
1

Modeling Long Duration Transactions with Time Constraints in Active Database 

DS Yadav
*
, Rajeev Agrawal , DS Chauhan

*
, RC Saraswat

*
, AK Majumdar

§

*Institute of Engineering & Technology, U P Technical University, Lucknow-21, INDIA 
# Department of Computer Science, Kettering University, Flint, Michigan, USA 

§Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur-2, INDIA 

 {divakar_yadav, pdschauhan}@rediffmail.com , ragrawal@kettering.edu, akmj@cse.iitkgp.ernet.in 

                      Abstract 

The applications like situation assessment, object 

tracking, trading & stock control, and workflow 
management require actions to be taken in stringent time 

frame for full benefit of the system. These applications 

also require identifying the occurrence of desired event, to 
take appropriate action when an event of interest is found 

to have occurred while maintaining timing constraints. 

Active database with ECA rule provides the mechanism to 
capture the different database events and provide timely 

response but do not guarantee timely processing of real 

time transactions because of their inability to express time 
constraints explicitly. Most of the time constrained real 

life application requires both active and real time 
characteristics. Long duration transactions with explicit 

time constraints are more vulnerable to failures and they 

are subject to heavy compensations in case of aborts. The 
paper intends to investigate the construct required for 

modeling of transactions with timing constraints, 

cooperation semantics and run time monitoring of these 
constraints in active database.

1.   Introduction 

   Traditional Database management systems are not 

considered fit for time critical applications [1]. A time-

constrained application requires the suitable actions to be 

taken in correct time window whenever an event occurs in 

the database. These events may be periodic, aperiodic or 

may occur external to the database. For such time-

constrained application, correctness of result depends not 

only on the logical correctness of computation but also on 

the timeliness of the result. A real time database 

management system [5] can be considered as a repository 

of data, which, provides the efficient storage and retrieval 

of data and has an added capability of processing 

transactions within the time constraints [13]. In real time 

database system, timing constraints are defined by means 

of associating deadline with a transaction [7,8]. Whereas, 

active databases have been found to provide a framework 

to capture the occurrence of database & external events 

and also provide timely response to these events.The basic 

constructs provided in Active Database for maintaining 

the integrity constraints are ECA (Event-Condition-

Action) rules. The ECA rules are defined on the state of 

database and monitors the database events occurring due 

to transaction execution [3]. In the following sections, we 

discuss the construct required to model a long duration 

transaction with full and partial aborts and the mechanism 

for enforcement of temporal constraints, maintaining the 

deadlines and early detection of aborting transaction.  

2. Transaction Model 

Complex Transaction Types  

Traditional notion of the serializability is too restrictive 

and a bottleneck for long duration activities [10,16]. A 

number of extended transaction model like cooperative 

transaction [6], SAGA [14], nested transaction [17] have 

been proposed which addresses long running activities. 

Saga is a long duration transaction model, which can be 

expressed as a series of base transactions. These base 

transactions may be interleaved with other concurrently 

running base transactions. A base transaction type may be 

defined as collection of database object operation, which 

has to be executed as an atomic transaction [12]. 
     

               Forward Execution of Saga 

           Complex Transaction 

           Base Transaction 

                  Figure 1.  A Complex Transaction  

A time constrained long duration activity may be 

expressed as a complex transaction that consists of a set of 

base transaction where timing constraints may further be 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



2

specified on base transaction. In this model, a fired 

instance of complex transaction forms a transaction tree of 

height two [4] as shown in Figure 1. 

Cooperation Semantics  

Long duration transactions are more vulnerable to failures 

and, therefore, in case of aborts, a large amount of work 

has to be undone [4].Reducing the resource contention has 

been one of the major design issues in real time systems. 

Reduced resource contention also minimizes blocking of 

transactions. It has been suggested that prior resource 

reservation is the best policy to meet the real time 

characteristic of a job [5,15]. We suggest that higher 

degree of concurrency along with minimized resource 

contention may be obtained by capturing cooperation 

semantics among the transactions[11]. In [6] a concept of 

Cooperative Transactions is proposed which uses relaxed 

version of ACID properties for concurrent execution. A 

cooperative transaction allows other blocking transaction 

to access the data object locked by it. The cooperation 

semantics reduce the contention for the resources. As 

shown in the fig. 2, if two concurrent complex transaction 

(T1,T2) request for same data object, and if  T1  succeeds in 

getting a lock on data object, same may also be granted to 

T2  if  they are cooperating. R1 and R2 in the fig.2 shows 

the requests for locks to the data object by transactions T1,

T2  respectively.  Grant to access the data object is given 

by G1, G2 to the transactions[20]. 

                      

                    T1                                      T2

                 R1 G1 R2                   G2

       Data  Object 

           Complex Transaction 

               Figure 2: Cooperative Transaction  

Timing Constraints on Transaction 

Timing constraints imposes temporal restriction on system 

and its users. Two timing constraints namely performance 

constraints and behavioral constraints has been proposed 

for real time systems. Performance constraint limits the 

system itself, while behavioral constraints are applicable 

to users [2]. For the purpose of setting limits to the 

transactions, we have adopted following timing 

constraints:

Maximum Timing Constraints: The constraint imposes 

temporal restriction on maximum time between 

occurrences of two events. 

Minimum Timing Constraints: The constraint sets the 

restriction on minimum time elapsed in occurrence of two 

events. 

Durational Constraints:  The restriction states that an 

event must occur for specified time duration. 

  Either one or a combination of these timing constraints 

may be applicable to complex transaction.  Suppose ‘A’ 

and ‘B’ represent start and termination event of a complex 

transaction.  Time[A] function return time of occurrence 

of event ‘A’ i.e. start time of complex transaction. 

Similarly, Time[B] represent the termination time of 

complex transaction. Maximum timing constraint imposes 

temporal restriction on maximum time elapsed between 

the occurrence of the events ‘A’ and ‘B’. Let TMax denotes 

maximum time which may be elapsed between event ‘A’ 

& ‘B’. To ensure temporal correctness, the Transaction 

Processing System (TPS) must execute complex 

transaction such that following condition is satisfied: 

Time [B] – Time [A] <= TMax 

Similarly, if TMin denotes the minimum time which must 

be elapsed between the start and termination event of 

complex transaction and  TDue denotes the time duration 

the complex transaction must be executed, then following 

conditions must be satisfied to ensure  temporal 

correctness:
Time [B] – Time [A]  >= TMin & Time [B] – Time [A]  = TDue

If any of the time constraints is violated then system may 

decide to roll back the transaction. The TPS must schedule 

the transactions in such a way that they should meet all the 

timing constraints specified with the complex transaction. 

In order to avoid slipping the deadline and violation of 

durational timing constraints, a complex transaction may 

be executed at elevated priority. Priority driven 

transaction scheduling [8,15,16] allows the transaction to 

change the priorities at run time according to the 

criticalness. A high priority transaction gets the resource 

earlier than low priority transaction. This semantics allows 

the transactions to meet the deadline even if they are at the 

verge of slipping the deadlines. 

3. Enforcement of Temporal Constraints 

and slack time modifications. 

Suppose a complex transaction (CT) fires ‘m’ base 

transactions (BT) BT1, BT2,…BTm as a consequence of 

forward execution. Let ‘A’ and ‘B’ are events of start and 

termination of complex transaction and execution of 

complex transaction start at time t1 and it completes the 

computation at t2. Therefore, 

t1 =  Time[A]  ,  t2 =Time[B]  

Let ‘C’ & ‘S’ are estimated computation time and slack 

time for complex transaction. 

Maximum Timing Constraints  

Maximum timing constraints may be specified by a 

parameter t represents the maximum time length for 

completion of computation of a complex transaction. 

Therefore following inequality must be satisfied. 

t2 - t1 <= S + C  <= 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



3

Similarly, if ‘ci’ and ‘si’ are estimated computation time 

and slack time of ith base transaction (BTi), the following 

inequalities must also hold. 
                   i= m 

       ( ci + si )                   

                   i =1                    
Suppose the actual time and maximum allotted time for ith

base transaction are TAct ( BTi ),  TMax (BTi) respectively. 

We propose that the maximum allowable time for 

computation ( of complex transaction (CT) must placed 

to various base transactions such that, 
                    i=m 

       ( TMax ( BTi)  )          

                    i=1          

where  TMax ( BTi)  = ci + si  .

Following conditions must be monitored during complex 

transaction execution to ensure temporal correctness.  

1. TAct ( BTi ) >  TMax (BTi) i.e. BTi  takes larger time 

than maximum allowable time for computation. 

2. TAct ( BTi ) <  TMax (BTi) i.e. BTi  takes lesser time 

then maximum allowable time for computation. 

3. TAct ( BTi ) = TMax (BTi) i.e. BTi ’s actual time to 

complete its computation is exactly equal to 

maximum allowable time.  

In event of completion of computation of a base 

transaction if the conditions 1 & 2 of above are satisfied 

then slack time for remaining base transactions must be 

modified according to following policy. Consider first 

condition when a base transaction BTi’s actual execution 

time exceeds the maximum allowed time TMax (BTi). The 

extra time taken by the base transaction to complete its 

execution should be compensated by reduction in slack 

time of the remaining base transactions [4]. Therefore, If    

TAct ( BTi ) >  TMax (BTi,),  then new slack time for kth base 

transaction may be modified as 

sk  =   sk – ( (  TAct ( BTi ) - (ci + si) ) /  ( m - I )) 

where ‘m’ is the total number of base transaction to be 

fired by complex transaction and ‘I’ is number of base 

transaction fired so far. Consider the second condition 

where a base transaction BTi finishes its computation 

earlier then its maximum allotted time TMax (BTi). The 

time saved in computation of ith base transaction must be 

added to slack time of remaining base transaction. 

Therefore, If  TAct ( BTi ) <  TMax (BTi) ,then new slack 

time for kth base transaction may be modified as 

   sk = sk +     ( (ci + si) - TAct ( BTi )) /  ( m- I ) ) 

The third condition mentioned above is considered ideal 

and no slack time modification is required.  

Minimum Timing Constraints      

Minimum timing constraints imposes restrictions on 

minimum time elapsed in two events. Let TMin denotes 

minimum time which must be elapsed between event ‘A’ 

and ‘B’. Suppose ci is estimated execution time of ith base

transaction (BTi) of complex transaction CT. Following 

inequalities must be satisfied for ensuring temporal 

correctness with minimum timing constraints. 
                       i= m 

      TMin ( ci )                        

                       i=1                    
Suppose TAct (BTi) is the actual time  taken by ith base 

transaction and its minimum execution  time is TMin (BTi ). 

There exist following three conditions to be monitored, 

1. TAct (BTi) > TMin (BTi ) i.e BTi  takes larger time than 

minimum allowable time for computation. 

2. TAct (BTi) < TMin (BTi) i.e BTi  takes lesser time than 

minimum allowable time for computation. 

3. TAct (BTi) = TMin (BTi) i.e. BTi’s actual time to 

complete its computation is exactly equal to 

minimum allowable time. 

  First condition is desirable one, as base transaction 

execution takes more time than its minimum allowable 

time. Similarly, the third condition is also desirable as a 

BTi  ’s actual time to finish its computation is exactly 

equal to minimum allowable time. In second case where   

BTi takes lesser time than minimum allowable time for 

computation, the execution of  BTi  must be delayed until 

following is satisfied, 

TAct (BTi) >=  TMin (BTi)

It may be noted that slack time is insignificant while 

imposing minimum timing constraints.  

Durational Timing Constraints      
Durational timing constraints impose the restriction on 

duration of occurrence of an event. Let TDue denotes the 

time for which the complex transaction must be executed. 

Following condition must be satisfied for temporal 

correctness, 

             t2 - t1 = TDue  ,  S + C  = TDue

Similarly, if ‘ci’ and ‘si’ are estimated computation time 

and slack time of ith base transaction ( BTi  ) and TDue

(BTi) denotes the time duration for which  BTi must be 

executed, following must hold , 
                     i= m 

       TDue ( ci + si )                  

                      i=1      
where ‘m’ is total number of base transactions to be fired 

for a complex transaction. During the complex transaction 

processing, it is still possible to satisfy the durational 

timing constraints even if any base transaction finishes its 

computation earlier or its execution is delayed. Let TAct 

(BTi) is the actual time taken by ith base transaction.

Following conditions must be monitored at run time in 

order to maintain these constraints. 

1. TAct ( BTi ) > TDue  (BTi ) i.e BTi  takes larger time then 

its allowable duration. 

2. TAct ( BTi ) < TDue (BTi ) i.e BTi  takes lesser time then 

its allowable duration for computation. 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



4

3. TAct ( BTi ) = TMin (BTi) i.e. BTi ’s actual time to 

complete its computation is exactly equal to 

allowable duration for computation. 

The first and second condition defined above requires 

modification in the slack time while third is an ideal case. 

Slack Time Modification 

Consider the first condition where BTi takes larger 

time than its allowable duration. The slack time for the 

remaining base transactions may be modified in a way 

similar to maximum timing constraints. In this case slack 

time of rest of the base transaction to be executed is 

reduced.  Slack time for kth base transaction to be executed 

may be modified as follows, 

sk  =   sk – ( (  TAct ( BTi ) - (ci + si) ) /  ( m - I )) 

where ‘m’ is the total number of base transaction to be 

fired by complex transaction , ‘I’ is number of base 

transaction fired so far. Consider the second condition 

where a base transaction completes its computation earlier 

i.e. BTi finishes its computation earlier than its allowable 

duration TDue(BTi). Either of following option may be 

chosen to maintain durational timing constraints. First 

option is to modify the slack time for kth base transaction. 

The time saved in computation of ith base transaction must 

be added to slack time of remaining base transaction.  

Slack time for remaining base transactions may be 

modified as following, 

sk = sk +     ( (ci + si) - TAct ( BTi )) /  ( m- I ) ) 

where ‘m’ and ‘I’ have similar meaning as stated above. 

Second option is to delay the execution of  BTi  until 

following is satisfied, 

TAct ( BTi ) =  TDue (BTi )   .Consider the third  condition 

where TAct ( BTi ) = TMin (BTi) i.e. BTi’s actual execution  

time  equals allowable duration for computation. This 

condition is a desirable condition and no modification in 

transaction profile is required. 

4. Condition for Abort 

Abortion of the complex transaction is determined by the 

total remaining time to complete the execution and the 

time already lapsed in the processing.  This process allows 

the early detection of those transactions, which cannot 

meet the timing constraints. 

Maximum Timing Constraints. 

Suppose L is the length of time remaining to complete the 

execution of the complex transaction. Thus, 

 L = Time already lapsed in the computation 

where, is maximum allowable time to complete 

execution of complex transaction. Following condition 

must be monitored for early detection of complex 

transaction. 

                 i= m 

   If   L <  ( ci + si ) 

                 i= p 

 then complex transaction must be aborted.  Here ‘p’ 

denotes number of remaining base transaction to complete 

computation of complex transaction.  

Minimum Timing Constraints.

Let TMin is minimum time which must be elapsed in 

complex transaction execution. Following inequalities 

must be satisfied for ensuring temporal correctness with 

minimum timing constraints. 
                     i= m 

      TMin (TAct ( BTi ) )                     

                     i= 1 

Conditions where TAct ( BTi ) > TMin (BTi )  &  TAct ( BTi ) = 

TMin (BTi) are desirable and corresponds to minimum 

timing constraints. The case where BTi takes lesser time 

then minimum allowable time for computation, the 

execution of BTi must be delayed until following is 

satisfied, 

TAct ( BTi ) >=  TMin (BTi )  . Therefore, this policy ensures 

that no abortion of transaction is required while 

maintaining minimum timing constraints.

Durational  Timing Constraints. 

As mentioned in previous section , following condition 

must hold to maintain the durational timing constraints. 
                      i=m 

       TDue ( ci + si )                

                      i=1      

where TDue,  ci,  si  have usual meaning. The case where 

 TAct ( BTi ) = TDue (BTi) is desirable to satify the 

durational time constraint.The case where   TAct ( BTi ) < 

TDue (BTi ), the base transaction execution may be delayed 

until following is satisfied. 

TAct ( BTi ) =TDue (BTi )

Under the two conditions mentioned above, there is no 

need for complex transaction abortion. However, for the 

third condition where TAct ( BTi )  > TDue (BTi ) , the slack 

time for the remaining base transaction can be modified 

subject to satisfaction of following,  
              i=m 

   L >=  ( ci + si ) 

              i= p 

where ‘p’ is number of remaining base transactions and  

‘L’ is length of time remaining to complete complex 

transaction execution.  Length of remaining time may be 

computed as shown below.  
                     i= p 

   L= TDue  - ( ci + si )  

                    i= 1 

Therefore, the complex transaction need to be aborted 

only if following inequality is satisfied after slack time 

modifications.   
               i= m 

   L   <    ( ci + si )  

               i= p 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



5

5. Conclusions 

In the proposed model, we have modeled long duration 

activity as complex transaction, which follows forward 

execution from one state to another by firing base 

transactions. The base transactions are fired as a 

consequence of condition-evaluation and action-taken part 

of detached mode ECA rule. The temporal constraints 

may be explicitly specified on complex transaction. We 

have proposed a method for enforcement of maximum, 

minimum and durational timing constraints on complex 

transactions. Run time monitoring of these constraints in 

active database can be done for early detection of an 

aborting transaction. The model also suggests that the 

blocking of concurrent transaction can be restricted by 

capturing cooperation semantics among the complex 

transactions. Since transactions are allowed to share the 

locks with the concurrent cooperative transactions,

contentions for resource are reduced. This semantic enable 

the transactions to meet timing constraints. Conditions for 

the abortion of transaction suggest that an active 

transaction should be aborted only in the case when there 

is no possibility to meet the timing constraints. In such 

cases the compensating action plan should be invoked. 

While defining the various timing constraints, this model 

ensures best utilization of slack time even though a base 

transaction fails to meet timing constraints .We have also 

suggested the conditions when a complex transaction can 

satisfy the timing constraints even if some of its base 

transaction fails to meet timing constraint. 

References 

1. U Dayal. “Active Database Management System”, in 

Proc. 3
rd

 Intl. Conference of Data and Knowledge Bases, 

pp 150-169, 1988.

2. B Dasarathy. “Timing constraints of real time system: 

construct for expressing them, Methods of validating 

them”, IEEE Transactions on Software Engineering, 

11(1):80-86, Jan 1985. 

3. M Hsu, R Ladin and D McCarthy. “An Execution Model 

for Active Database Management System”, in Proc. 3
rd

Intl. Conference of Data and Knowledge Bases, 1988. 

4. DS Yadav, etal. “Towards a Model of  Concurrency”, 

Proc. 3
rd

 Intl. Conf. on Information, Communication and 

Signal Processing (ICICS 2001), Singapore, 15-18 Oct 

2001.

5. Purimetla, Rajendrandran, Ramamirtham, Stankovic. 

“Real Time Databasse: Issues & Application”, Editor 

Sang Son in Advances in Real Time System, Prentice 

Hall, pp 487-505, 1995. 

6. F Korth, G Speegal. “Formal aspects of concurrency 

control in long duration transaction system – using 

NT/PV model”, ACM Transaction on Database System, 

19: 492-535, 1994. 

7. Ben Kao, H Garcia-Monlina. “Overview of Real Time 

Database System”, Real Time Computing, NATO ASI 

Series F, Vol 127, Berlin Springer Verlag, pp 261-282, 

1994.

8. R Abott, H Garcia-Monila.“What is a Real Time 

Database System”, Abstracts of 4
th
 workshop on Real 

Time Operating Systems, IEEE, pp 134-138, 1987. 

9. U Dayal, M Hsu, R Ladin. “Organising long running 

activities with triggers and transaction”, Proc. ACM 

SIGMOD, Intl. Conference on management of data, 

Atlanta, 1990. 

10. P Kangsabanik, R Mall, AK Majumdar. “Modelling 

Long Duration and Cooperative Transactions in Active 

Object Oriented Database System ”, in Proc. Intl. 

Workshop on Advanced Transaction Model and 

Architectures, India, 1996. 

11. SK Madria. “A Study of Concurrency Control & 

Recovery algorithms in nested transaction environment”, 

The Computer Journal, 40(10), 1997. 

12. P Kangsabanik , R Mall , AK Majumdar., “Concurrency 

control of nested cooperative transaction in Active 

DBMS”, in IEEE 4
th
  Intl Conference on High 

performance computing ( HiPC-1997), India. 

13. J Stonkovic, Zhao. “On Real Time Transaction”, ACM 

SIGMOD record, 17: 4-18, 1988. 

14. H Garcia Monila, K Salem. “SAGAS”, Proc. of ACM 

SIGMOD, Intl Conference on Management of Data, pp 

249-259, 1987. 

15. Taylor. “Introducing real time constraints in to 

requirement and high level design of operating system”, 

Proc. National telecom Conference, Houston, 1:18.5.1–

18.5.5, 1980. 

16. L Sha, R Rajkumar, JP Lehoczky. “Priority Inheritance 

protocol, an approach to real time synchronization”, 

IEEE Trans. On computers, 39(9):1175-1185, 1990. 

17. J Moss. “Nested Transactions: An approach for reliable 

distributed computing”, Proc. ACM SIGMOD, Intl. 

Conf. On management of Data, Atlantic city, 1990.  

18. P Kangsabik, R Mall , AK Majumdar. “Semantic Based 

Concurrency Control of Open Nested Transactions in 

Active Object Oriented Database Management 

Systems”, Distributed & Parallel Databases, 8(2):181-

222, 2000. 

19. P Kangsabik, R Mall, AK Majumdar. “A Technique for 

Modelling Applications in Active Object Oriented 

Database Management Systems”, Information Sciences, 

102(1-4):67-103, 1997. 

20. D S Yadav, Rajeev Agrawal, R C Sarswat, “An 

approach to reduce resource contention while scheduling 

time constrained long running activity in Active 

Database System”, 5th International Workshop on 

Computer & Information Technologies, Proceedings 

CSIT 2003, ,Ufa, Russia , Vol 1 , PP162-166, 16-18 

Sept , 2003

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47


