
ACE: A Resource-Aware Adaptive Compression Environment

Sezgin Sucu Chandra Krintz

Computer Science Department
University of California, Santa Barbara

{sucu,ckrintz}@cs.ucsb.edu

Abstract
We present an adaptive compression environment

(ACE) that uses both underlying resource performance
(network and CPU) predictions and the compressibil-
ity of the data stream to perform on-the-fly compres-
sion. ACE couples technologies from Computational
Grid Computing and dynamic compilation research to
predict the efficacy of using compression and to inter-
cept and compress socket-based communication trans-
parently. Our results show that ACE is able to accu-
rately determine when to compress and not to compress.
Over all file formats studied, ACE enables significant
improvements over solely performing compression or no
compression.

1 Introduction

The growth and evolution of the Internet has
facilitated mass demand for always-available, high-
performance, and world-wide access by Internet users.
These users, as indicated by the popularity of email, web
pages, mobile languages, and peer-to-peer systems, use
the Internet primarily for data transfer. However, trans-
fer performance is dictated by the underlying resource
performance of the Internet and as such, is sensitive to
the vast differences in network, end-point technology
and the high variability in performance.

Compression is commonly used to reduce the num-
ber of bytes transferred and to increase the effective
bandwidth available. However, there are three primary
constraints that must be considered in the selection of
a compression technique for on-line compression: (1)
compression and decompression time depends on CPU
performance and data transfer time depends on network
performance; (2) the data characteristics impact com-
pression performance (compression rate and compres-
sion ratio) and it is not possible to learn this effect with-
out first compressing [2]; and (3) compression tech-
niques vary in performance in terms of compression rate
and compression ratio [14]. Each of these constraints
make it increasingly difficult to identify the “best” com-
pression technique in all circumstances.

To address challenges associated with on-line com-
pression and to improve Internet transfer performance,
we have developed ACE, an Adaptive Compression En-

vironment which automatically and transparently se-
lects between competitive compression techniques (and
not compressing) based on underlying resource perfor-
mances (CPU, bandwidth, and memory). ACE is novel
in that it combines existing technologies from Computa-
tional Grid Computing [6] and dynamic compilation re-
search [4, 12] to perform adaptive compression. ACE is
able to accurately identify and implement compression
when its use will reduce transfer time. In all other cases,
ACE approximates to the default “no-compression” case
by sending data uncompressed.

2 The Adaptive Compression Environ-
ment (ACE)

The ACE runtime executes programs on both local
and remote machines and intercepts TCP/IP socket read
and write calls made by programs for data transfer. ACE
then estimates the cost of performing on-the-fly com-
pression and makes a compression decision for each
fixed size block of data to speed-up data transfer.

ACE computes the predicted cost of data trans-
fer with compression using past socket behavior, data
stream characteristics, properties of the available com-
pression and decompression algorithms, network band-
width, and local and remote CPU load. Bandwidth
and CPU load are acquired by ACE from the Network
Weather Service (NWS) [20], a resource performance
monitoring and prediction system used for Computa-
tional Grid Environments [6]. All other cost components
are measured and computed directly by ACE.

To implement ACE, we extended a Java Virtual
Machine (JVM) called the Open Runtime Platform
(ORP) [4]. ORP is a dynamic optimization system from
Intel Corporation that is available as open source. Our
decision to use Java as our language and ORP as our
infrastructure for ACE implementation enables us to im-
plement automatic socket interception for Java programs
transparently. For our ACE prototype we extended ORP
with the zlib compression library [21]. Since zlib re-
quires the size of the compressed data block to decom-
press it, we include include a 4-byte header (indicating
size) with every block.



2.1 Performance Models

ACE considers only send requests that are larger than
32KB and divides larger requests into 32KB blocks;
smaller send requests are forwarded unimpeded. We
empirically discovered that 32KB is the best value given
many constraints. Smaller values for the block size
cause zlib to attain smaller compression ratios but al-
low ACE to quickly adapt to changes within the data
stream. Larger values impose a high performance cost
when data is not compressible, without enabling signifi-
cant improvement in compression ratio.

To determine when to compress each 32KB block,
ACE uses two performance models which assume that
the overall goal of the application is to speed-up end-to-
end data communication. The two performance models
are the Sequential Model and Pipeline Model. We con-
sider only these two here for brevity. However, ACE is
extensible and as such, performance models with differ-
ent goals can be added easily.

The sequential model assumes that the rate at which
data is produced at the local host is slow enough to pre-
clude overlap of compression with data transfer. ACE
monitors the data generation rate: the number of bytes
per second that the local host sends through socket-write
calls. If this rate is less than the bandwidth between the
local and remote host, ACE uses the sequential model to
make compression decisions.

Using the sequential model, ACE computes the com-
pressed transfer time for each 32KB of data to be sent as
Tc(l, r) = 32KB/(CR ∗ NWS bandwidth(l, r)) +
Cl(CR) + Dr(CR), where CR, Cl(CR) and Dr(CR)
are the predicted values for compression ratio, com-
pression time, and decompression time, respectively, for
each 32KB block sent. NWS bandwidth(l, r) is the
bandwidth between the local and remote hosts as pre-
dicted by the NWS. 32KB is the ACE block size (trans-
fer unit). ACE computes uncompressed transfer time
as Tu(l, r) = 32KB/NWS bandwidth(l, r) and com-
pares this value with compressed transfer time to make
a decision. If the uncompressed transfer time is larger,
the sequential model selects compression, otherwise the
original data is sent.

ACE uses the pipeline model when the data gen-
eration rate is greater than the available bandwidth,
i.e., compression can be overlapped with data trans-
fer. ACE considers three pipeline stages: compres-
sion rate, effective data transfer rate, and decompres-
sion rate. If the slowest of these rates is larger than
the available bandwidth (indicating that overlap is pos-
sible), compression is used; otherwise the original data
is sent uncompressed. Compression rate is computed
as 32KB/Cl(CR). Decompression rate is computed
as 32KB/Dr(CR). The effective data transfer rate is

computed as CR ∗ NWS bandwidth(l, r).
A fourth pipeline stage is also necessary: the data

consumption rate of the remote host. The data consump-
tion rate is the number of bytes per second the remote
host consumes data via socket reads. When this con-
sumption rate is slower than the available bandwidth,
ACE discontinues the use of the pipeline model. ACE
discovers the consumption rate indirectly: when the data
consumption rate of the remote host is slower than the
network transfer speed, after some time the kernel-level
receive buffer at the remote host will fill and cause the
local host to block. This, in turn, decreases the data gen-
eration rate at the local host which causes ACE to recon-
sider using the pipeline model.

2.2 ACE Prediction Infrastructure

The ACE prediction infrastructure makes forecasts
of compression ratio, compression time, and decompres-
sion time for each 32KB block sent. We define com-
pression ratio as Sold/Snew where Sold is the size of the
original block (32KB in our case) and Snew is the size
of the data block when compressed. For convenience,
we also define inverse compression ratio as Snew/Sold.

ACE estimates compression ratio via sampling. We
compress the first block of data regardless of whether
doing so results in the best performance and use the
resulting compression ratio for subsequent blocks. As
long as ACE decides to compress, it uses the previ-
ous compression ratio to make a prediction for the next
block. So CR is computed as the compression ratio of
the last compressed block. If ACE decides not to com-
press, it discontinues compression until NWS values for
CPU and bandwidth change in favor of compression.

One limitation of this implementation is that the
entropy of the data may change, making compression
feasible again, while ACE has suspended compression.
Therefore, we periodically re-introduce compression. If
ACE discovers that performing compression continues
to be the wrong decision, the period is extended by the
initial period value so that ACE waits longer next time
before attempting re-introduction.

The initial period is a weighted block count. ACE
initially waits until this number of blocks has been
sent before attempting re-introduction. A user-defined
block count is weighted by the ratio of the maximum
of compression time and decompression time to un-
compressed transfer time to calculate the initial pe-
riod. We use an empirically determined, initial pe-
riod of 10. We refer to this value as K. We com-
pute the re-introduction initial period as: initialP =
K∗(max(Cl(CR), Dr(CR)))/Tu(l, r)). By weighting
K, we effectively reduce initial period when compres-
sion (or decompression) time is short compared to un-
compressed transfer time. Similarly, we increase initial



Table 1: Machine characteristics.To illustrate the differences in computational power across these machines,
the third and fourth columns show the regression line parameters for compression; those for decompression
are shown in columns five and six.

Machine Name CPU RAM c
0

c
1

d
0

d
1

suns 1xPentium 4 (Xeon) 2.4GHz 2 GB 0.0005 0.0038 0.0003 0.0011
heat 1xPentium 4 (Xeon) 2.2GHz 512 MB 0.0005 0.0044 0.0003 0.0012
gibson 2xPentium 3 500Mhz 512 MB 0.0026 0.0166 0.0010 0.0028

Table 2: File statistics.

File Size ICR CS DS MICR MCS MDS
(MB) (ratio) (byte/microsec) (byte/micsec) (ratio) (byte/microsec) (byte/micsec)

hs chrY.gbk 28.43 0.36 15.06 35.40 0.36 14.70 37.35
DG 1.mpg 46.77 0.33 21.84 75.36 0.34 27.49 94.45
partial.adl catalog.txt 8.93 0.13 47.74 84.94 0.13 39.00 84.00
cc xacts.MYD 10.58 0.73 9.45 31.99 0.73 8.71 31.74
HUH-Publ.xml 4.28 0.30 22.41 52.54 0.30 19.24 51.79
lion.mpg 9.72 0.92 8.45 36.30 0.92 8.15 38.58
paper 10.88 0.40 19.07 58.38 0.40 25.16 64.60
adobe.tar 11.71 0.80 10.17 66.03 0.80 10.99 172.53

period when the opposite is likely. Note that the initial
period does not affect ACE when compression continues
without interruption.

To predict compression time (Cl(CR)), we used the
Canterbury corpus [3] to compute the correlation be-
tween inverse compression ratio and compression time
at the block level. Across this data set, the correla-
tion is 0.9889. The scatter plot of compression time
vs. inverse compression ratio (not shown here due to
space constraints) for each 32KB block confirms this
linear relationship. We use this correlation via a lin-
ear regression to estimate compression time as follows:
Cl(CR) = (c0

l + c1

l ∗ (1/CR))/NWS CPUl, where
NWS CPUl is the available CPU percentage reported
by NWS for the local machine. c1

l is the slope of the re-
gression line and the c0

l is the y-intercept of the regres-
sion line. These values vary from host to host reflecting
the speed of each.

The authors in [13] believe that it is not safe to relate
compression rate with compression ratio across the data
streams. However, we found that by using a regression
line to compute compression time, we achieve accuracy
levels that are acceptable for compressed transfer time
predictions within ACE.

We compute decompression time (Dr(CR)) simi-
larly using a regression line constructed from the Can-
terbury corpus. The regression line for decompression
is represented with d0

r and d1

r parameters (slope and y-
intercept of the line). Decompression time is computed
as: Dr(CR) = (d0

r + d1

r ∗ (1/CR))/NWS CPUr,
where NWS CPUr is the predicted available CPU per-
centage for the remote host.

We can obtain regression line parameters for com-

Table 3: Benchmark files.
File Description
hs chrY.gbk Homo sapiens chromosome 1 [7]
DG 1.mpg Concatenation of a series of

computer generated movies [5]
partial.adl catalog.txt A text dump of a table

from Alexandria Digital
Library [19]

cc xacts.MYD A dbase3 table with 16777230
records from TPC-W [18]

HUH-Publ.xml Botanical publications
XML file [9]

lion.mpg Higly compressed mpeg file [15]
paper Artificially created file whose

entropy dramatically changes
from start to end [19]

adobe.tar Uncompressed archive of class
files for reading pdf files [19].

pression time at the local host via measurement. How-
ever, we must retrieve the remote decompression param-
eters (d0

r and d1

r) via alternate means. We obtain these
values using the lightweight directory access protocol
(LDAP). LDAP is commonly used in distributed and
Grid computing environments to store system configu-
rations and characteristics about distributed resources.
For hosts without LDAP entries, these values can also be
communicated via a handshake protocol between the lo-
cal and remote ACE runtimes. For cases in which these
values cannot be computed off-line, an estimated value
can be used.

3 Experimental Methodology

We used two non-dedicated networks to empirically
evaluate ACE. The first is a cross-campus link between
the Computer Science department at the University of



Table 4: ACE fast-network performance results.
NetLd is the network load level, RemLd is the CPU
load level on the client (heat), and LocLd is the CPU
load level on suns, the server. TNever is the total time
for the heat to receive all 7 benchmark files using
Never-Compress method. TAlways is the total time
using Always-Compress method and TACE is the to-
tal time using our adaptive ACE method.

Fast Network Results
NetLd LocLd RemLd TNever TAlways TACE

No Load No Load No Load 15.86 8.71 10.12
No Load No Load Medium 18.62 23.91 18.44
No Load No Load Heavy 30.31 42.97 32.95
No Load Medium No Load 15.90 102.57 15.87
No Load Medium Medium 18.55 92.26 18.64
No Load Medium Heavy 32.24 44.71 33.81
No Load Heavy No Load 15.98 232.21 15.96
No Load Heavy Medium 18.50 237.55 18.81
No Load Heavy Heavy 32.03 51.75 32.03
Medium No Load No Load 26.01 14.97 20.14
Medium No Load Medium 30.10 26.82 26.01
Medium No Load Heavy 33.76 51.60 33.39
Medium Medium No Load 29.42 131.62 25.94
Medium Medium Medium 29.64 95.59 27.75
Medium Medium Heavy 33.26 49.16 34.82
Medium Heavy No Load 28.00 305.22 28.39
Medium Heavy Medium 27.56 424.14 27.17
Medium Heavy Heavy 32.89 49.64 37.41
Heavy No Load No Load 34.95 20.10 22.94
Heavy No Load Medium 37.27 34.19 32.01
Heavy No Load Heavy 41.24 58.99 57.93
Heavy Medium No Load 37.14 59.33 40.48
Heavy Medium Medium 35.62 41.56 32.37
Heavy Medium Heavy 39.96 57.76 47.92
Heavy Heavy No Load 31.88 131.32 32.55
Heavy Heavy Medium 36.30 58.61 36.65
Heavy Heavy Heavy 39.42 55.12 41.82

California, Santa Barbara (UCSB) and our research lab
(the RACELAB [19]). We achieve an average band-
width over this 100Mb/s link of 71Mb/s; we refer to this
link as the Fast Network in our results. The second is an
Internet link that uses Abilene technology [1] between
the UCSB Computer Science Department and the Uni-
versity of Tennessee, Knoxville (UTK). We experience
an average bandwidth of 1.7Mb/s on this link; we refer
to this link as the Slow Network in our results.

To generate the results that follow, we implemented
Java client and server programs that execute within ACE
(or any JVM). The client requests files over a network
from the server which responds with the requested files.
We measured file transfer time at the client host one af-
ter another for each experimental setup. This time in-
cludes the time for the client host to request the file,
any overhead introduced ACE (at either end), compres-
sion time, transfer time, and decompression time. The
endpoint machines in our experiments are suns (in the
UCSB CS department), heat (in the UCSB RACE-
LAB), and gibson at UTK. For all experiments, suns
is the server host and heat and gibson are the client
hosts. Table 1 shows the various performance character-
istics of these machines.

We selected seven files (described in Table 3) of var-
ious types with different compression characteristics for

ACE experimentation. Table 2 shows the general statis-
tics of these files. The Size column is the total size of
the file (in MB). ICR is the inverse compression ratio
achieved when the whole file is compressed in memory.
CS and DS are compression and decompression rates,
respectively, for in-memory compression. The last three
columns show block-level compression statistics: MICR
is the average inverse compression ratio per 32KB block,
and MCS and MDS show the average compression and
decompression rates (bytes per microsecond).

Notice that the use of a 32KB block compression
does not significantly impact compression ratio. In fact,
for files with a high standard deviation for compres-
sion ratio (indicating that some blocks are significantly
more compressible than others), we discovered that us-
ing 32KB blocks commonly yields higher compression
and decompression rates over compression over entire
files. We believe that this occurs since, for block-based
compression, we force zlib to flush all pending output
and process all the input, i.e., zlib processes the input
data and outputs all compressed data at once.

4 Results

To empirically evaluate the effectiveness of ACE, we
considered three scenarios: Never-Compress, Always-
Compress, and ACE compression. With Never-
Compress, ACE transfered data without compression.
For Always-Compress, ACE compressed and transfered
the data in 32KB blocks and then decompressed the data
at the client host. For both of these cases, ACE intro-
duces no overhead for prediction or NWS access. The
final scenario, ACE compression, is the system that we
describe herein.

For each of our experiments, we considered un-
loaded and loaded resources (CPU and network) to eval-
uate how effectively ACE adapts to changing resource
performance conditions. We considered four levels of
CPU load: No Load in which there are no other pro-
cesses running; Medium Load in which there are 4
dummy processes running on the client hosts, and 8 run-
ning on the server host; Heavy Load in which there are
8 dummy processes on the client hosts and 20 on the
server host; and Very Heavy Load in which there are
180 dummy processes on the server host. The dummy
processes are programs that repeatedly execute floating
point operations.

For our fast network experiments, we introduced
network traffic using custom traffic generators: client-
server pairs repeatedly exchange 4KB of data. We intro-
duced three levels of network load: No Load in which
there is no traffic generated, Medium Load in which
there are 12 traffic generator pairs, and Heavy Load in
which there are 20 traffic generator pairs. For the slow
network, we did not introduce traffic generators since



Table 5: ACE performance results for slow network
(suns-gibson).

Slow (Internet) Network Results
NetLd LocLd RemLd TNever TAlways TACE

No Load No Load No Load 285.08 138.23 126.72
No Load No Load Medium 270.92 136.01 139.02
No Load No Load Heavy 269.00 137.58 134.87
No Load Medium No Load 252.30 121.69 135.11
No Load Medium Medium 256.25 129.92 152.59
No Load Medium Heavy 246.25 128.42 134.55
No Load Heavy No Load 237.16 114.50 119.64
No Load Heavy Medium 194.01 115.89 114.54
No Load Heavy Heavy 236.49 117.43 122.17
No Load Very Heavy No Load 103.75 1993.23 131.99
No Load Very Heavy Medium 198.11 2032.10 181.72
No Load Very Heavy Heavy 484.15 2232.10 580.75

the bandwidth is very low without them.
In Tables 4 and 5, we show the average transfer

times (secs) across all benchmark files using various
CPU and network loads for the fast and slow network,
respectively. The data indicates that for a given ex-
periment, ACE (TACE) successfully approximates to
either Always-Compress (TAlways) or Never-Compress
(TNever) depending on which enables better perfor-
mance given the underlying resource performance.

For our fast network experiments using unloaded
end-points and variable network load, ACE en-
ables significant performance improvement over Never-
Compress. ACE enables similar improvements over
Always-Compress as CPU load increases. Our results
indicate that CPU load has a very dramatic effect on the
compression decision. As such, Always-Compress does
poorly when CPU load increases.

ACE can achieve the best performance across bench-
marks since it considers individual data characteristics.
This is exemplified in Figure 1 which shows the fast net-
work transfer time (secs) for the individual benchmark
files using the Medium-Medium-Medium load scenario
(the first Medium refers to the network load, the sec-
ond Medium refers to the server CPU load (suns), and
the last Medium refers to the client CPU load (heat)).
For some files (paper, partial.adl catalog.txt), ACE cor-
rectly determines that compression should be used; for
others, ACE avoids compression.

Since bandwidth is a significant bottleneck for the
slow network, only under very heavy CPU load should
compression be avoided as indicated by the ACE results
that approximate to Never-Compress for these cases. We
have left out the results for Very Heavy CPU load for
the fast network for brevity since the effect of CPU load
and hence the efficacy of ACE can be observed under
Medium and Heavy load.

The results also indicate that our use of adaptive
re-introduction of compression is effective and that the
overhead introduced by ACE is very small. The former
is shown by the results in which ACE approximates to

Fast Network (Medium−Medium−Medium)

0

5

10

15

20

25

30

35

paper

DG
_1

HUH−

parti
al

cc
_xa

..

hs_
ch

r

lio
n.m

pg

adobe..

T
im

e
(s

e
c

o
n

d
s

)

Never−Compress

Always−Compress

ACE

Figure 1: Per-file fast network results for the
Medium-Medium-Medium load scenario (medium
network load, medium server CPU load, and medium
client CPU load).

Never-Compress. This occurs when the underlying re-
source performance changes in a way that makes on-
the-fly compression infeasible, e.g., when CPU load in-
creases. The latter (minimal ACE overhead) is exhibited
in the fast network results (in Table 4) for the NoLoad-
Heavy-Heavy and the Heavy-NoLoad-NoLoad scenar-
ios in which ACE compresses few blocks and almost
all blocks, respectively. By comparing Never-Compress
with ACE in the first case and Always-Compress with
ACE in the second case, it is seen that the difference is
very small. On average over all files, this difference is
0.0s and 0.4s, respectively.

To see the effect of compression level we have con-
ducted several experiments using different zlib compres-
sion levels (1, 3, 6 and 9). For the previous results, we
used a compression level of 1 only since it is very fast.
Figure 2 shows the effect of varying compression level
for the fast network in which the client, server, and net-
work is unloaded. Others [17] have shown that using
higher compression levels commonly results in lower
compression rates without any significant gain in com-
pression ratio. Our experimental results confirm this. In
addition, as shown by the results for the hs chrY.gbk
file, increasing the compression level can severely de-
grade performance. In our slow-network experiments
(not shown here), the performance difference between
compression levels is not noticeable since bandwidth is
the main bottleneck and compression ratios do not differ
much by compression level.

5 Related Work

The research that is most closely related to ACE uses
resource performance characteristics to make compres-
sion decisions. We previously considered dynamic net-
work performance to select between Java programs that
were pre-compressed using different compression for-
mats [12]. ACE is significantly more general in that it
can be used for any type of file and performs on-the-fly



Effect of Compression Level

0

5

10

15

20

25

30

35

paper

DG
_1

HUH−

parti
al

cc
_xa

..

hs_
ch

r

lio
n.m

pg

adobe..

T
im

e
(s

e
c

o
n

d
s

)
Level 1

Level 3

Level 6

Level 9

Figure 2: The effect of compression level on trans-
fer performance. The graph shows the total time
(for compression, compressed-transfer, and decom-
pression) using the fast network in which the client,
server, and network is unloaded.
compression. In addition, ACE considers CPU load and
intercepts TCP/IP socket calls transparently.

In [16], the authors describe a dynamic compression
algorithm for text files which considers network perfor-
mance and server load. Their work is restricted to text
files and intended for web servers. Our work dynam-
ically adapts to all types of files as well as to the en-
tropy within a single file. In addition, ACE considers
CPU load which our results indicate is vital for improved
transfer performance in an Internet setting. In contrast,
this prior work only considers the number of clients the
server processes. The authors in [8] present a similar
system but again only consider network performance.

A form of adaptive compression that is similar to
ACE is described in [11] and then extended in [10]. The
goal of this work is to vary the level of on-the-fly com-
pression used so that the network is never under-utilized.
This work differs from ACE in that it does not consider
the CPU load of the remote host. In addition, this prior
work assumes that higher compression levels will result
in better compression ratio. We find that this is not al-
ways true, e.g., when data is not compressible. ACE is
also different in that, it uses forecasts of future resource
performance which effectively prevents oscillations in
the algorithm presented in this prior work.

6 Conclusions
We present ACE, an adaptive compression execu-

tion environment that improves Internet transfer per-
formance by dynamically selecting between competi-
tive compression algorithms for on-the-fly compression.
ACE makes its decisions by predicting and comparing
transfer performance for both uncompressed and com-
pressed transfer. ACE is able to adapt to both the
changes in resource performance and the compressibil-
ity of the data. Our empirical evaluation of ACE for
both local area and Internet links, indicate that the over-
head introduced by ACE is minimal and that the accu-

racy with which ACE makes its estimates enables sig-
nificant Internet transfer performance improvement.

References

[1] Abilene Network Technology. http://abilene.
internet2.edu/.

[2] Ross Arnold and Timothy C. Bell. A corpus for the evaluation of
lossless compression algorithms. In Designs, Codes and Cryp-
tography, pages 201–210, 1997.

[3] Canterbury corpus. http://corpus.canterbury.ac.nz/.

[4] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO: Java
Under Dynamic Optimizations. In Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and
Implementation, pages 13–26, June 2000.

[5] A series of computer generated movies used in our ex-
periments. http://www5.in.tum.de/forschung/
visualisierung/duenne_gitter.html/.

[6] I. Foster and C. Kesselman. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[7] Homo sapiens genomic sequence for chromosome 1. ftp://
ftp.ncbi.nih.gov/genomes/H_sapiens/CHR_Y/.

[8] Ningning Hu. Network aware data transmission with com-
pression. Technical Report CMU-CS-01-164, Carnegie Mellon,
2001.

[9] Botanical publications xml file. http://www.huh.
harvard.edu/databases/cms/download.html.

[10] E. Jeannot, B. Knutsson, and Mats Bjorkman. Adaptive online
data compression. In HPDC’02, July 2002.

[11] B. Knutsson and M. Bjorkman. Adaptive end-to-end compres-
sion for variable-bandwidth communication. Computer Net-
works, 31(7):767–779, April 1999.

[12] C. Krintz and B. Calder. Reducing Transfer Delay with
Dyanamic Selection of Wire-Transfer Formats. In Tenth IEEE
International Symposium on High Performance Distributed
Computing, August 2001.

[13] J. Lee, M. Winslett, X. Ma, and S. Yu. Enhancing data migra-
tion performance via parallel data compression. In International
Parallel and Distributed Processing Symposium, April 2002.

[14] D. A. Lelewer and D. S. Hirschberg. Data compression. ACM
Computing, Springer Verlag (Heidelberg, FRG and NewYork NY,
USA)-Verlag Surveys, ; ACM CR 8902-0069, 19(3), 1987.

[15] Highly compressed mpeg file used in our experiments. http:
//home.in.tum.de/˜paula/mpeg/lion.mpg.

[16] N. Motgi and A. Mukherjee. Network conscious text compres-
sion system (nctcsys). In International Conference on Informa-
tion Technology: Coding and Computing, April 2001.

[17] O. Pentakalos and Y. Yesha. Online data compression for mass
storage file systems. Technical Report TR-CS-95-05, University
of Maryland Baltimore County, July 1995.

[18] Tpc-w benchmark suit. http://www.tpc.org/tpcw/
default.asp.

[19] UCSB RACELAB: The laboratory for Research on Adaptive
Compilation Environments. http://www.cs.ucsb.edu/
˜racelab.

[20] R. Wolski. Dynamically Forecasting Network Performance Us-
ing the Network Weather Service. Journal of Cluster Comput-
ing, 1:119–132, January 1998.

[21] ZLib compression library. http://www.gzip.org/zlib/.


