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Abstract 
 

The combination of multiple clusterings is a difficult 
problem in the practice of distributed data mining. Both 
the cluster generation mechanism and the partition 
integration process influence the quality of the 
combinations. In this paper we propose a data 
resampling approach for building cluster ensembles that 
are both robust and stable. In particular, we investigate 
the effectiveness of a bootstrapping technique in 
conjunction with several combination algorithms. The 
empirical study shows that a meaningful consensus 
partition for an entire set of objects emerges from 
multiple clusterings of bootstrap samples, given optimal 
combination algorithm parameters. Experimental results 
for ensembles with varying numbers of partitions and 
clusters are reported for simulated and real data sets. 
Experimental results show improved stability and 
accuracy for consensus partitions obtained via a 
bootstrapping technique.  
 
1. Introduction 
 

In order to optimally integrate clustering ensembles in 
a robust and stable manner, one needs a diversity of 
component partitions for combination. Generally, this 
diversity can be obtained from several sources: 

1) Using different clustering algorithms to produce 
partitions for combination. 

2) Changing initialization or other parameters of a 
clustering algorithm. 

3) Using different features via feature extraction for 
subsequent clustering.  

4) Partitioning different subsets of the original data. 
The focus of this paper is the later method, namely the 

combination of clusterings using random samples of the 
original data. Our main motivation is two-fold. First, 
different data subsets should form different clusters. 
When these clusters are combined, the multiple partitions 
provide a more stable cluster structure than any single 
clustering. Second, one can provide a confidence estimate 
for the assignment of an object to a particular cluster in 
the consensus partition given that object’s assignment in 

each of the bootstrap partitions. These assertions will be 
quantified in the empirical study.  

A growing number of techniques have been applied to 
the combination of clusterings. A co-association 
consensus function was introduced for finding a 
combined partition in [1]. The authors further studied 
combining k-means partitions with random initializations 
and a random number of clusters. Topchy et al. proposed 
new consensus functions related to intra-class variance 
criteria as well as the use of weak clustering components 
[2], [3]. Strehl and Ghosh have made a number of 
important contributions, such as their detailed study of 
hypergraph-based algorithms for finding consensus 
partitions as well as considering object-distributed and 
feature-distributed formulations of the problem [4]. They 
also examined the combination of partitions with a 
deterministic overlap of points between data subsets (non-
random). 

Resampling methods have been traditionally used to 
obtain more accurate estimates of data statistics. Efron 
generalized the concept of so-called “pseudo-samples” to 
sampling with replacement – the bootstrap method [5]. 
Resampling methods such as bagging have been 
successfully applied in the context of supervised learning 
[6]. Jain and Moreau employed bootstrapping in cluster 
analysis to estimate the number of clusters in a multi-
dimensional data set as well as for evaluating cluster 
tendency/validity [7].  A measure of consistency between 
two clusters is defined in [8]. Data resampling has been 
used as a tool for estimating the validity of clustering [9], 
[10] and its reliability [11], [12].  

 
2. Consensus functions 
 

In this paper we have employed four types of 
consensus functions:  

Co-association based functions: The consensus 
function operates on the co-association matrix. Numerous 
hierarchical agglomerative algorithms (criteria) can be 
applied to the co-association matrix to obtain the final 
partition, including Single Link (SL), Average Link (AL) 
and Complete Link (CL). Note that the computational 
complexity of co-association based consensus algorithms 
is very high, O(kN2d2) [15].  



Quadratic Mutual Information Algorithm (QMI): 
Assuming that the partitions are independent, a consensus 
function based on k-means clustering in the space of 
standardized features can effectively maximize a 
generalized definition of mutual information [3]. The 
complexity of this consensus function is O(kNB), where B 
is the number of partitions. Though the QMI algorithm 
can be potentially trapped in a local optimum, its 
relatively low computational complexity allows using 
multiple restarts in order to choose a quality consensus 
solution with minimum intra-cluster variance. 

 Hypergraph partitioning: The clusters could be 
represented as hyperedges on a graph whose vertices 
correspond to the objects to be clustered. The problem of 
consensus clustering is then reduced to finding the 
minimum-cut of a hypergraph. The minimum k-cut of this 
hypergraph into k components gives the required 
consensus partition [4]. Efficient heuristics to solve the k-
way min-cut partitioning problem are known, some with 
computational complexity on the order of O(|ε|), where ε 
is the number of hyperedges. Three hypergraph 
algorithms, CSPA, HGPA, and MCLA, are described in 
[4] and their corresponding source code are available at 
http://www.strehl.com. 

Voting approach: In the previous algorithms there is no 
need to explicitly solve the correspondence problem 
between the labels of known and derived clusters. The 
voting approach attempts to solve the correspondence 
problem and then uses a majority vote to determine the 
final consensus partition [11]. The main idea is to 
permute the cluster labels such that best agreement 
between the labels of two partitions is obtained. All the 
partitions from the ensemble must be re-labeled according 
to a fixed reference partition. The complexity of this 
process is k!, which can be reduced to O(k3) if the 
Hungarian method is employed for the minimal weight 
bipartite matching problem.  

The performance of all these consensus methods are 
empirically analyzed as a function of two important 
parameters: the type of sampling process (the redundancy 
of a sample) and the granularity of each partition (number 
of clusters).  

This study seeks to answer the following questions: 
1) What is the trade-off between the accuracy of the 

overall clustering combination and computational 
effort required for generating component partitions? 

2) What is the optimal size and granularity of the 
component partitions? 

3) What is the best possible consensus function to 
combine bootstrap partitions in a given data set? 
 

3. Clustering ensemble algorithm 
 

Bootstrap sampling and subsampling can discern 

various statistics from replicate subsets of data. Our goal 
is to obtain a reliable clustering with measurable 
uncertainty from a set of different k-means partitions. The 
key idea of this approach is to integrate multiple 
partitions produced by clustering of pseudo-samples of a 
data set. Two issues, specific to the clustering 
combination, must be addressed:  
1) The generative mechanism for individual partitions in 

the combination. 
2) The choice of consensus function to combine several 

partitions. 
We have chosen the k-means algorithm as the partition 

generation mechanism, mostly for its low computational 
complexity. In addition, eight different consensus 
functions from two families of such algorithms (co-
association, feature extraction) were examined.  

Under the assumption that diversity comes from 
resampling, two families of algorithms can be proposed 
for integrating clustering components. The first family is 
based on the co-association matrix, and employs a group 
of hierarchical clustering algorithms to find the final 
target partition. A more complete discussion of the first 
family can be found in [1], [11], and [14]. 

The second family of algorithms for clustering 
combination is based on new features extracted through 
the partitioning process. In this approach, one can view 
consensus clustering as clustering in a space of new 
features induced by the set of partitions, P. Each partition 
Pi represents a feature vector with categorical values. The 
cluster labels of each object in different partitions are 
treated as a new feature vector, a B-tuple, given B 
different partitions in P. Therefore, instead of the original 
d attributes, which are shown in Table 1(a), the new 
feature vectors from a table with N rows and B columns 
(Table 1(b)) have been employed. 

 
Table 1. (a) Data points and feature values, N rows and d columns. 

Every row shows a feature vector corresponding to N points. (b) Cluster 
labels for resampled data, n rows and B columns, each column is a new 

feature with categorical (nominal) values. 
 

 (a) 
Data Features 

x1 x11 x12 … x1j … x1d 
x2 x21 x22 … x2j … x2d 
… … … … … … … 
xi xi1 xi2 … xij … xid 
… … … … … … … 
xN xN1 xN2 … xNj … xNd 

 
(b) 

Data Cluster Labels 
x1 P1(x1) P2(x1) … Pj(x1) … PB(x1) 
x2 P1(x2) P2(x2) … Pj(x2) … PB(x2) 
… … … … … … … 
xi P1(xi) P2(xi) … Pj(xi) … PB(xi) 
… … … … … … … 
xN P1(xN) P2(xN) … Pj(xN) … PB(xN) 



Here, Pj(xi) denotes the label of object xi in the j-th 
partition of P. Hence the problem of combining partitions 
becomes a categorical clustering problem.  
 
Input:  
D – the input data set N d-dimensional data, 
B – number of partitions to be combine 
M – number of clusters in the final partition σ, 
k – number of clusters in the components of the combination,  
Γ – consensus function operating with categorical features  
Reference Partition  ← k-means(D) 
for  i=1 to B 
      Draw a random pseudo-sample Xj 

                 Cluster the sample Xj: P(i)←k-means({Xj}) 
 Store partition Pi  

end 
Re-label (if necessary)  
Apply consensus function Γ on partition labels {P} to find final partition 
σ 
Validate final partition σ (optional) 
return σ   // consensus partition 
 
Figure 1. Algorithms for clustering ensemble, based on categorical 
clustering 
 

The parameter k in the algorithms is the number of 
clusters in every component partition. If the value of k is 
too large then the partitions will overfit the data set, and if 
k is too small then the number of clusters may not be 
large enough to capture the true structure of data set. In 
addition, if the total number of clusterings, B, in the 
combination is too small then the effective sample size for 
the estimates of distances between co-association values 
is also insufficient, resulting in a larger variance. The 
algorithm parameters will be discussed in the next 
section. In the rest of this paper “k” stands for number of 
clusters in every partition, “B” for number of 
partitions/pseudo-samples. 

 
4. Experimental results and discussion 
 

The experiments were performed on several data sets, 
including two challenging artificial problems (“2-Spirals” 
and “Halfrings”), a classical data set from the UCI 
repository (“Iris”), and two other real world data sets 
(“LON” and “Star/Galaxy”). A summary of data set 
characteristics is shown in table 2. 

 
4.1. Data sets 
 

The “Halfrings” data set, as shown in figure 2, 
consists of two unbalanced clusters with 100 and 300 
patterns. The k-means algorithm by itself is not able to 
detect the two natural clusters since it implicitly assumes 
hyper-spherical clusters.  

The “2-spirals” dataset, as shown in Figure 2, exhibits 
complex cluster shapes. Again, the simple k-means 
cannot identify true clusters in this data set.  
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Figure 2. “Halfrings” data set with 400 patterns (100-300 per class) 
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Figure 3. “2-Spirals” dataset with 200 patterns (100-100 per class) 
 

Table 2. A summary of data sets characteristics 

 No. of 
Classes 

No. of 
Features 

No. of 
Patterns 

Patterns per 
class 

Halfrings 2 2 400 100-300 
2-Spirals 2 2 200 100-100 

Star/Galaxy 2 14 4192 2082-2110 
LON 2 6 227 64-163 
Iris 3 4 150 50-50-50 

 

The “LON” data set [12] is extracted from the activity 
log in a web-based course using an online educational 
system developed at Michigan State University (MSU): 
the Learning Online Network with Computer-Assisted 
Personalized Approach (LON-CAPA1). The data set 
includes the student and course information on an 
introductory physics course (PHY183), collected during 
the spring semester 2002. This course included 12 
homework sets with a total of 184 problems, all of which 
were completed online using LON-CAPA. The data set 
consists of 227 student records from one of the two 
groups: “Passed” for the grades above 2.0, and “Failed” 
                                                 

1 http://www.lon-capa.org  



otherwise. Each sample contains 6 features. The "Iris" 
data set contains 150 samples in 3 classes of 50 samples 
each, where each class refers to a type of iris plant.  One 
class is linearly separable from the other two. Each 
sample has four continuous-valued features. The 
"Star/Galaxy" data set described in [13] has a 
significantly larger number of samples (N=4192) and 
features (d=14). The task is to separate patterns of 
galaxies from stars.  Domain experts manually provided 
true labels for these objects.  

For all these data sets the number of clusters, and their 
assignments, are known. Therefore, one can use the 
misassignment (error) rate of the final combined partition 
as a measure of performance of clustering combination 
quality.  One can determine the error rate after solving the 
correspondence problem between the labels of derived 
and known clusters. The Hungarian method for minimal 
weight bipartite matching problem can efficiently solve 
the correspondence problem. 

 
4.2. The role of algorithm’s parameters 

 
It is important to note that the bootstrap experiments 

probe the accuracy of partition combination as a function 
of the resolution of partitions (value of k) and the number 
of partitions, B (number of partitions to be merged). One 
of our goals is to determine the minimum number of 
bootstrap samples, B, necessary to form high-quality 
combined cluster solutions. In addition, different values 
of k in the k-means algorithm provide different levels of 
resolution for the partitions in the combinations. We 
studied the dependence of overall performance on the 
number of clusters, k. In particular, clustering on the 
bootstrapped samples was performed for the values of B 
in the range [5, 1000] and the values of k in the interval 
[2, 20].   
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Figure 4. “Iris” data set. Bootstrapping for fixed consensus function 
MCLA, different partition numbers and different values of  k. 

The experiments employed eight different consensus 
functions: co-association based functions (single link, 
average link, and complete link), hypergraph algorithm 
(HGPA, CSPA, MCLA), QMI algorithm, as well as 
Voting-based function. 
 
4.3. The Role of Consensus Functions 

 
Perhaps the most important single design element of 

the combination algorithm is the choice of a consensus 
function. In the “Halfrings” and “2-Spiral” data sets the 
true structure of the data sets (100% accuracy) was 
obtained using co-association based consensus functions. 
(in the “Halfrings” data set with both AL and SL, and in  
the “2-Spiral” data set with SL, where B≥100, and k≥10).  

For the “LON” data set the optimal accuracy of 79% 
was achieved only by co-association-based (using the AL 
algorithm) consensus function. This accuracy is 
comparable to the result of the k-NN classifier, multilayer 
perceptron, naïve Bayes classifier, and some other 
algorithms when the LON data set is classified in a 
supervised framework based on labeled patterns [12].  

For the “Iris” data set, the hypergraph consensus 
function, HPGA algorithm led to the best results when 
k≥10. The AL and the QMI algorithms also gave 
acceptable results, while the single link and average link 
did not demonstrate a reasonable convergence. Figure 4 
shows that the optimal solution could not be found for the 
"Iris" data set with k in [2..5], while optimum was reached 
for k ≥ 10 with only B=10 bootstrap partitions. 

 

Figure 5. “Galaxy” data set. Bootstrapping for different consensus 
functions, different partition numbers B, and fixed value of  k=5. 

 
For the “Star/Galaxy” data set the CSPA function 

(similarity based hypergraph algorithm) could not be used 
due to its computational complexity. The HGPA function 
and SL did not converge at all. Voting and complete link 
also did not come up with an optimal solution. However, 
the MCLA, the QMI and the AL functions led to an error 
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rate of approximately 10%, which was much better than 
the performance of an individual k-means result (21%). 
(See Figure 5). Table 3 shows the error rate of classical 
clustering algorithms, which were used in this study. The 
error rates reported for the k-means algorithm were an 
average over 100 runs, with random initializations for the 
cluster centers, and where value of k was fixed to the true 
number of clusters. One can compare it to the error rate of 
ensemble algorithms in table 4.  

 
Table  3. The average error rate (%) of classical clustering algorithms. 

An average over 100 independent runs is reported for the k-means 
algorithms 

Data set k-means Single Link Complete Link Average 
Link 

Halfrings 25% 24.3% 14% 5.3% 

2 Spiral 43.5% 0% 48% 48% 
Iris 15.1% 32% 16% 9.3% 

LON 27% 27.3% 25.6% 27.3% 
Star/Galaxy 21% 49.7% 44.1% 49.7% 

 
Table 4. Summary of the best resluts of Bootstrap methods  

Data set Best Consensus 
function(s) 

Lowest 
Error rate 
obtained 

Parameters 

Halfrings 
Co-association, SL 

 

Co-association, AL 
0% 

 

0% 
k ≥  10, B. ≥ 100 

k ≥  15, B ≥  100 
2 Spiral Co-association, SL 0% k > 10,  B.> 100 

Iris Hypergraph-HGPA 2.7% k ≥  10, B ≥  20 

LON Co-association, CL 21.1% k ≥  4,  B ≥ 100 

Galaxy/ Star 
Hypergraph-MCLA 

 

Co-association, AL 
 

Mutual Information 

9.5% 
 

10% 
 

11% 

k ≥  20, B ≥  10 

k ≥  10, B ≥  100 

k ≥  3, B ≥  20 
 
The question of the best consensus function remains 

open for further study. Each consensus function explores 
the structure of data set in different ways, thus its 
efficiency greatly depends on different types of existing 
structure in the data set. One can suggest having several 
consensus functions and then combining the consensus 
function results through maximizing mutual information 
[2], but running different consensus functions on large 
data sets is computationally expensive. 

To summarize, we proposed an approach to combine 
partitions through resampling of the original data. This 
study showed that meaningful consensus partitions for the 
entire set of objects emerges from clusterings of bootstrap 
samples. Empirical studies were conducted on five data 
sets for different consensus functions, number of 
partitions in the combination, and number of clusters in 
each component. The results demonstrate that there is a 
trade-off between the number of clusters per component 
and the number of partitions in the ensemble that can be 
optimized. Our work extends the previous research by 
providing a detailed comparative study of several 

consensus techniques in conjunction to different number 
of partitions. Future work can focus on alternative 
resampling methods such as subsampling (resampling 
without replacement), to determine whether subsamples 
of small size can reduce computational cost and 
measurement complexity for explorative, distributed-
source data mining tasks. 
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