
http://wrap.warwick.ac.uk

Original citation:
Cristea, Alexandra I. and De Mooij, A. (2003) Designer adaptation in adaptive
hypermedia authoring. In: International Conference on Information Technology : Coding
and Computing (ITCC 2003), Las Vegas, US, 28-30 Apr 2003. Published in:
International Conference on Information Technology: Coding and Computing
[Computers and Communications], 2003. Proceedings. ITCC 2003. pp. 444-448.

Permanent WRAP url:
http://wrap.warwick.ac.uk/61254

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher statement:
“© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.
For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61254
mailto:publications@warwick.ac.uk

A.I. Cristea, A. de Mooij, Designer Adaptation in Adaptive Hypermedia Authoring, ITCC’03, Las Vegas, US, IEEE Computer Science

Designer Adaptation in Adaptive Hypermedia Authoring

Alexandra I. Cristea and Arnout de Mooij
Faculty of Mathematics and Computing Science, Information Systems Department

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
a.i.cristea@tue.nl

Abstract

Recently, the importance of creating authoring support
for adaptive hypermedia system design offering multi-
modality and personalization is becoming evident
[4][5][6][7][1]. In the process of designing such
authoring support, we discovered that given the difficulty
of adaptive hypermedia authoring, i.e., in designing
different levels of abstraction, alternatives, multiple links,
etc., it would be beneficial to also attend to the authoring
needs and adapt to the author. Therefore, this paper
describes for the first time an attempt of adaptation not
only to the student, but also to the designer.

1. Introduction

1.1 Design of Adaptive hypermedia

A hypermedia system is a database-like software
system, which can be accessed using a hypermedia tool, as
for instance the web via a web browser [1]. A hypermedia
system is said to be adaptive if it can automatically adapt
to goals, needs or, e.g., new conditions, which can be
deduced, for example, from actions the system user
undertakes. For instance, in adaptive courseware the
adaptation is reflected in the various ways and orders in
which the study material is presented to the different
students. Basically, the more alternatives there are, the
higher the adaptation degree. This flexibility is beneficial
as long as it serves a specific learning goal, but can also
lead to psychological pressure and unwanted effects. To
find the exact balance between flexibility versus stability
and predictability is extremely important and a
challenging research in itself, but we are not going to go
into details about this in this paper.

1.2. From MyEnglishTeacher to MOT

To study various types of adaptation, as well as
methods for their efficient design, we use an adaptive
course system design tool. The present system extends a
previous tool for constructing adaptive hypermedia
systems, My English Teacher (MyET [8][12]) and its
successor My Online Teacher (MOT [13]). Although

there are many tools for course development, there are
only few other examples of tools trying to create adaptive
courseware, as shown in [3]. MyET allowed teachers to
create concepts and concept maps to model their courses.
Based on these concept maps the teacher should be able to
construct lessons, to be presented to the student in an
adaptive way. The part of (independent) lesson
construction was not yet available in MyET and the way
in which concept maps could be created was too
restricted. Moreover, MyET used files to store all the
information, while a database is preferred. The goal was
to extend MyET into ‘My Online Teacher’ (MOT v.2), for
a more general audience. This is why the first
implementation testing is done via a ‘Neural Networks’
course for third year students in Computer Science. In
design terms, the issue was to make it possible to
construct complete concept maps and lessons, stored in a
database, and to demonstrate some simple features of
automatically binding concepts for adaptation purposes.

2. Goals

2.1. Initial goals

An adaptive (web) hypermedia course is a hypermedia
system that can be used by a student to learn about a
certain subject via, e.g., a web browser. The basic feature
of such a system is that it tries to interpret the students’
current knowledge (and often, other student parameters
and characteristics as well) in order to adapt itself to his
learning needs. Ideally, there is no need for a human
teacher. The student can perform actions such as choosing
topics he wants to learn about, asking for more
information or solving exercises. Depending on the
actions the student takes (for example the pages visited, or
the results of exercises) the course transparently adapts to
the student’s needs.

We have delimited the main steps of the creation of an
adaptive lesson design system as being the creation of:

1. A tool for manipulating concept maps.
2. A method for calculating correspondence

weights between concept attributes.
3. A tool for constructing lessons based on a

concept map.

A.I. Cristea, A. de Mooij, Designer Adaptation in Adaptive Hypermedia Authoring, ITCC’03, Las Vegas, US, IEEE Computer Science

2.2. Designer Adaptation

Adaptation to the teacher is similar to adaptation to the
student, if we consider that adaptation occurs with regard
to a goal (be it a learning, or a design goal) or if it comes
as a response to a need [9]. However, this new type of
adaptation is quite different, if we consider the typical
adaptation to (student) user preferences. Such (designer)
user preferences adaptation is not taken into consideration
here. The paper shows the design and implementation of
this new variant of adaptivity, within the larger context of
designing an authoring support system for adaptive
hypermedia. The adaptation of a course under design to
the design goal can take many forms. This first version
illustrates (semi-) automatic course linking. Thereby, we
can claim to lay the basis for a course that builds (or
writes) itself.

3. Database design

The database was to be implemented according to the
ER-diagram depicted in Fig. 1, representing the initial
static UML classes, and which can be divided into two
parts: the concept domain, formed by the left side of the
diagram, and the course (or lesson hierarchy) on the right
side of the diagram. These two parts are connected by

means of the relation between the C-Attribute (concept
attribute) and the L-Attribute (lesson attribute).

3.1. Concept domain

A concept contains one or more sub-concepts, which
are concepts on their turn, hence inducing a hierarchical
(tree) structure of concepts.

Each concept is a set of concept attributes. These
attributes hold pieces of information about the concept
they belong to. Several kinds of attributes are possible,
corresponding to the different attribute instances in the
diagram. For example, a concept can have a ‘title’-
attribute, a ‘description’-attribute or ‘example’-attribute.

Concept attributes can be related to each other. Such a
relation, characterized by a label and a weight, indicates
that their contents treat similar topics.

Exercises are modeled as special concepts, because
they have their own hierarchical structure within the
greater concept structure, while they actually belong to
one (non-exercise) concept.

3.2. Course

A lesson contains sub-lessons, which are lessons on
their turn, hence creating a hierarchical structure of
lessons. Sub-lessons within a lesson can be OR-connected
(being lesson alternatives) or AND-connected. To
facilitate this, a lesson contains a lesson attribute (L-

Attribute in the diagram), which in its turn contains a
holder for OR-connected sub-lessons (L-OR-Conn) or a
holder for AND-connected sub-lessons (L-AND-Conn).

Figure 1. Initial ER-diagram

A.I. Cristea, A. de Mooij, Designer Adaptation in Adaptive Hypermedia Authoring, ITCC’03, Las Vegas, US, IEEE Computer Science

The holder contains the actual sub-lessons in a specified
order.

A lesson attribute contains, besides the sub-lesson
holders, one or more concept attributes. This is the link
with the concept domain. The idea is that the lesson puts
pieces of information that are stored in the concept
attributes together in a suitable way for presentation to a
student.

In the database implementation phase and even in the
later phase of system implementation and adding the
feature of calculating relatedness relations between
concept attributes some changes were made to the ER-
diagram, but this will not be detailed in the current paper.

4. Calculating relatedness relations

The assignment describes so called ‘relatedness
relations’ between concept attributes. Concept attributes
are related when they share a common topic. It turned out
to be more logical to record this relation type at concept
level, so that a ‘relatedness relations’ marks the existence
of a relation between concepts. If the relatedness is
induced from an attribute level, we took the design
decision to keep the name of that attribute as the semantic
label for the respective relatedness relation.

The system was required to help the teacher in
determining the relatedness relations by calculating
correspondence weights between pairs of concepts. There
are several ways of computing such links, some symbolic,
some sub-symbolic. For a simplified illustration of (semi-
)automatic binding, we took the design decision to base
these correspondence weights on the number of
occurrences of the keywords of one concept in the
attribute contents of the other concept.

4.1. The initial plan for relatedness calculation

We consider the concept map of the courseware to be
determined by the tuple <C,L>, where C represents the set

of concepts and L the set of links, and a concept cC is

defined by its set of attributes, Ac (where AcAmin; Amin is
the minimal set of attributes required for each concept to
have1). As all the sets above are finite, they can be given
(relative) identification numbers. Therefore, concept c is
determined (and therefore can be referred to) by its
identification i{1,…,C} (where C=card(C)) and the

attributes of concept i are ai[h], with h{1,…,Ai} and
AiAmin (where Ai=card(Ac) and Amin=card(Amin)).
Moreover, a special attribute of each concept, ai[2]={
(ki[s])| s= 1,…,Ki}, is the list of keywords for concept i
(with Ki the number of keywords of attribute ai[2] called

1
by the adaptive course design constrains, that aim at creating concepts

annotated with sufficient meta-data

‘keyword’ of concept i). This ‘keyword’ attribute is
obligatory, therefore ai[2]  Amin.

With the above notations, we can express the number
of occurrences of keyword ki[s], with s{1,…,Ki} of
concept i{1,…,C} in an attribute aj[h], with h{1,…,Aj}
of concept j{1,…,C} as being given by occij(ki[s], aj[h]).
If:

maxoccij (ki[s], aj[h])= count(words in aj[h]);

is the maximum possible number of occurrences of ki[s] in
aj[h], then occij (ki[s], aj[h]) /maxoccij (ki[s], aj[h]) [0, 1].

When we add these values over all keywords of i and
all attributes of j and divide the result by the number of
keywords of i and by the number of attributes of j we get a
value which is also between 0 and 1, indicating the level
of correspondence between concept i and concept j.

Therefore, for concepts i, j{1,…,C} we can define:

correspondence_directed(i,j)=

ji

1 1
jiij

jiij

A*K

[h])a[s],(kmaxocc

[h])a[s],(kocc
  

Aj

h

Ki

s

As the name says, this number only looks at one
direction of the relation between concepts i and j. If we
consider also the reverse direction, a better measure for
the correspondence between the concepts can also contain
a weighted reverse correspondence, as follows:

correspondence(i,j) = *correspondence_directed(i,j) +
+ *correspondence_directed(j,i)

with ,[0,1] and +=1
If ==0,5 the following relation also holds:

correspondence (i,j) = correspondence (j,i)

To further fine-tune the relatedness calculation an
importance weight can be assigned to each type of
attribute to be able to give certain attributes (e.g., the title,
ai[1], or the keywords, ai[2], attribute) a stronger influence
on the correspondence weight. Therefore, if we consider
importance(aj[h]) [0,1] to be the value of the importance
(or weight) of attribute aj[h] and if:

 h=1,…,Aj (importance(aj[h]) = 1;
The formula for correspondence_directed becomes:
correspondence_directed(i,j) =

ji

1 1
jiij

jiijj

A*K

[h])a[s],(kmaxocc

[h])a[s],(kocc*[h])(aimportance
  

Aj

h

Ki

s

A more generalized formula is:
correspondence_directed(i,j) =



 



 

Aj

1h
ji

1 1
jiij

jiijj

[h])(aimportance*K

[h])a[s],(kmaxocc

[h])a[s],(kocc*[h])(aimportanceAj

h

Ki

s

A.I. Cristea, A. de Mooij, Designer Adaptation in Adaptive Hypermedia Authoring, ITCC’03, Las Vegas, US, IEEE Computer Science

The definition of correspondence(i,j) remains
unchanged. The system will then calculate
correspondence(i,j) for each pair of concepts i and j and
suggest a relatedness relation between the two concepts
when this value exceeds a certain threshold. The teacher
can choose to add this relatedness relation or to ignore it.
When the teacher decides to add a relatedness relation he
can give it a label and a weight (by default the
correspondence weight, correspondence_directed(i,j), is
proposed).

4.2. A second plan for relatedness calculation

Relatedness relations will have to have a type. Using
the formula as described above, it is impossible to see in
what way two concepts are related, because the
correspondence weights of all keywords and attributes are
used to get the correspondence weight.

A better idea is therefore to calculate correspondence
weights per attribute as follows.

With the above notations, for  concepts i, j and 
attributes aj[h] of j:

correspondence_directed(i, j, aj[h]) =

i

1
jiij

jiij

K

[h])a[s],(kmaxocc

[h]a[s],(kocc
 

Ki

s

The attribute type of attribute a can be used as a label
(or even type) of the relation, with the weight of the
relation given by correspondence_directed(i, j, aj[h]).

For example, concepts A and B can have a relatedness
relation of type ‘title’, with the weight given by
correspondence_directed(A,B,aB[1]) and also a relatedess
relation of type ‘text’, with the weight given by
correspondence_directed(A, B, text attribute of B). In this
way, more than one relatedness relation between two
concepts can exist. However these relations will have
different types, indicating in what way the concepts are
related.

Optionally, a value:

correspondence(i,j,aj[h])=
(correspondence_directed(i,j,aj[h])+
+ correspondence_directed(j, i, ai[h’])) / 2

can be used for all concepts i, j and all attributes a j[h]
of i and all attributes a i[h’] of j, a j[h] and a i[h’] having
the same type (i.e., h=h’). Please note that concepts may
not have attributes of the same type (if a j[h] Amin, then
the existence of an attribute of the same type, a i[h’]
Amin, given the condition h=h’ is fulfilled, is guaranteed;

if a j[h]  Ac Amin, such guarantee does not exist, and it

is up to the course designer to ensure the existence of
recognizable types, if desired).

5. Relatedness Computations Implementation

Figure 2 shows a screenshot of the list of possible
connections the system automatically finds and their
suggested weights for concept ‘Theorem of Batch
Perceptron Convergence’ from a Neural Networks course.

The course designer (teacher) can accept or reject
them, as well as change weights or labels (Fig. 3). This
screen appears after pressing ‘add’ in the previous one.

6. Project evaluation

Figure 2. Automatic relatedness relations

Figure 3. Adding relatedness relations

A.I. Cristea, A. de Mooij, Designer Adaptation in Adaptive Hypermedia Authoring, ITCC’03, Las Vegas, US, IEEE Computer Science

6.1 Planning

It turned out that lesson modeling (based on concept
maps) was more difficult then expected. At first, concept
maps and lessons seemed to be much alike, so we
expected to use the same database structure for both.
However, this proved to be a bad idea and we had to make
some great extensions to the database.

Also, it became apparent that not all desired
functionality of the user interface was stated in the URD.
Especially the calculation of the relatedness relations
turned out to be somewhat more complicated then
expected. Even now, this part is not really fulfilled
satisfactory. Furthermore, the first versions of the
interface were not very enjoyable to use, so changes had
to be made a couple of times. For example, HTML-lists
used for displaying lessons and concept maps had to be
replaced by collapsible lists written in JavaScript, etc.

6.2 Evaluation of the system

The delivered system satisfies in principle all user
requirements and is efficient in it’s use. However, some
critical remarks can be made.

It is a minimal system with no extra’s and some open
ends. For example, the interface is non-graphical, while
the representation of concept maps could possibly benefit
a lot from using graphical elements. Some other features
that are lacking are warnings (e.g. when removing
concepts), error messages (when performing illegal
actions) and security issues (preventing users from
viewing or changing other users’ concept maps or
lessons). Finally, much can be done to improve the
calculation and typing of relatedness relations. All these
provide some work for the future.

7. Conclusions

In this paper we have presented a system for designing
adaptive hypermedia, instantiated within an educational
setting. We have briefly shown the design and
implementation steps of this system. We have argued from
the start that the authors of adaptive hypermedia have a
considerably difficult task, compared to authors of regular
hypermedia, for example. Based on this assumption, we
have endeavored to construct a support system that adapts
to the design goal. Therefore, the focus was on the
adaptivity to the designer. This is an extended use of this
term, if compared to the user adaptivity we are used to.

Adaptation to the designer, the way we see it, can be
various: link -, content adaptation, hints, different design
levels, templates suggesting, but also recognition,
collaboration support [6]. However, in this paper we have

only shown a small demonstrative example of automatic
linking. Moreover, as suggested in the evaluation section,
there is space for improvement even in automatic linking:
instead of deterministic functions, sub-symbolic clustering
techniques can be used [10].

In this way we have made a step towards hypermedia
that builds (or writes) itself.

8. Acknowledgements

This research is linked to the European Community
Socrates Minerva project "Adaptivity and adaptability in
ODL based on ICT" (project reference number 101144-
CP-1-2002-NL-MINERVA-MPP).

9. References

[1] ADAPT: http://wwwis.win.tue.nl/~alex/HTML/Minerva/
[2] 2L690: Hypermedia Structures and Systems, Lecturer: Prof.

De Bra, http://wwwis.win.tue.nl/~debra/2L690/
[3] Brusilovsky, P.: Adaptive hypermedia, User Modeling and

User Adapted Interaction, Ten Year Anniversary Issue
(Alfred Kobsa, ed.) 11 (1/2), 2002, 87-110.

[4] Calvi, L. and Cristea, A.I.: Towards Generic Adaptive
Systems Analysis of a Case Study, AH 2002, Adaptive
Hypermedia and Adaptive Web-Based Systems, LNCS 2347,
Springer, 79-89.

[5] Cristea, A.I. and De Bra, P.: Towards Adaptable and
Adaptive ODL Environments, E-Learn’02, Montreal,
Canada, AACE, October 2002, pp. 232-239.

[6] Cristea, A.I., Okamoto, T. and Kayama, M.: Considerations
for Building a Common Platform for Cooperative
&Collaborative Authoring Environments, E-Learn’02,
AACE, October 2002, pp. 224-231.

[7] Cristea, A.I. and Aroyo, L.: Adaptive Authoring of Adaptive
Educational Hypermedia, AH 2002, Adaptive Hypermedia
and Adaptive Web-Based Systems, LNCS 2347, Springer,
122-132.

[8] Cristea, A.I., Okamoto, T. and Belkada, S.: Concept
Mapping for Subject Linking in a WWW Authoring Tool:
MyEnglishTeacher: Teachers' Site, ANNIE'00, ASME.

[9] IMS (Instruct. Manag. System): http://www.imsproject.org
[10] Kayama, M., Okamoto, T. and Cristea, A.I.:

Exploratory Activity Support Based on a Semantic Feature
Map, AH’00, LNCS 1892, Springer, 347-350.

[11] Loeber, S. and Cristea, A.I. (2002), A WWW Information-
Seeking Process Model, ISSEI 2002, CBMO workshop, 22 -
27 July, 2002, England.

[12] MyET:http://wwwis.win.tue.nl/~alex/MyEnglishTeacher/T
eachersSite/index.html

[13] MOT:http://wwwis.win.tue.nl/~alex/MOT01/TeachersSite-
html/index.html

[14] Wu, H., Houben,G.-J., De Bra, P.: AHAM: A Reference
Model to Support Adaptive Hypermedia Authoring,
Informatiewetenschap 1998, Ed. E. De Smet, Antwerp,
Belgium, 11 December 1998, 51-76.

