
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Reusing IEEE 1687-Compatible Instruments and Sub-Networks over a System Bus

Ghani Zadegan, Farrokh; Zhang, Zilin; Peterse ́n, Kim; Larsson, Erik

Published in:
Proceedings - International Test Conference

DOI:
10.1109/ITC50671.2022.00030

2022

Document Version:
Version created as part of publication process; publisher's layout; not normally made publicly available

Link to publication

Citation for published version (APA):
Ghani Zadegan, F., Zhang, Z., Peterse ́n, K., & Larsson, E. (2022). Reusing IEEE 1687-Compatible Instruments
and Sub-Networks over a System Bus. In Proceedings - International Test Conference (pp. 219-228). IEEE -
Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ITC50671.2022.00030

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 02. May. 2024

https://doi.org/10.1109/ITC50671.2022.00030
https://portal.research.lu.se/en/publications/036b6286-fc41-4717-8b67-5fe01f24237a
https://doi.org/10.1109/ITC50671.2022.00030


Reusing IEEE 1687-Compatible Instruments and
Sub-Networks over a System Bus

Farrokh Ghani Zadegan ∗, Zilin Zhang∗, Kim Petersén∗, and Erik Larsson †
∗Ericsson, Sweden

†Lund University, Lund, Sweden
Email: erik.larsson@eit.lth.se

Abstract—Accessing embedded test and monitoring circuitry
(the so-called embedded instruments) in in-field products can
reduce maintenance and diagnostics costs. Performing such
access can be facilitated when done over an internal system
bus, due to that it might be faster and less cumbersome to
reach a system processor (on an in-field product) over a network
interface, compared with the effort and speed of gaining access to
a test interface on the same product. Enabling such access might
require that, at the component level, the embedded instruments
in a system-on-chip (SoC) become accessible both from a chip
interface and from an on-chip processor over a system bus.
Although this reuse of embedded instruments can be achieved
by already existing standards, such as IEEE 1687, the system
bus might become a scalability bottleneck when the number of
instruments that are to be reused increases. In this paper, we
propose two solutions that address the scalability in this type
of reuse while maintaining compatibility with IEEE 1687 tools.
We also discuss the trade-offs associated with each approach and
present timing analyses that by considering system parameters
such as clock rates determine how the correct operation can
be guaranteed. To validate the proposed solutions, we have
implemented them on an FPGA using AXI as system bus, and
have used standard IEEE 1687 tools to access the instruments. We
present some details of the implementation to highlight practical
issues such as clock domain crossing, as well as how the presented
timing analyses can be used to adjust design parameters.

Index Terms—IEEE 1687, embedded instruments, reuse

I. INTRODUCTION

Modern complex system-on-chips (SoCs) pose diverse chal-
lenges throughout their entire life-cycle, from system design
and integration, through prototyping (initial bring-up and de-
bug) and manufacturing tests, to in-field health-management
and repair diagnostics on returned products. To address some
of these challenges, it has become common to embed addi-
tional circuitry in the SoCs to help in each of the above-
mentioned life-cycle stages, such as self-tests and debug cir-
cuitry. Over the years, the increase in number and complexity
of these added circuitry (the so-called on-chip instruments)
and the desire to reuse them in different products and life-
cycle phases has led to standardized interfaces and description
languages such as the specifications in IEEE 1149.1 [1]
(JTAG) and its successor 1149.1-2013 [2], IEEE 1500 [3],
IEEE 1687 [4], etc.

One aspect in the reuse of embedded instruments is to be
able to access them both from an on-chip processor and exter-
nally through a chip interface. This “sharing” of instruments

This work is partly funded by Vinnova.

can, for example, enable an on-chip processor to perform in-
field self-test and fault-isolation by using the same instruments
used during manufacturing test or those used for diagnostics.
Ideally, this sharing should be done in such a way that the
benefits from existing standards can still be reaped. Addition-
ally, it would be beneficial to reuse an existing system bus
for accessing the shared instruments, to avoid adding another
port to the processor and possibly another bus to the system.
The reuse of system buses (functional interconnects) for non-
mission mode purposes have been discussed before [5]–[8].

In this work, we address the following sharing problem. For
standardized access to shared instruments, we consider IEEE
1687 networks, mainly due to that IEEE 1687 is purposed for
access and control of embedded instruments and due to that it
is being increasingly adopted by the industry. More precisely,
we consider instrument sharing in an IEEE 1687 network with
an on-chip processor such that from the perspective of external
tools the network is still seen compliant with IEEE 1687.

This paper is organized as follows. In Section II, we
present some basics of IEEE 1687. Section III outlines our
proposed hardware solutions for accessing shared instruments,
and presents advantages and disadvantages of each solution.
In Section IV, we present timing analyses for the proposed
hardware solutions that can be used to determine how the
correct operation can be guaranteed by considering system
parameters such as clock rates. In Section V, we present some
details from our validation experiments. Finally, Section VI
presents concluding remarks and future directions for the
presented work.

II. BACKGROUND AND PRIOR WORK

The basic idea in IEEE 1687 can be summarized as follows:

• let instrument vendors/providers describe procedures for
operating each instrument at its terminals by using stan-
dard read, write, wait, etc. commands,

• let the system integrators (1) use a standard description
language to describe the network that connects instru-
ments to a chip-level interface, as well as (2) describe at
the chip-level which instrument procedures (and at which
order) should be run, and

• have an algorithm generate the chip-level commands (or
bit-vectors) for configuring the network and carrying out
the described instrument operations.
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Fig. 1. An example IEEE 1687 network

The above points are discussed in more details in the
following paragraphs.

To connect instruments to a chip interface, IEEE 1687
defines a reconfigurable and hierarchical scan-path, which is
described in Instrument Connectivity Language (ICL). Fig. 1
shows an example of an IEEE 1687 network. The figure shows
three instruments, each interfaced to the parallel input/output
data ports of a dedicated test data register (TDR). The TDRs
are placed on a flexible scan path, which can be reconfigured
via the multiplexer control bits C1–C4, such that individual
instruments or network segments (such as sub-network S) can
be switched on and off the scan path. In the figure, only the
data path is shown, and signals controlling the shift, capture,
and update, as well as clock and reset are omitted. In reality,
each TDR reacts to the control signals only when it is selected
(that is, when it is switched on the scan path). For example,
the select signal for TDR 2 is asserted when both C4 and
C2 are set to ’0’. In the rest of this paper, we refer to such
reconfigurable scan networks that are compatible with IEEE
1687 as ”1687 networks”.

In IEEE 1687, the language for describing how to operate
the instruments is Procedural Description Language (PDL).
In PDL, besides the basic read, write, and wait operations at
instrument ports, it is possible to describe complex operations
by the use of procedures. These procedures can then be called
across the hierarchy defined via ICL, up to the chip interface.

The algorithm that receives the PDL and ICL descriptions
and generates the chip-level commands to carry out the pro-
cedure calls from the chip interface is called a retargeter.

For IEEE 1687, the chip interface mentioned above is
the IEEE 1149.1 Test Access Port (TAP), which consists
of four mandatory signals, namely, test data in (TDI), test
data out (TDO), test mode select (TMS), and test clock
(TCK), as well as an optional reset signal (TRST). The IEEE
P1687.1 [9] working group is extending the interface to other
standard interfaces such as I2C and SPI, while maintaining
compatibility with IEEE 1687.

Fig. 2 shows the TAP controller finite state machine (FSM)
that controls the operation of IEEE 1149.1 circuitry. The
traversal of the FSM is controlled by the TMS signal (shown
as labels on the transition arcs) and TCK. There are two main
branches in the FSM: the DR-Scan branch for performing
operations on the TDRs and the IR-Scan branch for loading the
instruction register (IR). There are control signals generated
at each of the capture, shift, and update operations. For
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Fig. 2. IEEE 1149.1 TAP Controller FSM

the DR-Scan branch, these signals are named Capture-DR,
Shift-DR, and Update-DR, accordingly. Although IEEE 1687
has foreseen the use of other chip interfaces, the stipulated
sequence of read (capture), write (update), and data transfer
(shift) operations—called a CSU cycle—closely follows that
of the shown FSM. The other states in the FSM that have
no associated control signals are referred to as Nop (short for
no operation) in IEEE 1687, where each Nop takes one clock
cycle to go through.

In PDL, each CSU cycle is described as a group of read and
write commands to instrument ports. The language format is
such that read and write operations are specified with iRead
and iWrite instructions (referred to as setup commands), which
are applied as a CSU cycle upon encountering an iApply
command (or any other action command). In addition to the
read and write operations, the iRunLoop command can be used
to generate a specified minimum number of clock cycles that
should pass before the next operation can be carried out.

III. PROPOSED HARDWARE SOLUTIONS

In this section, we present two hardware solutions for
accessing shared instruments and discuss pros and cons of each
solution. It should be noted that the proposed solutions address
the physical shared access to an instrument, and higher-level
protocols are needed to ensure that, for example, the CPU’s
operation of the shared instruments is not interrupted by the
external access from the JTAG port.

Fig. 3(a) shows an instrument connected to the JTAG TAP
via a 1687 network. Assume that we would like to access the
same instrument from an on-chip processor via a system bus.
Fig. 3(b) shows one way to achieve this sharing, in which mux
control bit C selects which entity can access the instrument. In
this example, it is the processor that by default (after startup)
gets the access path to the instrument, and External Controller
takes over by first writing to the C control bit.

The advantage of the solution shown in Fig. 3(b) is its
simplicity and standard compliance. Besides, this solution
allows for accessing the instrument even if the system bus
is not operational, which can prove useful when an early
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Fig. 3. Standard instrument access and sharing
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Fig. 4. Instrument sharing over a system bus

prototype has defects or the system clocks are not running.
The disadvantage with this solution is that it might not scale
well with number of instruments. For example, dedicating a
port on the system bus (which could be a network-on-chip,
AMBA bus, etc.) to each instrument would not be practical for
hundreds of instruments. In this case, using a register bank in
which a register is dedicated to each instrument would require
only one bus port and thus alleviate the scaling issue, but
would then involve routing many long parallel wires from each
register to its corresponding instrument.

To address this scalability issue, we present and discuss two
solutions in which a segment of a 1687 network is shared with
an on-chip processor over a system bus. This sharing is done
such that in the ICL description of the network, the shared
segment is described as if it were directly connected the main
1687 network without the system bus and related components
in between. This way, any standard retargeter can be used
to perform retargeting for the proposed solutions. The first
solution is based on parallel transfer of data (Section III-A),
and the second solution is based on serial data transfer
(Section III-B).

A. Parallel Transfer

We start by a simplified scenario in which only one instru-
ment is shared. Fig. 4 illustrates outline of this solution for
such a scenario. This solution in itself does not address the
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Fig. 5. Network segment sharing over a system bus

scalability issue discussed for the solution in Fig. 3(b), and will
only serve as a stepping stone towards more scalable solutions.
In the solution in Fig. 4, instead of directly interfacing an
instrument to its TDR via parallel data ports, the data ports
are sampled on both sides and the samples are transferred
across the system bus. TAP-side Logic and Shared-side Logic
contain circuitry for implementing the bus protocol, as well as
for sampling and copying the changed data in both directions.
There are several ways that the copying process can be initi-
ated, each way resulting in different implementation overhead
and timing behavior. As discussed later (Section IV), for this
work, we have chosen an implementation in which TAP-side
Logic initiates the data transfer in both directions.

To maintain compliance with 1687 network specifications,
the above-mentioned copying should be concealed from Exter-
nal Controller. To keep the copying hidden, a first requirement
is to have bounds on data transport delays on the system bus.
Such bounds exist, for example, if system bus supports arbi-
tration priorities. In the rest of this paper we assume that the
above-mentioned data transport bounds exist. In Section IV,
we present timing analyses that based on the bounds on data
transport delays and clock frequencies determine if and how
data integrity can be guaranteed.

The solution shown in Fig. 4 can be extended (from sharing
one instrument) to sharing a 1687 network segment. One way
to do so is to interface the parallel data ports of all TDRs
whose instruments are to be shared to TAP-side Logic as if
those TDRs are parts of the same TDR, as illustrated in Fig. 5
for two instruments. In this approach no control signal (and in
general nothing related to the structure) of the shared segment
is copied to the instrument side. That is, if a TDR is not
selected (and therefore does not react to the control signals)
its contents will not change and as a result, the same old
value will be transferred to its corresponding instrument during
the copying process. The advantage of this approach is its
simplicity, and that the shared instruments do not necessarily
need to be in the same segment of the 1687 network. The
disadvantage is that size of the network segment being shared
becomes limited to the maximum bit-width allowed by the
system bus. For example, if the system bus allows a maximum
of 512 bits of parallel data transfer, then the total length of
TDRs in the shared segment cannot be more than 512 bits.
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This limitation, however, can to some degree be overcome if
the system bus supports bursts.

B. Serial Transfer

In contrast to the Parallel Transfer approach in which only
the shared instruments themselves were separated from their
TDRs and placed across the system bus, in the Serial Transfer
approach the shared instruments along with their TDRs are
separated from the network and placed across the system bus.
This way, even a whole segment of the network, complete
with its muxes and control bits, can be shared. To do so,
that segment is provided locally with its own TAP Controller
circuitry so that only the serial in (SI), serial out (SO), TCK,
and TMS signals are transferred over the system bus, and the
control signals for the shared segment are generated locally
by the local TAP Controller FSM circuitry. This local FSM
is then kept in sync with the main TAP Controller FSM by
intercepting (gating) of the chip TAP’s TMS signal with a
local select signal. This way, whenever the gated TMS (G-
TMS) is de-asserted (which always happens when both FSMs
are at the Update-DR state), the local TAP Controller FSM
is parked in the Run-Test/Idle state, and as soon as G-TMS
is asserted (which always happens when the main FSM is
in the Update-DR state), both FSMs move to Select-DR-
Scan together). The idea of keeping another FSM in sync
with the main TAP Controller FSM exists already as ”tapped
instrument” (a.k.a. embedded TAP or eTAP) in IEEE Standard
1687. The difference between our proposed Serial Transfer
solution and eTAP is that (1) in the proposed solution the
syncing is performed over the system bus, and (2) since there is
no IR (and IR-related circuitry) used in the proposed solution,
the eTAP support from the retargeter tool is not needed. As
a matter of fact, the local TAP Controller FSM will even be
invisible to the retargeter.

Fig. 6 illustrates this approach for sharing a segment of 1687
network. In this approach, three signals, namely, SI, G-TMS,
and TCK, are sampled by TAP-side Logic and transported
over the system bus to Shared-side Logic where these signals
are reproduced and delivered to the local TAP controller. In
the opposite direction, the local TDO (L-TDO) is sampled
by Shared-side Logic and is sent over the system bus to
TAP-side Logic where it is fed back into the 1687 network
as SO. One advantage of this approach to sharing is that
this solution does not pose any limitation on the number
of instruments in the shared segment. Another advantage is
that the network structure in the shared segment remains the

same (as contrasted with the solution illustrated in Fig. 5).
Therefore, the benefits of serial connectivity in a 1687 network
are maintained, hence, less routing clutter. On the other hand,
this approach requires tougher requirement on data transfer
bounds in the system bus, since this approach requires that data
is transferred across the system more frequently. Additionally,
keeping the two FSMs in sync requires careful design of the
timing for the G-TMS and L-TMS signals, so that a change
in G-TMS (which happens at the falling edge of TCK) is
transferred to Local TAP Controller FSM before the next rising
edge of TCK (when the state changes happen). This timing
requirement can be relaxed a bit if the main TAP Controller
FSM is always taken to Run-Test/Idle after Update-DR.

Finally, we note that sharing a network segment requires the
local processor to perform some retargeting. Such retargeting
can be either done in software or as a hardware accelerator,
similar to the on-chip retargeting engine proposed in [10].

IV. SYSTEM MODEL AND TIMING ANALYSIS

As mentioned earlier, the aim with the proposed solutions
in Section III is to share instruments such that standard
retargeters still remain applicable, which requires making the
additional hardware blocks transparent to the retargeter and
External Controller. An implication of such transparency is
the need to guarantee that the round-trip time over the system
bus is less than the delay expected by External Controller. To
provide such guarantees, in this section, we describe system
models for the proposed hardware solutions, and perform
timing analysis for different possible instrument access sce-
narios w.r.t. order and proximity of read and write instructions
targeting that instrument. The presented analyses can be used
to adjust the system parameters globally, and/or locally add
extra delays in PDL only where extra wait time is needed.

A. Parallel Transfer

In the Parallel Transfer solution, any update at TDR should
be transferred to the instrument, and any change at instruments
outputs should be transferred back, to be captured by TDR.
We will refer to the former as a TAP-to-instrument transfer
and to the latter as an instrument-to-TAP transfer. These two
transfers can be done in a variety of ways, each way having
its own timing characteristics. In this work, we consider and
analyze the following way: the TAP-side Logic block initiates
the TAP-to-instrument transfer upon detecting a change at
TDR’s parallel data outputs. The instrument-to-TAP transfer
is also initiated by TAP-side Logic through polling.
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Fig. 7 shows the system model that we use for timing
analysis. The model is based on the hardware architecture
described in Section III-A. As was discussed at the end of
Section III-A and illustrated in Fig. 5, parallel data signals
from multiple TDRs can be bundled and transmitted together
as long as the total length of TDRs included in the bundle is
less than or equal to the bit width of the system bus. If this
condition is met, the presented analysis holds for more than
one TDR and instrument pair.

In Fig. 7 each dot and the associated notation represent
a point in time at which a certain event happens in the
respective component. For example, WDR represents the time
at which data is written to the TDR. The indices R, T, S, and
I signify register (TDR), TAP-side Logic, Shared-side Logic,
and Instrument, respectively. Some of the dots are marked with
a different fill color or pattern to be spotted easier later in the
timing diagrams (Fig. 8).

The following is a complete description of the notations
used in the model:

• WDR: data is written to the update stage of the TDR (at
the falling edge of TCK when the TAP Controller FSM
is at the Update-DR state)

• WRQT: a write request is generated in TAP-side Logic
for transferring data to the instrument

• WRQS: WRQT is received at Shared-side Logic, which
subsequently makes the received data available to the
instrument ports

• WDI: data presented by Shared-side Logic is read by the
instrument

• RDI: the (immediate) response by the instrument (such
as a busy flag being set) is produced

• PRQT: a read request is generated by the periodic polling
process to sample data at the instrument’s outputs

• PRQS: PRQT is received at Shared-side Logic, which
subsequently initiates sampling of the instrument’s out-
puts

• PDI: output data from instrument is sampled
• PDS: the sampled data from instrument is sent to TAP-

side logic
• PDT: sampled data transmitted at PDS is received by

TAP-side Logic and is placed on the parallel inputs of
the TDR

• RDR: data present on the parallel inputs of the TDR is
captured into the TDR (when the TAP Controller FSM is
at the Capture-DR state)

• wt1–wt4: delays (in system clock cycles) between the
time points initiated by Update-DR

• pt1–pt4: delays (in system clock cycles) between the time
points of the events initiated by the polling process

For RDI, it should be noted that the “immediate response”
here refers to acknowledging the reception of a command
by an instrument, rather than the final output prepared in
response to the command itself. For example, in case of a
built-in self-test instrument, the immediate response to starting
a test could be asserting the busy flag, whereas the final
output could be the pass/fail status. For the former, the PDL
developer expects that the instrument’s reaction is captured
in the next Capture-DR phase without any additional delay,
whereas for the latter, typically iRunLoop commands are used
to indicate the minimum number of clock cycles the instrument
needs to prepare the results. Needless to say, if an instrument
can prepare the final results without added iRunLoop delays,
the following discussion will be also applicable to such an
instrument.

Moreover, wt2 represents the longest time it takes to transfer
the data over system bus. This way, wt2 should be replaced
by the data transport bound for a write operation for the given
system bus. Such a write transfer could, for example, involve
a four-way handshake in which first a write address is sent and
acknowledged followed by the data sent and acknowledged.
Such handshaking might also apply to the interface between
Shared-side Logic and the instrument. Similar to wt2, pt1 and
pt4 represent the longest time it takes to read data over system
bus, where pt1 represents the address transfer time and pt4
represents data transfer time.

In this analysis, we assume that the system bus does not
support overlapping read/write requests. Therefore, we assume
that a request of any type (i.e., read or write) should complete
before the next request of that type can start. We, however,
assume that requests of different types can overlap in time.
Based on these assumptions, we can write the following for
the polling period TP:

TP ≥
4∑

i=1

pti (1)

For the timing analysis, we consider two scenarios for the
read and write commands targeting the same TDR: (1) when
the commands are carried out under the same CSU cycle (that
is, the corresponding iRead and iWrite instructions are under
the same iApply group), as well as (2) when commands are
executed under two consecutive CSU cycles. If we design the
system such that these two scenarios are correctly handled,
the other scenarios where there is an arbitrary number of
CSUs between read and write commands will also be handled
correctly (irrespective of whether those commands target the
same register or different registers).

When there are read and write commands targeting the same
TDR in the same CSU cycle, the read is carried out when the
TAP Controller FSM is in the Capture-DR state, and the write
is carried out later when the TAP Controller FSM is in the
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Update-DR state. Therefore, the written data cannot affect the
read data as the latter is already captured and shifted out before
the new data is written to the TDR in the Update-DR state.

When read and write happen in consecutive CSU cycles,
the following four cases should be considered:

1) Write Followed by a Read: For this case, we can
consider the following relation between the RDR and WDR

time points:

RDR = WDR + (2 + TL)K (2)

where K is the ratio of the frequency of the system clock to
that of TCK, 2 denotes the smallest number of TCKs needed
by the TAP Controller FSM to transition from the Update-
DR state to the Capture-DR state, and TL is the extra delay
that might have to be added between the consecutive iApply
groups by using the iRunLoop command.

In the following discussion, let:

D = (2 + TL)K (3)

Therefore, we can simplify (2) by (3):

RDR = WDR +D (4)

To correctly carry out a write followed by a read operation,
the following must hold:

PDI > RDI (5)
PDT < RDR (6)

In plain language, (5) states that we must not sample instru-
ment data before the immediate response of the instrument
is ready, and (6) states that the sampled immediate response
must arrive at TDR before Capture-DR is asserted. One such
correct read operation is illustrated in Fig. 8(a). However, as
TAP is operated by an external controller, no assumption on
time of WDR can be made, which can result in an incorrect
read. As an example, Fig. 8(b) illustrates how a small shift

in timing of WDR results in data being sampled too early at
the instrument, thus violating (5). The read issue illustrated in
Fig. 8(b) cannot be addressed by faster polling.

Since we have made no assumptions on any synchronization
between the operation of TAP and the polling cycles, the only
option for guaranteeing the correct reading of instrument’s
immediate response is to increase D beyond one polling cycle
such that if data is sampled too early by the current polling
cycle the next cycle corrects the sampling. This increase of
D beyond one polling cycle is conceptually illustrated in
Fig. 8(c), where a violation of (5) in the first polling cycle is
compensated for at the next cycle. To select D such that correct
reads are guaranteed we need to delay the read from External
Controller so much that (1) the write command reaches the
instrument and the immediate response becomes ready to be
captured (i.e.,

∑4
i=1 wti), (2) a complete polling cycle passes

to guarantee the response is captured by the polling process
(namely, TP), and (3) the captured response arrives at TDR
(namely, pt3 + pt4). The following inequality captures this:

D >

4∑
i=1

wti + TP + pt3 + pt4 (7)

Since higher D implies slower application of PDL instruc-
tions, it is desirable to decrease the right-hand side of (7) so
that D can be reduced. Lowering the right-hand side can be
achieved via choosing smaller TP (which translates into faster
polling, thus higher traffic on the system bus), and lowering
the internal delay of the system. On the other hand, D can be
increased to meet this lower bound via two configuration knobs
(see (3)): (1) increasing the ratio of system clock frequency to
TCK frequency, and (2) adding wait cycles in the PDL script.
Increasing K affects the whole system, whereas adding the
wait cycles only affects the case where a write to a TDR
is immediately followed in the next CSU cycle by a read
targeting the same TDR.

2) Write Followed by a Write: Following the above-
mentioned assumption of no outstanding writes, a write oper-
ation should finish before another one can start. Assuming
the shortest possible TDR length of one bit, the shortest
sequence of operations for two consecutive writes is as
Update-DR, Select-DR-Scan, Capture-DR, Shift-DR, Exit1-
DR, Update-Dr. Denoting the time points for the first and
second writes as WD1

R and WD2
R, respectively, we have:

WD2
R = WD1

R + (5 + TL)K (8)

where K and TL have the same definition as before—see
under (2)—and 5 represents the sequence mentioned above.
For TL we note that the delay added for this ”write followed
by a write” is not necessarily the same as the delay added
for the ”write followed by a read” case discussed above. To
ensure that one write operation completes before the next one
starts we should have:

(5 + TL)K >

4∑
i=1

wti (9)
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Fig. 9. System model for the Serial Transfer solution

3) Read Followed by a Read: Before discussing the timing
analysis for this case, we note that two consecutive reads
from an instrument without any writes in between could be,
for example, for reading status flags, temperature, etc. Again,
assuming no multiple outstanding reads at any point, a read
operation should finish before any other read operation can
start. Assuming the shortest possible TDR length of one bit,
the shortest sequence of operations for two consecutive reads
is as Capture-DR, Shift-DR, Exit1-DR, Update-DR, Select-
DR-Scan, Capture-DR. Denoting the time points for the first
and second writes as RD1

R and RD2
R, respectively, we have:

RD2
R = RD1

R + (5 + TL)K (10)

where K and TL have the same definitions as before, and 5
represents the sequence mentioned above. To ensure that a
read operation finishes before the next one starts, we need:

(5 + TL)K > TP + pt3 + pt4 (11)

This is to ensure that at least one polling round completes and
data is ready to be captured, before the next read operation.

4) Read Followed by a Write: For this case, we note that
the read and write belong to different CSU cycles. That is,
assuming again the shortest possible shift-path, the sequence
of operations to carry out a read followed by a write is
as follows: Capture-DR, Shift-DR, Exit1-DR, Update-DR,
Select-DR-Scan, Capture-DR, Shift-DR, Exit1-DR, Update-
DR. For this case, External Controller uses the data sampled
and shifted out at the first Capture-DR and Shift-DR as the
read data. This way, this read operation cannot be affected by
the write that follows in the next CSU cycle.

B. Serial Transfer

The system model for the Serial Transfer solution (see
Fig. 9) is similar to (but somewhat simpler than) the model
for Parallel Transfer. In Serial Transfer, a change detected on
any of the three TAP-side wires shown in Fig. 6, namely, G-
TMS, SI, and TCK, is sent by TAP-side Logic to Local TAP
Controller over the system bus. TAP-side Logic also polls for
samples of L-TDO signal by sending read requests to Shared-
side Logic.

The following is a complete description of the notations
used in the model:

• tC: a change happens at any of the shown signals
• WRQT: the change is detected and a write request is

generated in TAP-side Logic for transferring data to
Shared-side Logic

• WRQS: WRQO is received at Shared-side Logic, which
subsequently writes the received data to Local TAP
Controller

• TU: data is updated at the input ports of Local TAP
Controller

• PRQT: a read request is generated by the periodic polling
process to sample data at L-TDO

• PRQS: PRQT is received at Shared-side Logic, which
initiates sampling of L-TDO

• PDI: L-TDO is sampled
• PDS: L-TDO sample is sent to TAP-side Logic
• PDT: sampled data transmitted at PDS arrives at TAP-

side Logic
• tS: data at the output of TAP-side Logic is sampled on

the rising edge of TCK
• wt1–wt3: delays (in system clock cycles) between the

time points initiated by Update-DR
• pt1–pt4: delays (in system clock cycles) between the time

points of the events initiated by the polling process
Since we are using a gated copy of the TMS signal, we

note that according to the JTAG standard [1], it is expected
that External Controller changes the TMS and TDI values
on the falling edge of TCK. Additionally, by choosing the
lock-up latch type implementation of the scan path in 1687
networks [4], we ensure that SI and SO also change at the
falling edge. This way, at each cycle of TCK, we have only
two samples to transfer: one at the falling edge of the TCK and
one at the rising edge. Therefore, we consider that if we (1)
allow enough time for the serial data to be transferred from
TAP-side Logic to Shared-side Logic (

∑3
i=1 wti), (2) allow

for a whole polling period (TP) to pass so that we ensure the
L-TDO is sampled, and (3) allow for sampled L-TDO to be
transferred back from Shared-side Logic to TAP-side Logic
(namely, pt3 + pt4), then we can ensure that the local TAP is
kept in sync with the main TAP and the L-TDO is transferred
back in time. The above points are captured in the following
inequality:

K > 2× (

3∑
i=1

wti + TP + pt3 + pt4) (12)

Coefficient 2 in (12) represents the above-mentioned fact that
two samples must be transferred per each TCK period.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented the proposed solutions on an FPGA
to validate them against standard IEEE 1687 tools. For the
implementation, we chose the 1687 network shown in Fig. 1,
where each TDR is 16 flip-flops long and each instrument
is just an array of inverters (so that any data written to the
instrument is immediately inverted, and the next read operation
gets the inverted data back). For the Parallel Transfer solution,
we shared Inst 2 and Inst 3 over the system bus, and for the
Serial Transfer approach we shared the segment marked as
sub-network S over the system bus. As for the system bus
itself, we chose AXI [11] Interconnect.
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In this section, we present our general validation scheme.
Moreover, we present some implementation aspects (such as
clock domain crossing considerations) that we had to address,
as well as the delay numbers associated with our implemen-
tation. Furthermore, we will present how the presented timing
analysis can in practice be used to adjust the system and
PDL-related parameters.

A. Validation Approach

A major feature of the presented solutions is that, from the
perspective of retargeter tools, the shared instruments appear
as if they were directly connected to the 1687 network that
is interfaced to the JTAG TAP. That is, the tools can be
kept completely unaware of the fact that the implementation
deviates significantly from what is described in ICL.

To validate this feature, we had a commercial retargeter
generate test patterns in Serial Vector Format (SVF) for the
example network shown in Fig. 1, and applied the generated
patterns via OpenOCD (Open On-Chip Debugger) [12] to our
FPGA implementation. OpenOCD applies the test stimuli in
the SVF file to the implemented hardware and compares the
test responses with the expected values (also available in the
generated SVF patterns).

For the ICL description, as intended by IEEE 1687, only the
parallel interfaces of the instruments (i.e., the inverters in our
case) are described. Therefore, only the structural connectivity
of the TDRs, multiplexers and their associated controller bits,
as well as the length of the TDRs are described in ICL.

As for the PDL code, we created a long sequence of ”writes
immediately followed by reads” targeting Inst 2 and Inst 3
with alternating patterns, similar to what is shown in Fig. 10.
In the shown PDL snippet, Inst refers to the ICL definition
of the pair of a TDR and its associated inverter instrument. In
the test procedure that is defined for such a pair, the iRead
instruction in Line 3 expects to receive FFFFh since after reset
the contents of TDRs are 0000h. The iRead instruction in
Line 4 expects to receive 5555h since iWrite in Line 3 has
written AAAAh to the TDR, and so on. The last iWrite in test
writes zeros, so that the procedure can be called many times
(as the first iRead expects FFFFh). The Run test procedure
calls test on Inst 2 and Inst 3 hundreds of times in iMerge
blocks (which give the retargeter the option to schedule the
operations concurrently). Close examination of the generated
SVF patterns showed that the writes and reads to the two
instruments are indeed scheduled at the same.

For both hardware implementations described below (sec-
tions V-B and V-C), the generated SVF patterns were suc-
cessfully applied by OpenOCD to the hardware on the FPGA.

B. Implementation Based on Parallel Transfer

In the following, we describe our hardware implementation
of the Parallel Transfer solution, and present and discuss the
timing aspects.

1) Implementation Details: One implementation issue to
address for Parallel Transfer is transferring data between the

iProcsForModule Inst
iProc  test {}   {
    iWrite  Ins.DI 0xAAAA;    iRead  Ins.DO 0xFFFF;    iApply;
    iWrite  Ins.DI 0x5757;    iRead  Ins.DO 0x5555;    iApply;
    iWrite  Ins.DI 0x1234;    iRead  Ins.DO 0xA8A8;    iApply;
    iWrite  Ins.DI 0x0000;    iRead  Ins.DO 0xEDCB;    iApply;
}

iProcsForModule Chip
iProc Run_test {} { 
...
    iMerge -begin
        iCall Inst_2.test;
        iCall Inst_3.test;
    iMerge -end
...
}

1
2
3
4
5
6
7
8
9
10
.
.
.

Fig. 10. Excerpt from the PDL used for validation of the 16-bit ”inverter”
instruments

JTAG and system clock domains while maintaining data co-
herency of instrument data. This clock domain crossing (CDC)
should be done considering that TCK is not free running. In
our implementation, we have used the CDC approach shown
in Fig. 11, which relies on the free-running and faster Clk to
transfer Update-DR to the system domain. To reduce clutter,
the clock signals are not explicitly shown, and it should be
assumed that flip-flops to the right side of the dashed vertical
line are clocked by Clk and the flip-flops to the left side of
the dashed line are clocked by TCK.

As specified by JTAG and IEEE 1687, data is written into
the update stage of a TDR at the falling edge of TCK when
Update-DR is asserted. Therefore, by the time that Update-DR
itself is transferred to the Clk domain, the data in the update
stage has become stable. The transferred Update-DR is then
used as clock-enable (CE) of the flip-flops marked with an ’S’,
resulting in instrument data being coherently registered in the
S flip-flops. TAP-side Logic, samples the outputs of ’S’ flip-
flops at every cycle of Clk and upon detecting a change with
the previous value, starts a new transfer. It should be noted
that, depending on the clock ratio K, Update-DR might stay
active for more than one cycle of Clk, resulting in the same
data being sampled multiple times, which is no problem as
TAP-side Logic reacts only to changes in the sampled data.
In the reverse direction, the instrument response that TAP-
side Logic presents to the capture ports of the TDR should in
principle be stable before the capture happens, as ensured by
the presented analyses for the ”write followed by a read” case
(Section IV-A1).

Fig. 12 shows our implementation of the Parallel Transfer
approach. As can be seen, the two instruments originally
belonging to sub-network S, namely, Inst 2 and Inst 3, are
connected to Shared-side Logic. TDR 2 and TDR 3 together
form the TDR (virtually), and their parallel data outputs are
connected to TAP-side Logic via the scheme shown in Fig. 11.
Controller in TAP-side Logic detects changes in the contents
of TDR, and instructs the AXI bus manager (AXI Manager 1)
to send the data over to AXI Subordinate. The received data is
then delivered to Controller in Shared-side Logic to be applied
to Inst 2 and Inst 3. Additionally, Controller in TAP-side Logic
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Fig. 11. Parallel Transfer: Circuitry for clock domain crossing from JTAG
clock (TCK) domain to system clock (Clk) domain

performs periodic polling by instructing AXI Manager 1 to
read data from AXI Subordinate. Upon detecting the read
request, AXI Subordinate samples the instrument ports and
sends the data back, which is then presented to the capture
ports of TDR. The data is then captured into TDR 2 and TDR
3 during the next Capture-DR event. AXI Manager 2 in this
implementation is a traffic generator and consumer IP, which
has a lower priority than Manager 1 and is added for a more
realistic evaluation of the delays. The AXI Interconnect IP is
configured in ”Shared Address Multiple Data” (SAMD) mode,
in which a delay mainly happens when TAP-side Logic starts
a transaction on the AXI address channel when a transaction
of another type is already using that channel.

2) Delays and Discussion on Timing Analysis: Table I
presents the calculated delays according to the model pre-
sented in Fig. 7. The delays reported for the system bus
(namely, wt2, pt1, and pt4) are calculated for the worst case
according the data sheet for the AXI Interconnect IP and
validated in the simulations. Due to the SAMD configuration
of the Interconnect IP, the worst case happens for a transaction
when another transaction has already taken the address channel
of AXI Interconnect. It should be noted that an AXI write
transaction involves the bus manager writing the address and
having it acknowledged by the bus subordinate, followed by
the bus manager writing the data and having it acknowledged
by the bus subordinate, followed by the subordinate sending
a write response and having it acknowledged by the bus
manager. In the reported delay for wt2, we have only included
the number of clock cycles until the data is delivered to
Shared-side logic, since the rest of the steps in the handshake
process overlap in time with wt3 and wt4.

These delay numbers allow for polling as fast as every 17
system clock cycles according to (1). Plugging TP=17 into (7),
(9), and (11) gives us the following constraints for the three

TABLE I
MEASURED DELAYS (IN SYSTEM CLOCK CYCLES), SEE FIG. 7

wt1 wt2 wt3 wt4 pt1 pt2 pt3 pt4
7 7 2 0 9 1 1 6

relevant cases discussed in Section IV-A:

(2 + TL,WR)K > 40 (13)
(5 + TL,WW )K > 16 (14)
(5 + TL,RR)K > 24 (15)

The iRunLoop delays, namely TL values, are indexed dif-
ferently (i.e., WR for write followed by a read, WW for
write followed by a write, and RR for read followed by
a read) as they do not need to be the same for different
cases. To simplify the following discussion, we assume that no
additional iRunLoop delays are to be added. That is, TL is zero
in (13), (14), and (15). It follows that among the above three
constraints, it is (13) that puts the most demanding requirement
on the clock ratio, namely, K > 20. In plain language, in order
for the solution to work for any given PDL, the system clock
should be at least 20 times faster than the JTAG clock. We
note that with longer polling periods (i.e., increased TP) even
larger clock ratio K will be needed. It is, on the other hand,
possible to achieve a lower K by adding TL delays in PDL
where needed (i.e., between any two iApply groups in which
the same instrument is being accessed).

C. Implementation Based on Serial Transfer

The clock domain crossing in this approach is much simpler
than the Parallel Transfer solution and consists of a few
synchronization flip-flops on each JTAG signal. Considering
the relatively much higher rate of the system clock, and the
fact that TMS and TDI are expected to change value at the
falling edge of the JTAG clock, there is plenty of time for TDI
and TMS to settle to the right value before the rising edge of
TCK arrives.

In the following, we describe our hardware implementation
of the Serial Transfer solution, and present and discuss the
timing aspects.

1) Implementation Details: Fig. 13 outlines our hardware
implementation. The Tap-side Logic and Shared-side Logic
blocks are the same as the ones in Fig. 12 and are, therefore,
not detailed. In contrast to Parallel Transfer, here the whole
sub-network S is shared. In our implementation, the logic on
Shared-side is reset using both the system reset and a reset
generated by the Local TAP when its FSM is in the Test-
Logic-Reset state. The TCK, gated TMS (G-TMS), and SI
signals are sampled by TAP-side Logic and, upon detecting a
change, the sample is sent to Shared-side Logic to be applied
to L-TCK, L-TMS, and L-TDI, respectively. TAP-side Logic,
also received samples of L-TDO through polling, and drives
the SO signal. The FSM in Local TAP Controller generates
the control signals for the operation of sub-network S locally.
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TABLE II
MEASURED DELAYS (IN SYSTEM CLOCK CYCLES), SEE FIG. 9

wt1 wt2 wt3 pt1 pt2 pt3 pt4
6 7 2 9 1 1 6

2) Delays and Discussion on Timing Analysis: Table II
presents the calculated delays according to the model pre-
sented in Fig. 9. Since the TAP-side Logic and Shared-side
Logic blocks are identical to those used in Parallel Transfer,
wt2–wt3 and pt1–pt4 are the same as what was described
for Parallel Transfer. By using (12) and choosing the fastest
polling (TP=17 clock cycles), we have K > 78. That is, the
system clock should be at least 78 times faster than TCK
to ensure timely transfer of the serial data across the system
bus. Choosing longer polling intervals would then require
a faster system clock or (more realistically) a slower TCK.
In comparison to the Parallel Transfer solution, the Serial
Transfer approach imposes a stricter limit on the TCK rate,
which might still be justifiable given the advantages of the
Serial Transfer approach (Section III-B). For example, for a
system with a system clock of 1GHz, our implementation of
the Serial Transfer approach still allows for a TCK of about
12.8 MHz, which might still be acceptable.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented two hardware solutions that
enable an on-chip processor to access instruments in an IEEE
1687 network over a system bus while maintaining compliance
with standard IEEE 1687 tools—a reuse scheme we referred
to as ”sharing” in this work. We have validated the solutions
through FPGA tests by using standard IEEE 1687 and JTAG
tools. In our timing analyses and hardware implementations
of the proposed solutions, we have considered a data transfer

scheme that in one direction is based on polling. Polling
happens irrespective of any change in signal values, which
might cause unnecessary traffic on the system bus. Lowering
the polling rate on the other hand might limit frequency of the
JTAG clock. Therefore, for future work, we consider other data
transfer schemes for the proposed solutions.
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