikeda, and K. Asada, “On-chip voltage noise monitor for measuring
voltage bounce in power supply lines using a digital tester”. Int’l Conf. on
Microelectronic Test Structures, pp. 112-117, 2000.

[30] A. C. Cabe, et al, “Small embeddable NBTI sensors (SENS) for tracking on-chip
performance decay,” Int’l Symposium on Quality Electronic Design, pp. 1-6, March
2009.

[31] E. Karl, et al, “Compact In-Situ Sensors for Monitoring Negative-Bias-
Temperature-Instability Effect and Oxide Degradation”. IEEE Int’l Solid-State
Circuits Conference - Digest of Technical Papers, pp. 410-623, Feb 2008.

[32] A. Drake, et al, “A Distributed Critical-Path Timing Monitor for a 65nm High-
Performance Microprocessor”. IEEE Int’l Solid-State Circuits Conference - Digest
of Technical Papers, pp. 398-399, Feb 2007.

[33] V. Salapura, et al, “Next-Generation Performance Counters: Towards Monitoring
Over Thousand Concurrent Events”. IEEE Int’l Symposium on Performance Anal-
ysis of Systems and software (ISPASS), pp.139-146, April 2008.

[34] M. A. A. Faruque, T. Ebi, and J. Henkel, “AdNoC: Runtime Adaptive Network-on-
Chip Architecture”. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 20(2), pp. 257-269, Feb 2012.

[35] S. Hellebrand, et al, “Built-in test for circuits with scan based on reseeding of
multiple-polynomial linear feedback shift registers”. IEEE Trans. on Computers,
volume 44(2), pp. 223-233, Feb 1995.

[36] B. Querbach, et al, “Architecture of a Reusable BIST Engine for Detection and
Auto-correction of Memory Failures and for IO Debug, Validation, Link Training,
and Power Optimization on 14-nm SoC”. IEEE Design Test, volume 33(1), pp.
59-67, Feb 2016.

[37] “IEEE Standard Testability Method for Embedded Core-based Integrated Circuits”.
IEEE Std 1500-2005, pp. 1-136, Aug 2005.

[38] T. M. Austin, “DIVA: a reliable substrate for deep submicron microarchitecture
design,” ACM/IEEE International Symposium on Microarchitecture, pp. 196-207,
1999.

[39] T. Tanzawa, et al, “A compact on-chip ECC for low cost flash memories,” IEEE
Journal of Solid-State Circuits, vol. 32(5), pp. 662-669, May 1997.

[40] T. Watanabe and S. Yamauchi, “An all-digital PLL for frequency multiplication by
4 to 1022 with seven-cycle lock time,” IEEE Journal of Solid-State Circuits, vol
38(2), pp. 198-204, Feb 2003.

[41] P. C. Wu, et al, “PVT-aware digital controlled voltage regulator design for ultra-
low-power (ULP) DVFS systems”. IEEE Int’l System-on-Chip Conference (SOCC),
pp. 136-139, Sept 2014.

[42] D. Jacquet, et al, “A 3 GHz Dual Core Processor ARM Cortex TM -A9 in 28
nm UTBB FDSOI CMOS With Ultra-Wide Voltage Range and Energy Efficiency
Optimization”. IEEE Journal of Solid-State Circuits, volume 49(4), pp. 812-826,
April 2014.

[43] M. B. Henry and L. Nazhandali, “NEMS-Based Functional Unit Power-Gating:
Design, Analysis, and Optimization”. IEEE Transactions on Circuits and Systems
I: Regular Papers, volume 60(2), pp. 290-302, Feb 2013.

[44] K.-S. Min, et al, “Leakage-suppressed clock-gating circuit with Zigzag Super Cut-
off CMOS (ZSCCMOS) for leakage-dominant sub-70-nm and sub-1-V-V/sub DD/
LSIs”. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume
14(4), pp. 430-435, April 2006.

[45] F. G. Zadegan, et al, “Design automation for IEEE P1687,” Design, Automation
& Test in Europe, pp. 1-6, 2011.

[46] F. G. Zadegan, D. Nikolov and E. Larsson, “A self-reconfiguring IEEE 1687
network for fault monitoring,” European Test Symposium (ETS), pp. 1-6, 2016.

[47] A. Nohl, F. Schirrmeister and D. Taussig, “Application specific processor design:
Architectures, design methods and tools,” Int’l Conference on Computer-Aided
Design (ICCAD), pp. 349-352, 2010.

[48] A. Ibrahim and H. G. Kerkhoff, “Towards an Automated and Reusable In-Field
Self-Test Solution for MPSoCs,” Int’l Conference on Microelectronics (ICM), pp.
1-6, 2016.

[49] A. Ibrahim and H.G. Kerkhoff, “IJTAG integration of complex digital embedded
instruments,” Int’l Design & Test Symposium (IDT), pp.18-23, 2014.

[50] A. Ibrahim and H. G. Kerkhoff, “Structured scan patterns retargeting for dynamic
instruments access,” IEEE VLSI Test Symposium (VTS), pp. 1-6, 2017.

[51] A. M. Y. Ibrahim, et al, “Efficient structured scan patterns retargeting for hierar-
chical IEEE 1687 networks,” IEEE VLSI Test Symposium (VTS), pp. 1-6, 2019.

[52] ANTLR, “ANother Tool for Language Recognition”, [Online]. Available:
www.antlr.org/

Paper ITC-Asia.3 INTERNATIONAL TEST CONFERENCE 10

