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PREFACE

Computer Science began as an extension of the study of Mathematics to
investigate the mechanisms of mathematical computation. Modern Computer Science
often involves the transition from a problem in some domain, to a mathematical model,
and subsequently to a computer-based solution. A good transition requires both an
effective description and an efficient representation of the application. This dissertation
proposes a new phylogenetic tree model, called fuzzy phylogeny. Fuzzy phylogeny is an
extension of a classic phylogenetic model, called perfect phylogeny. The motivation and
the detail definition of fuzzy phylogeny are first explained. Then, an algorithmic solution
that transforms the fuzzy phylogeny problem to its perfect phylogeny counterpart is
presented. Next, relaxation problems of fuzzy phylogeny are proposed and the
complexities are studied. Finally, the relaxation problems are solved by three approaches

and empirical analyses are performed.
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Chapter 1 Introduction

1.1 Background

The study of phylogenetics involves the identification of evolutionary relationships
between species [50,58,59]. Among different phylogenetic models, trees are the most
widely used due to their ssmplicity and effectiveness [18,23,31,43]. When constructing a
phylogenetic tree, distances [51] and characters [52,53] are the two most common
measurements. In distance-based models, the phylogenetic tree is constructed from a set
of (non-negative) pair-wise distances between species. Ultrametric trees [31] and additive
trees [13,33] are two well-known examples of this model. In character-based models, the
phylogenetic tree is constructed according to the presence or absence of the characters
observed from the species. Perfect phylogeny [19,20] is one of the classical character-
based models. In this model, there are only two states for each character: zero, where the
character is absent; and one, where it is present. The perfect phylogeny problem is to
verify whether a given set of species with a set of characters forms a phylogenetic tree
and, if it does, to construct the corresponding phylogenetic tree. Dan Gusfield [30]
describes an O(mn) time agorithm for this problem where mis the number of species and
n is the number of characters. In addition, this algorithm is proven to be asymptotically
optimal in time. Extended models from perfect phylogeny have been suggested, such as

generdlized perfect phylogeny [1,2,12,36,37] and phylogenetic network [56]. In the



generalized perfect phylogeny model, each character has finite, multiple states. Kannan

and Warnow [37] describe an O(2* m®n) agorithm for this problem where the number
of states of the dharacters (r) is fixed. However, this problem has been proven to be NP-

hard in general. In phylogenetic networks, merging sub-trees is alowed. Wang, et al.

[56] propase an O(n®) algorithm for a restricted version d this problem. However, this
problem also is proven to be NP-hard in general. Models for continuous characters also
exist [21,24,42. Examples of models of this kind include the Brownian Characters
Motion model [14,40,4], the Gap Coding method [44,59 and the Manhattan Metric

Parsimony model [22,39.

12 Motivation

All previous perfed phylogeny based models assume the states of the dharacters
are discrete. However, fuzzy boundiries between spedes and degrees of charader
development commonly are found in nature [10,26,27. Fuzzy bourdaries refer to the
ambiguous definition between the presence and absence of a dharader, and degrees of
character development refer to the various expresson levels of a daracter. These
phenomena show the need for a more relaxed model. This dissertation proposes the fuzzy
(perfed) phylogeny mode that extends the perfect phylogeny model to alow fuzzy
memberships of the characters. The cnservation d properties in the new model then is
proven. This dissertation also shows how the fuzzy phylogeny problem can be
transformed to the perfea phylogeny problem so that it can be solved using previously

developed algorithms, such as Gusfield’s algorithm [30].



Although the fuzzy phylogeny problem theoretically is equivalent to the perfea
phylogeny problem, the introduction d the fuzziness of charaders naturally raises the
guestion abou uncetainty due to the impredsion d the experimental measurement
andor the range of incompatibility tolerance. The problem of uncertainty can be
addressed by permitting adjustments to the eperimental character values within a
predefined range or window. But this gill 1eaves the ajustment problem for fuzzy
phylogeny, that is, how much shoud the experimental charader values be ajusted. The

adjustment problem is carefully analyzed andis proven to be NP-hard.

1.3 Summary of Results

This dissertation presents both theoretical and empirical results on the fuzzy
phylogeny model and its problems. First, the fuzzy phylogeny model is analyzed. It is
proven that the perfect phylogeny problem is a subset of the fuzzy phylogeny problem
baoth in terms of deddability and tree ©nstruction. Next, the transformation @ is
introduced to solve the fuzzy phylogeny problem. The transformation @ conwverts a fuzzy
phylogeny problem into its perfed phylogeny counterpart, so that a fuzzy phylogeny
problem can be solved using algorithms for the perfect phylogeny problem, such as
Gusfield’ s algorithm [30].

Seowond, the ajustment problem of fuzzy phylogeny is analyzed. The aljustment
problem (as well as the aljustment problem for perfed phylogeny) is proven to be NP-
hard. Three &gorithms then are propcsed to solve the ajustment problem, namely the
BF-agorithm, the G-algorithm and the H-algorithm. The BF-algorithm and the G-

algorithm are bath exad algorithms where the optimality of the solution is guaranteed.



The BF-algorithm reduces the unaccountably infinite solution space to a finite solution
space of equivalence classes. The BF-algorithm isintuitive; however, it isimpractical due
to its slow performance. The G-algorithm is an improvement over the BF-algorithm such
that invalid solution space is pruned off. The G-algorithm is practical for small instances.
However, due to the complexity of the adjustment problem, the G-algorithm is
impractical for large instances. On the other hand, the H-algorithm has the aim of fast
performance, where solutions are found in seconds, even for large instances.

Furthermore, the H-algorithm produces quality solutions for small to medium instances.

1.4 Organization

The remainder of the dissertation is organized as follows. In Chapter 2, the
phylogenetic tree models are overviewed, including ultrametric trees, additive trees,
perfect phylogeny, generalized perfect phylogeny, phylogenetic network and other
models for continuous characters. Within Chapter 3, the fuzzy phylogeny model is
introduced and defined. Furthermore, the model is analyzed, and the transformation from
a fuzzy phylogeny to a perfect phylogeny is presented. The adjustment problem is
proposed and formulated in Chapter 4. In Chapter 5, the BF-algorithm is proposed and
explained. The G-algorithm is discussed in Chapter 6, and the H-algorithm is presented in
Chapter 7. In Chapter 8, the empirical studies of the proposed algorithms are shown.
Chapter 9 discusses future work related this research. Finally, Chapter 10 provides

concluding remarks of the dissertation.



Chapter 2 Review of the Literature

21 UltrametricTree

The ultrametric treemodel [31] is based uponthe theory of the molecular clock.
This theory suggests that the mutation rate in the genome is constant over time. The
implicaionis that al (present) spedes deviated from their common ancestor at an equal
rate. Therefore, an utrametric treeisatreein which al leavesin al sub-trees are of equal
distancefrom their (sub-tree) roats. Below is the definition d the ultrametric tree

Let X be aset of obeds (spedes), and each x O X is asociated with a unique
integer from the set S = {1, 2, ..., m}, where m = |X|. Let M be aa m x m symmetric
matrix of positive red numbers with zeros along the diagonal. Each entry MJi,j] is the
evolutionary distance between spedesi andj. An utrametric tree for M isaroaoted tree T
that satisfies al of the following condtions:
1. T contains m leaves, each of whichislabeled by aunique number s S;
2. ead interna nocke of T is labeled using a value M[i,j], where 1 < i, j < mand hes at
least two children;
3. dong any path from the roct to a leaf, the numbers labeling internal nodes grictly
deqease
4. for any two leavesi andj in T, M[i,j] is the label of the lowest common ancestor of i

andjinT.



Figure2.1: A 5 x 5 matrix M and its ultrametric tree T.

A matrix is said to be ultrametric if it has an ultrametric tree. Furthermore, the
ultrametric tree problem is as follows. Given amatrix M, one wants to determine whether
there is an ultrametric tree for M and to construct T if it exists. Figure 2.1 is an example
of a matrix M and its ultrametric tree T. The ultrametric property can be described by

Lemma?2.l.

Lemma?2.1:

An m x m symmetric matrix M of positive real numbers with zeros along the
diagonal is ultrametric if and only if for any three indicesi, j and k (1 <1, j, k <m), the
maximum of M[i,j], M[i,K] and M[j,K] is non-unique.

Proof:
(if) Let T be the ultrametic tree for M. Then for any three leavesii, j and k, one of the

following is true:



a) if al threeleaves have the same lowest common ancestor (that is, M[i,j] = M[i,k] =
M[j,k]) then the lemma halds.

b) if al threeleaves do nd have the same lowest common ancestor, then two of the

nodes, say i and j, must have alower common ancestor. Since the treeis ultrametric,

M[i,K] = M[j,k] > M([i,j], therefore the lemma holds.

a) b)

(only-if) Let M be an m x m ultrametric matrix; then an utrametric tree T can be
constructed as follows. Forany 1 <i<j<m, i andj are leavesin T, and the entry M[i j]
describes the interna nodes on the path (roat, i) (i.e. the path from the roat node to the
led i). In addition, the relative locations of the other n-1 leaves are fixed. Therefore, the
ultrametric tree T can be reaursively built by constructing the branches of the path (roat,
i). Furthermore, for any j, k in ore sub-treg M[i,j] = M[i,k] = M][j,K] and for any j, | in

different sub-treg M[i,I] = M[j,I] = M[i,j]; thusavalid utrametric treeT must exist.



/s
/e

Lemma 2.1 suggests a recursive algorithm that attempts to build an ultrametric tree

T from amatrix M. If T can be built successfully, the algorithm accepts M and returns T.

Otherwise, it rgjects M. This algorithm has a run-time complexity of O( mz) where mis

the number of objects.

2.2 AdditiveTree

The ultrametric tree model is an idealized model. In practice, most matrices are
not ultrametric. Therefore, the additive tree model [18,31,33] was proposed by [13]; this
model makes weaker assumptions about distances. If a matrix M is ultrametric, then it
also is additive. Unlike an ultrametric tree, an additive tree is an unrooted tree. In
addition, the additive tree model allows internal nodes to be labeled by objects. That is,
some species can be the ancestors of others. The definition of the additive tree is as

follows.



Figure 2.2: A 4 x 4 matrix M and its additive tree T.

Given an m x m symmetric matrix M of positive real numbers with zeros along
the diagonal, an additive tree T built from M is an edge-weighted tree with at least m
nodes, where exactly m distinct nodes are labeled with i (1 < i < m), such that for every
pair of labeled nodei, j, the path (i, j) has atotal weight of exactly M[i,j].

A matrix is additive if it has an additive tree. The additive tree problem is similar
to the ultrametric problem, and is as follows. Given a matrix M, one wants to determine
whether there is an additive tree T for M and constructs T if it exists. Figure 2.2 is an
example of amatrix M and its additivetree T.

A constructive algorithm can be used to solve this problem. First, two arbitrary
objects x and y are chosen to form the initial single-edged tree. Then, for 3 < z< m, one
more object z is inserted into the tree at a point p that satisfies the following linear

equations.



MIxy] = M[x,p] + M[y,p]

M[x,Z] = M[x,p] + M[z,p]

Mly.Z = M[y.p] + M[zp]

» x
¥
— 7
F2

21 2
4]

The constructive algorithm was introduced by Buneman [13] to solve the additive
tree problem. Later, Jotun Hein [33] further improved the algorithm by using the deepest
point algorithm in finding insertion points. In conclusion, the additive tree problem can
be solved in O(m*) time. Moreover, the additive tree problem can also be solved in

O(m?) by mapping it to a corresponding ultrametric tree problem [31].

2.3 Perfect Phylogeny

In perfect phylogeny [19,20,23], the phylogenetic tree is constructed according to
the divergence of different characters of the objects. Specifically, there are only two
states for each characters: zero, where the character is absent; and one, where it is present
(i.e.c(x) O{0, 1}).

Let M bean m x n matrix, with m = |X| and n = |C| where X isthe set of objects and
C isthe set of characters. Each entry where M[i,j] [0 {0, 1} represents the presence of the
character j in object i. A phylogenetic tree for perfect phylogeny is called a PP-tree and a

PP-tree T for the matrix M is arooted tree that satisfies:

10
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Figure 2.3.1: An example of a5 x 4 {0,1} matrix M and its PP-tree.

1. each object labels exactly one node in T;

2. each edge is labeled by at least one of the n characters and each character labels at

most one edge;

3. each internal nodeis either labeled by at |east one object or has more than one child;

4. for any object x at hodei, the path (root, i) defines exactly all characters x has.
Therefore, a matrix is called a perfect phylogeny if it has a PP-tree. The perfect

phylogeny problem is as follows. Given a matrix M, determine whether M has a PP-tree

T, and if so, construct T. An example of amatrix M and its PP-tree T are shown in Figure

2.3.1. Lemma 2.3 describes the perfect phylogeny property in terms of the matrix M.

Lemma?2.3:

11



Let v,V,,...,v, be the mlumn vectors decomposed from M. The matrix M is a
perfect phylogeny if and orly if for every pair of column vedors v, and v, the set of

objedsthat has charader p and g are ether disjoint or one wntains the other.
Proof:

(only if) Let v, and v, be two column vedors sich that the sets of objeds that

has charader p and q are overlapped. Specificdly, there eists three objeds x, y and z,
such that M[x,p] = 1, M[x,q] = 0, M[y,p] = 1, M[y,q] = 1, M[zp] = 0 and M[zq] = 1.
Therefore, z must be an ancestor of Xy, and x must also be an ancestor of y,z, which isa
contradiction.

(if) Let M be amatrix as described above; Gusfield’s algorithm [30] constructs a

valid PRtree(Gusfield’ s algorithm is explained in detail below).

Lemma 2.3 describes the wndtion that the perfed phylogeny property is
violated. That is, there are two charaders p and g and threeobjects x, y and z, such that x
has exadly p, y has exadly g, while z has baoth p and g. Although Lemma 2.3 suggests an
algorithm to solve the dedsion problem of perfect phylogeny, a straightforward
implementation requires O(mn?) time. In fact, faster algorithms exist. Dan Gusfield
describes an algorithm that runs in O(mn) time. Note that Gusfield’'s algorithm is
asymptoticdly optimal in time. This datement is true because awy algorithm requiring
lessthan O(mn) time to solve the decision poblem of perfect phylogeny can be proven

invalid with a contradictory argument.
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Figure 2.3.2 An example of constructing a PRtreethrough the set of
keywords.

Gusfield’ s algorithm is as foll ows. Since ech column vector in M can be viewed as
a binary number, one can creade amatrix M’ that is the matrix M in sorted descending
order of the vedors. Then, define the keyword for an oljed x as the string that is

comprised of all the dharacteristics x has, in left to right order of M’. Furthermore, define

13



K to be the set of keywords. Then, the PRtree T can be cmnstructed from K as foll ows.
Chose the first keyword k from K, and construct alinear tree T. For 2< k< m, expand T
by k and rejed M if a cycle is created. Note that since M’ is rted, each keyword must
follow the order of the aurrent T (starting from the root node). In ather words, M (and M’)
is a perfect phylogeny if and orly if T has no cycles. M’ (and K) can be obtained in
O(mn) time by a radix sort. In addition, the PRtree ca be anstructed from K aso in
O(mn) time. Thus, Gusfield’s agorithm requires O(mn) time. Figure 2.3.2 shows an

example of amatrix M, its sorted image M’, the set of keywords K andthe PP-tree T.

2.4 Generalized perfect phylogeny

Generalized perfect phylogeny [1,2,12,29,36,3]7 extends perfed phylogeny by
alowing for multiple state daraders. Due to the generalization, a more caeful
interpretation d the treeis required. In the phylogenetic tree T, each root of a sub-tree is
the ancestor of its descendent nodes, and ead edge represents a state transition d a
character. The transition is denoted by a pair <c, § > where c is the dharader and s isthe
destination state. Therefore, every objed is a descendent of the roat (of T), which is
defined to have zerosin all charaders. The model further assumes each transition accurs
uniquely. That is, eath <c, 5 > can at most label one alge in T. Therefore, the daraders
of aleaf i can be obtained by applying the transitions along the path (roat, i). Notice this
interpretation is aso true for perfed phylogeny; however the interpretation in the last
sedionis much simpler.

A phylogenetic tree for Generalized Perfect Phylogeny is called a GP-treg and a

GP-treeT for amatrix M is arooted treethat satisfies:

14
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Figure 2.4: An example of generali zed perfect phylogeny.

1. ead olject labels exadly onenocein T;
2. ead nonzero charader state in M labels exadly one elge;
3. eat internal noceis either labeled by at least one object or has more than ore dild;
4.for any nock i, the path (roat, i) defines the transitions in charaders of i.

Thus, the following is the generali zed perfect phylogeny problem. Given a matrix
M, determine whether M has a GP-tree T, and if so, construct T. Figure 2.4 shows an
example of the matrix M, the dharacters states and the GP-tree This problem is indeed
NP-complete in general. Kannan and Warnow [37] describe an agorithm (KW
algorithm) that solves this problem when the maximum number of statesr is fixed. The

KW agorithm is based onthe foll owing definitions and lemmas.

Definition 2.4.1

A subset X’ [0 X iscalled a duster if for every charader c, at most one state of ¢

is dared by X and X - X’ in M.
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Definition 2.4.2:

A cluster X’ is caled a proper cluster if there is some character ¢ for which X’

does not share any state of c with X - X’ in M.

LemmaZ2.4.1:
Let T be a GP-tree for a matrix M; then for every sub-tree T' of T; if X’ isthe set

of objectsin T’, then X’ is aproper cluster.

LemmaZ2.4.2:
A matrix M is a generalized perfect phylogeny if and only if there exists a set of

proper clustersfor M.

Therefore, the KW invokes the dynamic programming technique to find the set of
proper clusters for M. In addition, a preprocessing of sorting the proper clusters is
performed to reduced the number of potential clusters. As a result, the KW algorithm
requires O(2* mn’) time so that if the number of states r is fixed as a constant, the

problem can be solved in polynomial time of mand n.
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Figure 2.5: (a) An example of phylogenetic network (b) An example of
disjointed recombination.

2.5 Phylogenetic Network

The phylogenetic network [56] is motivated by the recombination mechanism
often found in viruses and bacteria where genetic material is transferred from one
organism to another. Therefore, phylogenetic network extends perfect phylogeny to alow
merging between sub-trees. The merging is formulated as a pair of special edges called

recombination edges. In this model, each node in the tree either has a regular parent edge
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or a pair of recombination parent edges that allow the node to inherit all the 1-state from
both parents.

Therefore, the phylogenetic network problem is as follows. Given a matrix M,
find a phylogenetic network for M such that it minimizes the number of recombination
edges. An example of a matrix M that is not a perfect phylogeny but is a phylogenetic
network is shown in Figure 2.5a. Figure 2.5b illustrates the digoint structure versus the

non-digoint structure. This problem is aso NP-complete in general. However, Wang et

al. [56] propose an O(n*) algorithm for a restricted version of this problem, where all

recombinations are digoint.

Definition 2.5:
A phylogenetic network is restricted, if in any merged path of a recombination

node, there is no node that isin the merged path of a different recombination node.

Lemma2.5:

Let v, be the p-th column vector of M, and O, is the set of objects that has

character p. Two sets, O, and O, are conflicted if their objects overlap. A matrix M has

arestricted phylogenetic network if and only if it satisfies:

a) every O and O; are not conflicted; or

b) if G and O, are conflicted,
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b1) for any k O {i, j}, if O, and O are conflicted then O, n Q = O n O;and if O,
and O; are orflictedthen O, n O, = O n O;.
b2) if two conflicted pairs (G ,0,) and (O,.,O,.) have identical intersedions, i.e,, O n
O, = O, n O,., then either

b2.1) (Q,0,) and (O;,0,.) are mnflicted pairs and (O,,0,.) and (O,,0,.) are
not conflicted pairs; or
b2.2 (Q,0,.) and (O;,0,.) are mnflicted pairs and (G,,0,) and (O;,0,.) are nat
conflicted pairs.

b3) for any corflicted pair (O, ,Q,), if O, n G # Q n O, then either O, n O and

Q n O, aredigoint or one mntains the other.

b3.) O, n G and Q n O, are digoint: then there eists distinct O; ; and

J

O

mk,| 7

i.e. Oy # Oy -
b3.2 O, n O 0O n O;: thenthere existsa charader ¢, satisfying,
b3.2.) c,, isnat conflicted with any character and

b3.2.9 Q 0 O, and O, 0 O, and

b3.230,00, n O.

As aresult, if amatrix M has a restricted phylogenetic network T, then T can be

constructed as foll ows.
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1. construct PRtreesfor those O n O,’snoat contained in any other O, n O;’s.

2. ignore those spedes used in Step 1 and reped Step 1 for other O n O;’s until no

conflicted pair exists.

3. conred those PR-trees using reammbination edges.

2.6 Phylogenetic Tree Modelsfor Continuous Characters

The use of continuows characters to infer phylogenetic trees was introduced in
[21,24,42. There ae three methods where the phylogenetic tree can be constructed from
a set of continuows charaders. The first method is to estimate the similarity distances
between the objeds from the set of continuows charaders. One popuar model of this
method is the Brownian Charaders Motion model [14,40,4]1. The second method is to
discretize the continuouws charadersinto ordered, multi ple stated charaders. For example,
the Gap Coding method [44,53 first converts the set of continuows charaders into
ordered, dscrete states according to the discontinuity of the experimental data
distribution. The third methodis an extension d the parssimony model [31] where the tree
is constructed based on the minimum transition o charaders. Manhattan Metric

Parsimony [22,37 is an example of models of this method.
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Chapter 3 Fuzzy Phylogeny

3.1 Fuzzy Phylogeny

Although discrete stated characters provide a simple abstraction of characters,
valuable information could be lost during the discretization of the experimental data. In
addition, fuzzy boundaries between species and degrees of character development are
indeed often found in nature [10,26,27]. Therefore, this dissertation proposes a new
phylogenetic model that alows the representation of such fuzziness, caled fuzzy
(perfect) phylogeny. Fuzzy phylogeny is an extension of perfect phylogeny where the
binary membership function [45] (i.e. ¢(x) O {0,1}) is replaced by a fuzzy membership
function (i.e. ¢(x) 0 [0,1]). In the fuzzy membership function, c(x) = O represents the total
absence of the character, c(x) = 1 represents the maximal expression of the character, and
c(xX) = z for some 0 < z < 1, represents the partial expression of the character.
Furthermore, if c(x,) > c(X,), then x, has a higher expression on character ¢ than x,.
Now to distinguish the binary membership function and the fuzzy membership function,

let F, denote the fuzzy membership function that is associated with a character c. Then
Val(F,) is defined to be the set of distinct values of F, (x), for F, (x) >0and Ox O X. Let
L be the set of labels c-val, such that ¢ [0 C and val O Val(F,). In other words, L is the set

containing all possible labels where each label is a character ¢ concatenated with a
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Figure 3.1: An example of a5 x 4[0,1] matrix M with its FP-tree and the { 0,1} matrix
M’ from M with its PP-tree.

distinct value in Val(F,). The following is the definition of the fuzzy phylogenetic tree
(FP-tree).

Given an m x n matrix M where each entry M[i, j] O [0, 1], a FP-tree of M is a
rooted tree T with m' leaves (where m' < m) that satisfies the following conditions:
1. each object labels exactly one node in T;
2. each leaf node must be labeled by at |east one object;

3. each label in L labels exactly one edge, and each edge has at |east one labdl;
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4. ead internal noce is either labeled by at least one object or has more than ore dhild;
5. for any object x at noce i, the path (roat, i) contains labels that include but do nd

exceea the maximum values of F_(X), c;
6. for any two labeled edges e, and e, , if e, and e, are describing the same character
and e,’svalue <g,’svaue, then e, must be a1 ancestor edge of €, ;

Thus, the fuzzy phylogeny problem is that given a [0,1] matrix M, ore neeals to
determine whether there is a FP-treeT for M, and if so, construct T. Figure 3.1 shows an
example of a[0,1] matrix M with its FP-tree and the discretized matrix M’ from M (with

threshold = 0.5) with its PPtree

3.2 Propertiesof Fuzzy Phylogeny

Since fuzzy phylogeny is extended from perfed phylogeny, it is important for the
following two properties to hdd. First, if amatrix M is a perfect phylogeny, it must be a
fuzzy phylogeny too. (To clarify, M itself isa{0,1} matrix, and there is no dscretization
involved.) Second,if T isthe PRtreefor matrix M, then the FP-treeT for M (by the first

property, it must exists) must be the same & T. These two propertiesindeed hdd in fuzzy

phylogeny,

Property 1.

If amatrix M is a perfed phylogeny, then M is also afuzzy phylogeny.

Property 2:
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Let M be a{0,1} matrix that is a perfect phylogeny, then its PP-tree T is aso the
FP-tree for M.
Proof:

To show that Property 1 is true, it is sufficient to show that Property 2 is true.
Furthermore, Property 2 is true because ®(M) = M when M is itself a {0,1} matrix.

Therefore, the PP-tree T is also the FP-tree for M.

Uniqueness of the phylogenetic tree is important to a phylogenetic tree model. A
phylogenetic tree model is called unique if for any input M, there is only one valid
phylogenetic tree T for M. These models have an advantage of providing an unambiguous
solution for each input. Note that although uniqueness is a good feature of a phylogenetic
tree moddl, it should be the outcome of a biological theory, not the goal in designing the

model. Lemma 3.2 below proves the uniqueness of the fuzzy phylogeny model.

Lemma 3.2

The fuzzy phylogeny model is unique.
Proof:

The proof approaches the lemma by looking at the uniqueness of the sub-trees of
T and then by running a recursion that reduces the height of these sub-trees. For instance,
T isunique if and only if i) the objects at the root node and the child edges of the root
node are unique and ii) every sub-tree rooted at a child of the root node is unique
(smilarly for every sub-tree). Finally, a sub-tree with height zero must be unique, and

that closes the proof. Assuming the converse, then there are two FP-trees T and T’ for M,
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where T # T'. For every internal nodei in T and the corresponding internal nodei’ in T’
(so, nodei and i’ are the root nodes of T and T' respectively, for the base case), then:

case 1 (the objects at i differ from the objects at i’): if there is an object x that labels i but
x does not label i’, then x must be at a descendent node j of i’. Let | be a label that is
found on the path (i’ ,j), then x expresses | in T', but not in T. That creates a contradiction
tothat Tand T' are FP-tree for the same matrix.

case 2 (the objects at i the same as the objects at i’): if there exists an edge e, that is a
child edge of i but not of i’, then (a) g, iseither notin T or (b) is below another edge e, .
For (), an object x below €, in T has character g, but x does not have character qin T';

that is a contradiction. For (b), there must be anode x, that has character g but not pin T,
and anode x, that has both character g and p in T' however, there is a node x, that has

character p but not g in T" which must also bein T. This situation violates Lemma 2.3, so

thereis a contradiction.

3.3 Transformation

The fuzzy phylogeny model provides an effective platform to construct the
phylogenetic tree from non-binary data. In fact, its computation is theoretically
equivalent to that of perfect phylogeny. Below shows how the fuzzy phylogeny problem

can be transformed to the perfect phylogeny problem counterpart.

The number of distinct values d is defined as, d = z Val(F,)|. There is a

c,oc

transformation @ that converts an m x n matrix M to an m x d matrix M’, and it is as
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Figure 3.3 An example of a5 x 4[0,1] matrix M, ®(M) and the PR-treeof

follows. Given M, it decompaoses M into n column vectors, v, V,,...,V,, ead with length
m. Then, it transforms each v, , where 1 < k< n, to an mby [Val(F, )| matrix M,". Finaly
it concaenatesall M, ' to form M’. Each column j in M, ' corresponds to adistinct value
inVal(F, ) and M, '[i,j] = 1if F (x )= thedistinct value of column j; it is equal to zero
otherwise.

The arredness of the transformation ® to solve the fuzzy phylogeny problem

can be shown with Lemma 3.3.1and Lemma 3.3.2.Given a matrix M, M’ can be aeated
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in O(md) time. Since the perfect phylogeny problem can be solved in O(mn) time [30],
the fuzzy phylogeny problem can then be solved in O(md) time. Furthermore, because d
< mn, it can be described with O(m?n) time. An example of the transformation is shown

in Figure 3.3.

Lemma3.3.1
Let ®(M)=M’, then M is a fuzzy phylogeny if and ory if M’ is a perfed

phylogeny.

Lemma3.3.2

Let ®(M)=M’; then the PP treeT for M’ isthe FP-tree T for M.
Proof:

If M’ is a perfed phylogeny, the PRtree T is aso the FP-treefor M. For any
obed xinanodel in T, the path (roct, 1) has the maximum value of each character of x.
In addition, for any |, all | abels that have small er values must be in the path (roat, I), and
they must be in a deaeasing order on the path. Conversdly, the “only-if” direction is

similar because T can be used for M’ aso.
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Chapter 4 The Relaxation Problems

4.1 Motivation

There ae two approaches for building phylogenetic trees, namely constructive
[17] and structural [31]. The @nstructive gproach assumes the experimental data fully
obey the evolutionary hypaothesis and constructs the phylogenetic tree heuristicdly. This
approad is often efficient due to its smplicity. However, a phylogenetic tree would be
generated even when the experimental dataisinvalid (i.e. it does not obey the underlying
hypathesis). On the other hand, the structural approach first requires the experimental
data to obkey the underlying hypothesis and rejects the data if it does not. This approach
guarantees the ansistency between the phylogenetic tree and the experimental data, yet it
often rgects the “dmost valid” datathat has been perturbed by natural causes.

This dissertation focuses on the structural approach due to its theoreticd
importance (Note that the mnstructive gpproad isimportant mainly in applications.) For
the structural approach, an “add-on” relaxation is often introduced to repair the data that
is perturbed by natural causes. In this chapter, two relaxation problems for perfed
phylogeny are presented, namely the Largest Compatible Subset problem [6,7,16 (the
LCS problem) and the Adjustment problem for Perfect Phylogeny (the APP problem).

After that, the Adjustment problem for Fuzzy Phylogeny (the AFP problem) is proposed,
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Figure 4.2: An example of aLCS problem
instant M and a possible solution M.

which isthe target problem for the dissertation. Finally, the complexities of the relaxation

problems are investigated.

4.2 ThelLargest Compatible Subset Problem

Recall that the perfect phylogeny problem is that given a matrix M, determine
whether M is a perfect phylogeny (i.e. M has a PP-tree). The Largest Compatible Subset
[6,7,16] (LCS) problem is a relaxation problem that can be added on to the perfect
phylogeny problem. The goa of the LCS problem is to discard the minimum number of
characters such that the remaining data is a perfect phylogeny. The formal definition of
the LCS problem is as follows. Given anm x n {0,1} matrix M, find an m x n” matrix M’
by removing columns from M, such that n’ is maximized and M’ is a perfect phylogeny.
Notice that for any matrix M, there exists an M’ with n’ = 1. Therefore, a variation of the
problem may also require n” = k for some predefined k. Figure 4.2 is an example of M

and apossible M'.
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Figure 4.3: An example of an APP problem
instant M and a possible solution M.

4.3 TheAdjustment Problem for Perfect Phylogeny

The Adjustment problem for Perfect Phylogeny (APP problem) is another
relaxation problem for perfect phylogeny. Instead of discarding inconsistent characters,
the APP problem repairs the inconsistent entries in the matrix (i.e M[i,j]). The formal
definition of the APP problem is as follows. Given an m x n {0,1} matrix M, find an m x
n matrix M’ by flipping entries of M (i.e. 0- 1 or 1 0), such that the number of flipsfis
minimized and M’ is a perfect phylogeny. Again, for any matrix M, there exists an M’
since one can turn M into any m x n {0,1} matrix. Therefore, a variation of the problem

may limit f < k, for some predefined k. Figure 4.3 is an example of M and apossible M’.

44 TheAdjustment Problem for Fuzzy Phylogeny

The Adjustment problem for the Fuzzy Phylogeny (AFP problem) is a proposed
relaxation problem for fuzzy phylogeny. In addition, this is the target problem of this
dissertation. This problem is an extension of the APP problem. Therefore, the AFP

problem is to repair the inconsistent entries in the [0,1] matrix. However, the adjustment
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4.4 An example of an ogima AFP problem instant M and apossble
solutionM’.

isnolonger in binary (i.e. 0-1 o 1- 0); rather it is a mapping from [0,1] - [0,1]. The

formal definitionis as follows. Given an m x n [0,1] matrix M, findan m x n [0,1] matrix
M’ such that the total adjustment a = Z Z| MI[i, j1=M'i, j]1| is minimized and M’ is a
1=1 =

fuzzy phylogeny.

Similarly, for any matrix M, there eists an M’ sinceone can turn M into any m x
n [0,1] matrix. Therefore, in this dissertation, two variations of the AFP problem are
studied. They will be cdled the AFP problem and the optimal AFP problem in the
following text. Figure 4.4 is an example of M and a passble M’ for the optimal AFP

problem withr =0.1.

Definition d the AFP problem:

Given an m x n [0,1] matrix M and avaue r [0 [0,1], find a matrix M’ such that
IM[i,j]-M'[i,j]| £ rand M’[i,j] O [0,1], for 1 <i<mand 1<j <n,and M’ is a fuzzy

phylogeny. (Note that the value 2r is cdl ed the aljustable range.)
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Definition d the optimal AFP problem:

Given an m x n [0,1] matrix M and avalue r [J [0,1], find a matrix M’ such that
IM[i,j]-M[i,j]] < r and M’[i,j] O [0,1], for 1 <i<mand 1<j <n, M is a fuzzy

phylogeny, and the total adjustment a is minimized.

45 The Complexities

The complexity of a problem often plays an important role in an algorithm’s
development [15,34. For instance if problem A is an NP problem, assuming that N #
NP, then it is unwise to search for a paynomia algorithm that solves A exadly. As a
result, alternatives might be investigated, such as heuristic dgorithms or fast
implementations, to solve small problem instants. In this sction, the complexities of the
three relaxation poblems, the LCS problem, the APP problem and the optimal AFP
problem, are studied.

In order to investigate the complexities of the relaxation problems, it is criticd to
understand the transformation technique. The transformation tedhnique provides an easy
way to show that a problem isin a cmplexity classC. Let problem B be aC problem
where C isa mmplexity class Then, problem A isaso a C problem if there exists a pair
of transformations, a() B(), such that a(b) transforms b (an instant of B) to a (an instant

of A) and 3(s) transforms s (a solution for a) to t (a solution for b). Furthermore, a() and

B() are both below C.
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The transformation technique is used to investigate the mmplexiti es of the three
relaxation problems. Spedficdly, the questionis whether the problems arein P or NP

(again, asuming that N # NP). Therefore, the foll owing theorem (Theorem 4.5) is used.

Theorem 4.5.

Let problem B be aan NP-hard problem; then problem A is aso an NP-hard
problem if there exists a pair of polynomial time transformations, a() B(), such that a(b)
transforms b (an instant of B) to a (an instant of A) and (s) transforms s (a solution for

a) tot (asolutionfor b).

4.6 TheComplexity of the LCS problem

Vertex cover [15,32,4% is a dassc problem in graph theory [17,57. A vertex
cover of agraph G=(V, E) isaset V' 0 V such that if (u, v) is an edge of G, then either u
OV orv OV (or bath). The vertex cover problem (VC problem) is to find a vertex
cover that minimizes |V'|. In addition, the vertex cover problem is proven to be an NP-
hard problem.

In order to show the NP-hardness of the LCS problem, a variation d the VC
problem is used. Instead of finding aminimized |V'|, this variationis to find a maximized
|U’| such that if (u, v) is an edge of G, then either u 0 U’ or v O U’ (or both). This
variation is equivalent to the origina VC problem because U’ =V — V'. Therefore, this

variationis now referred as the VC problem in the foll owing text.
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With Lemma 2.3, the a() transformation can be as follows. Given a graph
G=(V,E), a {0,1} matrix M is created so that for every vertex u O V, there is a
corresponding column u’ in M and two columns u’ and V' have overlapping objects if and
only if the two corresponding vertices u and v are adjacent (i.e. (u,v) O E). Therefore, the
B() transformation is as follows. Let M’ be a solution to a LCS problem instant M = a(G).
Then, the solution to the VC problem instant Gistheset U’ ={u OV |U isinM’}. Asa

result, Theorem 4.6 is true since a() and () are both within polynomial time.

Theorem 4.6:

The LCS problem isan NP-hard problem.

4.7 The Complexity of the APP problem

The NP-hardness of the APP problem can be shown in a similar manner, and the
a() transformation is as follows. Given a graph G=(V,E), a 2(n” —n) +1 x n {0,1} matrix
M is created where n = |V|. Each of the first n®>—n rows is associated with an ordered
pair (uyv) of V (note: one row for (uVv) and one row for (v,u)). Furthermore,
M[index(u,v),u] = 1if (u,v) O E and M[index(u,v),w] = 0, Ow # u, where index(u,v) is the
row number that is associated with the order pair (u,v). Next, the first n*>—n rows are
repeated. Finaly, M[2(n* -n)+1w] =1, for1<sw<n.

As aresult, the B() transformation is as follows. Let M’ be a solution to an APP

problem instant M = a(G). The maximum vertex cover for Gistheset U’ ={u 0OV |
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M[ 2(n” —n) +1,u] = 1}. Therefore, Theorem 4.7 is true since a() and B() are both within

polynomial time.

Theorem 4.7:

The APP problem isan NP-hard problem.

4.8 The Complexity of the optimal AFP problem

Dueto Theorem 4.7, it can be shown that the optimal AFP problem is also an NP-
hard problem. To show that the optimal AFP problem is NP-hard, it is sufficient to
show that a subset of the optimal AFP problem is NP-hard. Specialy, let sub-AFP be
the set of the optimal AFP problem instants where M isa {0,1} matrix and r = 1. Lemma
4.8 shows that if W is an algorithm that solves the APP problem, then W also solves the
problem instant of sub-AFP. Therefore, the optimal AFP problem is an NP-hard

problem.

Lemma4.8:

For any problem instant M [0 sub-AFP, if there exists a solution M’, then there is
a{0,1} matrix M” such that M’’ is another solution for M and @ > a’’ where a' is the
total adjustment of M’ and @'’ isthe total adjustment of M” .

Proof:

Casel: if M’ isa{0,1} matrix,thenM” =M’ anda’ =a’’.
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Case 2: if M’ isnat a{0,1} matrix, then thereisa{0,1} matrix M” such that for
every two oljectsi andj,
Lifi>jinu (inM’), theni>jinu” (inM”);
2.ifi=jinu,theni=jinu” ;
d.ifi<jinu,theni<jinu’.
In addition,a’ = a” and M” isasolutionto M (i.e. M’ is afuzzy phylogeny and

IM[i,j]-M"[i,j]| <r , bu sincer =1, it is true for every M’’). Let u, = M[i,u], U=

M'[i,u'] and u", =M"[i,u”]. Then,a’ = z lu -u|anda” = z |u, —u"|. Then

utM 1= utiM 1=

M iscredaed asfollows. Let k { u',} for 1<i<m; if u <k then u", =0,else u", =1,
so that the total adjustment of u is minimized. Withou lossof generality, asuime u, < u;
ifi <j.Also,assumethat 1< x<k<y<mforsomexandy, u=0wherel<i<x u=1

wherex<i <k, u=0wherek<i <y, u=1wherey<i<m Then thetota adjustment

y-1 m

m x-1 k-1
of u' is Z|ui -u,| = Zu'i + Zl—u'i + Zu‘i + Zl—u'i whil e the total adjustment
i=1 i=1 =X i= =

of u” isk-1-i+j-1-k=j-i- 2. Asaresult, thetotal adjustment of u” < the total
adjustment of u’; otherwise there must exist ak’ C{ u',} that yields atotal adjustment less
than that of k, which isacontradiction.

Finally, due to the transformation ® and Lemma 2.3, it can be shown that M” isa

fuzzy phylogeny, and that closes the prodf.

IO
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Theorem 4.8:

The optima AFP problem isan NP-hard problem.
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Chapter 5 A Brute-force Approach

5.1 The Search Space

Recdl from Chapter 3 that given an m x n matrix M, where each element M[i j] is
in the interval [0,1], ore can verify whether M is a fuzzy phylogeny through the
transformation ®. Let ¢ be afunction that verifies whether a matrix is afuzzy phylogeny

(i.e. M)={yes, na}). Then, to solve the (optimal) AFP problems, a naive brute-force
algorithm invokes @ oneach M , where M isamatrix that is within the aljustable range
2r of M (i.e. [M[i,j]-M [i,j]]<r, O1,j, 1si<sm, 1<j<n). However, this algorithm may never
terminate because the number of possble M is infinite (except for the trivial cases).

However, it is nat difficult to seethat the infinite set of M (i.e. S ={M | M[i,j]-
M

M [i,j]|gr, Oi,j, 1sism, 1<j<n}) can be mapped to a finite set of ®(M ) images (i.e.

(M

S ={®(M)|MOS }). In aher words, ® partitions S into equivalent classes,
) M M

eat of which can be represented by ®(M ), where M is any member of the equivalent

class Furthermore, | = ®(M ) is caled theimage of M (also S,=S ). Figure 5.1.1
D(M)

depicts the mncept of the mapping. Therefore, the transformation @ allows brute-force
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Figure 5.1.1: The concept of mapping theinfiniteset S tothefiniteset S,.
M _

algorithms to search the finite set S, instead of the infinite set S . As a result, this
M
brute-force approach is guaranteed to terminate and produce the correct answer.
It is important to understand the relationship between the infinite set S and the
M

finiteset S, . Infact, | only depends on the orders of the valuesin M . Figure 5.1.2 gives

an example of three M that yield the same |. Figure 5.1.2 also shows the orders of each

character of M . In other words, for each column (that specifies a character) in M , the
validity depends on the relative positions of the objects on the development path. In the

discussion below, the term order is used to mean the order of how the objects lay on the
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1 2 3 1 3 1 2 3
al 1 |9 | 1 2 |2 | a1 1|9 |4
b| 4 | 2 | 5 5 | 0 |5 4 |2 |9
c|l 1 | 2 |1 § | 0 | .1 s |2 | 4

O (M)

104 14 2 3

Figure 5.1.2: Three matrices M , their image | and the orders of the characters.

path. In addition, each group in the order is called a rank. Therefore, the order of

character 3 in Figure 5.1.2 has two ranks, where a, careat rank 1 and b is at rank 2.
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Therefore, to solve the AFP problem, one invokes ¢ on each | and quts when ore
valid solution (i.e. an | that is a perfed phylogeny) isfound.In addition, ore dso needlsto
map the image | back to a[0,1] matrix. To solve the optimal AFP problem, howvever, ore

needs to seach the ettire S, set by brute-force to find an | that yields the minimum

adjusted M’. (See Sedion 4.4for the definiti ons of the problems.)

5.2 TheBruteforce Algorithm

The key step o this brute-force methodis to enumerate the dementsin S, and to

find the [0,1] matrix M’ that yields a given | (it is cdled the reverse mapping). This
chapter describes the dgorithms for the enumeration and the reverse mapping, when M is
an mx 1 matrix (i.e. it is avedor). Then, the enumeration d an arbitrary size M can be
obtained by combining results from the clumns of M. This algorithm is cdled the
(Brute-Force) BF-agorithm.

In order to enumerate the dements in S, a data structure is needed. Let L be a

sequence of sets, where eab element of L has an associated value. In addition, eat
member of the set is a 2-tuple dabel, count>, such that label is one of the objeds names
and court is the objeds adjustable range, in terms of the number of elements in the
seguence

The medhanism to trandlate a matrix M with adjustable range 2r to the data
structure L is as follows. First, the set of threshold values Thres is computed. Thresis a
finite set of values that is sufficient to yield all posgble orders. For each value in M, it
produces three threshold values, M, M-r and M+r. However, for any threshold value that

IS greater than one, it is replaced by one, and similarly if it is lessthan zero, it is then
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Figure 5.2 An example of a4 x 1 matrix M with adjustable range 2r = 0.4and

replaced by zero. (The reason that above values are chasen this way will be reveded later
by Lemma 5.4.1) Therefore, Thres is the union d these threethreshold values of eadh
value in M. Then, the length of L is [Thres|; that is the number of distinct threshold
values. In addition, the associated values of L are the distinct threshdd values arranged in
ascending order. Finaly, for each olject x, a 2-tuple is created and daced in the set at
where the dement (of L) is associated with X' s leftmost vaue (i.e. Max(0,M[i]-r)), and
count is the distance from its rightmost value (i.e. Min(M[i]+r,1)) in terms of the number
of elements in the sequence. Figure 5.2 shows an example of a matrix M, an adjustable
range 2r and the orrespondng L. Moreover, each variation d this L is cdled a

configuration, and the L just described is cdl ed the initial configuration.
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Figure 5.3: The enumerated tree of the examplein Figure 5.2.

53 TheEnumerated Tree

The goal of the enumeration isto generate all possible configurations. It isdonein
a recursive fashion. A configuration that has at least one 2-tuple which its count>0 is
called non-fixed (it is called fixed otherwise). A non-fixed configuration that has n non-
fixed 2-tuple can be expanded to configurations that have n-1 non-fixed 2-tuple by fixing
one 2-tuple at each possible element of L. Figure 5.3 depicts the configuration expansion
as an enumerated tree. Actually, the tree is similar to a search tree. The root of the treeis

the initial configuration of L. The children of an internal node are the different
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configurations that are expanded from this internal node. Each level down the tree, the
child fixes one more 2-tuple. Therefore, all fixed configurations are at the leaf of the tree

and are used to define possible orders.

54 Correctness

Now, one needs to show the BF-algorithm indeed generates all possible images |
and correctly retrieves an M’ from the image 1. The enumerated tree has already shown
how all possible configurations are generated. Therefore, the question remaining is
whether the definition of the data structure L correctly captures all possible orders of M
with the adjustable range 2r. Lemma 5.4.1 shows that for any two arbitrary valuesin M, L
captures al possible orders. As aresult, one can show that all possible orders can indeed

be generated in genera by applying Lemma5.4.1 recursively.

Lemmab5.4.1:

Let a and b betwo valuesin M; L captures all possible orders of a and b.

Proof:

Without loss of generality, we first assume that a<b. Then, there are three cases of
how the two adjustable intervals are arranged (i.e. the intervals [Max(a-r,0),Min(a+r,1)]
and [Max(b-r,0),Min(b+r,1)]. To complete the proof, one configuration for each order in
each caseis provided.

Case 1 (digoint): If the two intervals are digoint, there is only one order (i.e. a— b). The

initial configuration of a and b yields this order.



|
ﬁ |::>
T T T c .8
1} 1 2 3 5 T B 1
d| 3

5.4.1 An example of an adjusted matrix M from afixed-configuration by the reverse
mapping.

Case 2 (uniquely intersected): If the two intervals have a unique intersection, there are
two possible orders (i.e. a— b and ab). The initial configuration of a and b yields a-b
and the configuration that contains a+r and b-r yields ab, since that is the uniquely
intersection of the two intervals.

Case 3 (overlapped): If the two intervals are overlapped, there are three orders (i.e. a- b,
b-a and ab). The configuration that contains a-r and b+r yields a-b; and the
configuration that contains b-r and a+r yields b— a. For the order ab, if a=b, then the
initial configuration yields this order. Otherwise, if a<b, then a+r=b+r’, for some —+<

I’ <r, since the two intervals are overlapped.
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5.4.2 Order Xisarefinement of order Y and order Y is a refinement of
order Z.

After an image | is enumerated in the form of a configuration, one needs to find the
corresponding adjusted matrix M (i.e. ®(M ) = ). The reverse mapping retrieves M as
follows. M [i] is the associated value of the set of where object i is located. Figure 5.4.1

gives an example of a fixed configuration and its M . However, the next question is

whether the M’ produced by the reverse mapping minimizes the total adjustment (i.e.

2 IMIi]- M [i]).

Before discussing the reverse mapping, the concept of refinement should be
discussed. An order X is called a refinement of an order Y, if every rank of X is a subset
of some rank of Y, and for any two objectsa and b, if a-bin Y, then a- b in X. (Note

that any order is a refinement of itself.) Figure 5.4.2 illustrates the concept of
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refinements. The refinement property is as follows. Let W and V be columns with order X
and Y respectively, where X is arefinement of Y. If M is amatrix that contains column W
and M is afuzzy phylogeny, then when substituting Wby V, M is still afuzzy phylogeny.
The refinement property assures that the order X can be replaced by an order Y,
for some Y in the enumerated tree. The next property, the minimum property (Lemma
5.4.2), says that the total adjustment of Y from the reverse mapping is the same as the
minimum adjustment of X. Therefore, the enumeration and the reverse mapping together
guarantee that the BF-algorithm finds the correct answer for the optimal AFP problem

(and the AFP problem).

Lemmab5.4.2:

Given an enumerated tree, if X isan order (represented by a configuration) in this
tree, then there exists an order Y also in this tree, such that X is a refinement of Y and
min(X)=reverse(Y), where min(X) is the minimum adjustment of X and reverse(Y) is the

total adjustment of Y from the reverse mapping.

Proof:

The proof is done by an induction on the number of objects in M. When there is
one object, then there is only one order, and the initia configuration requires zero
adjustment. Therefore, min(X)=reverse(Y) holds. Assuming n-1 objects are on threshold
values and their orders are obeyed, the n-th element must be on an interval where the two
ends are threshold values, say [p,q] such that there is no object on (p,q). Since thereis no

object on (p,q), placing the n-th element on {p,q} yieds the same order. In addition,

47



placing the n-th element on any value on (p,g) must result in a larger adjustment.

Therefore, it holds for the n-th case.

55 TheCompact (Enumerated) Tree

Further optimization can be done to improve the performance of searching the
enumerated tree. A natural implementation of the BF-algorithm may search the
enumerated tree in the depth-first order. Therefore, a stack-like structure is required to
store the internal nodes during the search. However, this scheme may require very large
storage. Actually, a compact representation can be used to reduce the storage
requirement. Notice that, for each internal node, there are count child nodes. Instead of
stacking up al count child configurations, one can stack up a compact configuration that
can be used to generate these child configurations later. Therefore, each internal node
now has two child nodes. One is that it fixed the rightmost 2-tuple to be at its rightmost
element, and the other is that it has the same configuration as its parent except that the
rightmost 2-tuple only has count-1. The semantic is that this 2-tuple can only move to the
right at most count-1 elements, because the configuration that it moves to the right count
elements has already been enumerated. In fact, what the optimization does is replace the
enumerated tree by an equivaent enumerated binary tree (called compact tree). Figure

5.5 shows the equivalent compact tree of the enumerated tree in Figure 5.3.
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Figure 5.5: The eguivalent compact tree of the enumerated treein Figure 5.3.

5.6 Conclusion

In conclusion, the BF-algorithm provides a way to solve the (optima) AFP
problem by the brute-force approach. It also explains the complexity of the problems and
how the data structure L can be used to enumerate the images. However, the brute-force
approach may be impractical when the problem size is large due to its slow performance.
In the next chapter, a new algorithm will be introduced. This algorithm requires further

analysis on the structure of the fuzzy phylogenetic tree and actively searches for valid
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solutions (i.e. M’ that is a fuzzy phylogeny). As a result, better performances are

expected.
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Chapter 6 An Algorithmic Approach

6.1 A Special Case

Before solving the (optimal) AFP problems in generdl, it is helpful to first look at
some special cases. This section discusses a simpler problem, which is a special case of
the optimal AFP problem. (See Section 4.4 for the definitions of the problem.) Given an
m x n [0,1] matrix M with an adjustable range 2r, assume the m x n-1 sub-matrix N (that
is the matrix M multiplied by the n x n-1 identity matrix) is a fuzzy phylogeny, and find
an m x n matrix M’, such that M’[i,j]=M[i,j], 0i,j, 1<ism and 1<jsn-1, |M’[kn]-
M[k,n]|<r, O1<ksm, M’ is afuzzy phylogeny, and the total adjustment is minimized.

In other words, given the first n-1 columns of M form a fuzzy phylogeny, one
wants to adjust only the values of the n-th column (within the adjustable range 2r) such
that M is a fuzzy phylogeny. Since this problem is a special case of the optimal AFP
problem, the BF-algorithm described in Chapter 5 can be used to solve this problem.
However, this special condition (i.e. only one column can be adjusted) not only
dramatically reduces the complexity of the problem but also makes it possible to solve
the problem more efficiently. The algorithm that solves this problem is explained in detail

below and is called the (Special Case) SC-algorithm.
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ab

Figure 6.2.1: The two digoint spanning subsets X, , X, and the
|abeled edgel.

6.2 The Special Case Algorithm

Since the m x n-1 sub-matrix N is a fuzzy phylogeny, N defines a FP-tree T. In
order for M’ to be a fuzzy phylogeny, the n-th column must obey the structural
information inferred from N. In fact, any valid FP-tree T' of M’ must be a refinement of
T. A tree T' isarefinement of atree T, if for every two nodes u and v, u is an ancestor
node of vin T, then u is aso an ancestor node of vin T'. In other words, the n-th column
is compatible with the sub-matrix N (i.e. M’ is afuzzy phylogeny) if and only if it obeys
the structural information from N. Therefore, the SC-algorithm attempts to adjust the n-th
column according to N. If there is no valid adjustment, the SC-algorithm regjects M.
Otherwise, the SC-algorithm returns the minimum adjusted M’. In the text below, the

structural information is called restrictions.
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Figure 6.2.2: Viewing the n-th column as objects on a[0,1]
interval.

The first task is to understand the concept of restrictions. In fact, it is easier to
understand restrictions in terms of the FP-tree. Since the m x n-1 sub-matrix N is a fuzzy
phylogeny, N defines a FP-tree T. For any valid FP-tree T" of M’, T" must be a refinement
of T. Furthermore, the n-th column refines T following exactly one path. (A strict
interpretation of the definition of the FP-tree.) Lemma 6.2.1 proves this observation. Let
k be the number of nodes in T; then there are k possible paths of where the n-th column
resides.

Let I+ denotes an edge on the path P in T; then each edge |+ separates the set of

objects X into two digjoint spanning subsets X, and X, where X contains objects of X
that is at a descendent node of I+ (thus, X, = X- X). Figure 6.2.1 is an example of the
edge I+ on the path and the two digjoint spanning subsets X, and X. Therefore, each

edge in T enforces one restriction. (The two terms, edge and restriction, may be used
interchangeably in the following text if the context is clear.) Lemma 2.3 (see Section 2.3)
staysthat if amatrix is a (perfect or fuzzy) phylogeny, then no two edges separate X in an

overlapping manner. Therefore, if | isan edgein T, then the n-th column cannot infer any
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Figure 6.2.3: The improved data structure L'.

edge such that it overlapswith | in how X is to be separated. This observation is proven in
Lemma 6.2.2. On the other hand, let |- denote an edge that isnot on P in T, then the set of
descendent objects of |- (Y) must be at the same rank. This observation is directly derived
from Lemma 2.3 and transformation .

Moreover, the relationship between the restrictions and the adjustable range of the
n-th column is as follows. First, the different values of M[i,n] (1<i<m) can be understood
as the positions of the objects on a [0,1] interval. Let |+ be an edge in T (for N) and |+

separates X into X, and X, then there must be a boundary on this interval that
separates X, and X, so that no item can be moved across this boundary. Figure 6.2.2

depicts the overlapping with the point p and g where p represents the rightmost position

of the objectsin X and q represents the leftmost position of the objectsin X;. Finaly,



let |- be an edge that has a set of descendent objects Y; then M[y,n] are the same for al y
LTY.

In the SC-algorithm, the data structure L is improved so that it represents the
restrictions on the objeds. This improved data structure is called L' in order to
distinguish it from L. In L’, each 2-tupleis now a 3-tuple <Icourt, label, rcount> where
lcount isthe objed’ s left adjustable range; rcourt is the object’ s right adjustable range. In
addition, eat element (representing a point in [0,1]) is asociated with a flag that is the
number of boundiry paints at this element. As a result, let f be the flag of an element;
then there are f+1 subset each hdd a range of objeds between the boundry paints.
(These subsets are cdled the boundrry subsets in the foll ow text.) Figure 6.2.3shows the
structure of L.

Using the data structure L', the SC-algorithm iteratively applies the restrictions.
For the I- restrictions, the set of objects Y that are restricted to have the same vaue is

replaced by a new 3-tuple (if valid) where the lcourt is MD%X(Icount) and rcourt is
Yl

MDiYn(rcount) . Then the path P isinvalid if Icourt > rcourt.

y

For the |+ restrictions, the mecdhanism can be explained as follows. For the first
(k=1) iteration (i.e. nol+ restriction hes been enforced), each olgect in X, moves to its
far left while each oljed in X moves to its far right. Then, The SC-algorithm scans L’
from left to right to chedk whether the boundry point b exists. If b does not exist, return
with a rejedion. Otherwise, the flag at g (the leftmost position d the objeds in X;) is

incremented. Furthermore, for any object on q, it is placal in the boundry subsets

acordingly.
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Figure 6.2.4: The two points p,, p,_during the k-th iteration.

Now, for the k iteration (k>1), since all restrictions are compatible with each
other, the boundary point of the k-th restriction must occur between two boundary points

p,, P, ad p,=p,, such that objects before p, arein X, and objects after p, arein

X, . However, objectsin [ p,, p,] can either bein X, or X,. Figure 6.2.4 depicts the
boundary point for the k-th iteration. Furthermore, Lemma 6.2.3 proves this observation.
Due to Lemma 6.2.3, the insertion for the k-th boundary point is as follows. Since the
objects before p, and after p, are aready in order, only objects in [ p,, p,] are of
concern. The SC-algorithm again first moves all objects in X, to its far left and all
objectsin X, toitsfar right (also moves the boundary points if necessary). Then, a new
boundary point isinserted at g, and L’ is again scanned to ensure its validity.

Finally, at the end of the last iteration, if the remained adjustable range is unique,
then the solution is just the reverse mapping of L’. On the other hand, if the remained
adjustable range is non-unique, the SC-algorithm finds the minimum adjusted M’ as
follows. The SC-algorithm scans L’ from left to right and one object at a time. For the

first object (k=1), all the boundary points are moved to their far right, and the first object
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is placed at the minimum distance from its original position (i.e. M[i,n] wherei isthe first
(left most) object in L’). For the k-th object (k>1), since the adjustment of the first k-1
objects is minimized, the position of the k-th object (that minimizes the adjustment of the
first k objects) can then be computed. As a result, the SC-algorithm finds and returns the

minimum adjusted M’ (after the reverse mapping).

Lemma6.2.1:

Let M bean m x n[0,1] matrix and N be the m x n-1 [0,1] sub-matrix of M. Then,
if the FP-tree T' for M and the FP-tree T for N exist, T' is arefinement of T. Furthermore,
T refines T by exactly one path (i.e. there exists an unique path P, so that every new edge
(edgesin T'-T) ison P).

Proof:

Assume the contrast, there are two objects x and y such that x is a descendent of y
in T while y is a descendent of x in T'. Then ®(M) violates Lemma 2.3; that is a
contradiction of that T exists. Furthermore, a direct interpretation of the definition of FP-

trees concludesthat T' refines T by exactly one path.

I

Lemma6.2.2:
The n-th column is compatible with (the restriction of) the edge |+ of a FP-tree T
(i.e. M’ isafuzzy phylogeny) if and only if there exists a boundary at point blJ[0,1] such

that either [0,b) contains only objectsin X, and (b,1] contains only objectsin X or the

opposite (i.e. [0,b) contains only objectsin X, and (b,1] contains only objectsin X, ).
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Proof:

If the boundary point b exists, then no edge inferred from the n-th column will
overlap with X, and X. Therefore, according to Lemma 2.3, the n-th column is
compatible with|.

On the other hand, if b does not exist, then thereis an interval [g,p] O [0,1], with
p>q, such that [g,p] infers an edge that overlaps with the separation of X, and X,.

Thus, it isincompatible with the edgel.

Lemma6.2.3:

At iteration k>1, assume that there is a valid adjustment, then there exist two
points p, and p,, p,=p,, such that for any object x before p, (i.e. xisin [0,p) ), X must
bein X, ; and any object x after p, (i.e. xisin(p,1] ) must bein X . Furthermore, there
is no boundary point on theinterval ( p,, p,)-

Proof:

Assume the contrast, for every p, and p,, either [O,p) contains object(s) in X,
or (p,1] contains object(s) in X, (or both). Then, there does not exist a new boundary
point that separates X into X, and X.. However, it contradicts with the assumption.

Therefore, p, and p, must exist.
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6.3 TheGeneral Case

The BF-algorithm from Chapter 5 solves the (optimal) AFP problems by
enumerating and verifying each possible solution. Although the BF-algorithm solves the
problems exactly, it is expected to be slow. On the other hand, the SC-algorithm solves
the specia case of the (optimal) AFP problems where the m x n-1 sub-matrix N is already
a fuzzy phylogeny. The SC-algorithm actively searches for a valid solution; thus, fast
performances are expected. Although the SC-algorithm requires the sub-matrix N is
already a fuzzy phylogeny and cannot be used in general case, it has made invalidation
detection possible. In the next section, a new algorithm is introduced. This algorithm
combines the techniques used in the BF-algorithm and the SC-algorithm, such that it
solves the (optimal) AFP problems exactly in general and actively searches only for valid
answers. This algorithm is called the (General) G-algorithm, and it is presented in detall

below.

6.4 TheGeneral Algorithm

The idea of the G-agorithm is as follows. Similar to the BF-algorithm, the G-
algorithm enumerates all possible configurations. However, by using the concepts of the
SC-algorithm, for the k-th column, the G-algorithm only enumerates configurations that
are compatible to the k-1 previously selected configurations. In order words, the G-
algorithm terminates the branch of enumeration once the m x k sub-matrix is determined
to be invalid (i.e. the remained adjustable range is undefined). Due to the technique of

invalidation detection, the G-algorithm reduces a significant portion of the search space
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Possible configurations of:

column 1 column 2 column 3 column 4
— — — —
Cyy Cyy Csz1 Cyqr
Ci2 Cz22
Cg 2 C42
Cyz Czz
Crq Caz Czq Caz
.~ .~ . .~
Solution space of the Solution space of the
BF-alzorithm G-algorithm

Ci 20X
CoC 313 C 42
% =X
Cr22C;2X
Y

C11Cy; C21Cyy
Cr1Co Car Cys

Figure 6.4.1: An illustration of the search space of the BF-algorithm and the G-
algorithm.

over the BF-algorithm. As a result, fast performances are expected. Figure 6.4.1
illustrates the search space of the BF-algorithm and of the G-algorithm. Therefore, to
solve the AFP problem, the G-algorithm quits when one valid solution is found. To solve
the optimal AFP problem; however, the G-algorithm searches the entire solution space

and returns the minimum adjusted M'.
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Figure 6.4.2: The enumerated tree of the G-a gorithm.

The key for the G-algorithm is to enumerate configurations with restrictions
enforced. The SC-algorithm iteratively reduces the adjustable range of the n-th column so
that it obeys the set of restrictions from N. This technique is again used in the G-
algorithm. Therefore, the discussion in this section is focused on how the possible
configurations are enumerated from the data structure L.

Given an instance of L', the G-algorithm enumerates configurations as follows.

First, the root of the enumerated tree is again caled the initia configuration and is the
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configuration where each 3-tuple movesto its far left. In addition, all boundary points are
also moved to their far left accordingly. Then, for each non-fixed configuration, two child
nodes are generated. One is that it fixed the rightmost 3-tuple to be at its rightmost
element, and the other is that it has the same configuration as its parent except that the
count of the rightmost 3-tuple is decremented by 1. The enumeration is indeed very
similar to the enumeration in the BF-algorithm with the consideration of also moving the

boundary points. Figure 6.4.2 depicts the enumerated tree for the G-algorithm.

6.5 Conclusion

In conclusion, the SC-algorithm actively searches for a valid solution, instead of
passively verifying al possible solutions. Therefore, better performances are expected. In
fact, unlike the BF-algorithm (that is expected to run in super-polynomial time), the SC-
algorithm runs in polynomial time due to the special condition. Although the SC-
algorithm does not solve the problems in general, the G-algorithm solves the problems in
genera by repeatedly applying the SC-algorithm, which results in a better performance
(than the BF-algorithm). In fact, the G-algorithm combines the techniques used in the
BF-algorithm and the SC-algorithm. It explores the entire solution space by enumeration
and at the same time efficiently searches only for valid answers by detection of invalidity.
Therefore, the G-algorithm is an improvement over the BF-algorithm. However, due to
the complexity inherited from the problems, the performance of the G-algorithm may still
be slow for some instances. Therefore, in the next chapter, a heuristic algorithm is
proposed. Unlike the BF-algorithm and the G-algorithm that search the solution space

systematically, this new algorithm attempts to search the solution space heuristicaly.
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Such approach may result in better performance; however its successfulness and

optimality are not guaranteed.
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Chapter 7 A Heuristic Approach

7.1 Heuristics

The G-agorithm is an improvement over the BF-algorithm because it reduces the
seach spaceby pruning off invalid solutions. However, due to the inherited complexity
of the problems, sow performance may still occur for some problem instances.
Therefore, in this chapter, a heuristic dgorithm caled the (Heuristic) H-algorithm is
introduced that serves as an aternative of the exad algorithms to the (optimal) AFP
problems (i.e. the BF-algorithm and the G-algorithm). Firstly, the H-algorithm extends
the definition d valid solutions  that many of the “second class’ solutions are now of
interest. Seoondy, due to the new definition, the H-algorithm seaches for solutions by a
different approach that offers fast performance even in the cae of high complexity
problem instances. Thirdly, although the H-algorithm is expeded to find a near-optimal
solution, it does nat guarantee the optimality of the solution. Finally, the H-algorithm is,
in fad, an application d a new general purpase searching technique. This new searching

tedhniqueis cdled the Particles Algorithm and is discussed in detall i n this chapter.

7.2 TheParticles Algorithm
The Particles Algorithm is anew genera purpase searching technique that models
after physical properties of particles. Imagine a container that contains various snall

particles. Due to the randam motion d the particles, small particles will colli de and
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Figure 7.2.1: An illustration of random motions and collisions of
particles.
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Particles Algorithm
{
initializethe container with particles
whil e (terminating condition has not been met)
{
simulate wllisions and merge particlesif it is gable
}
return the best particle
}

Figure 7.2.2 The pseudo-code of the Particles Algorithm.

combine to form a cmpound(a big particle) if it is gable. Similarly, big particles will
colli de to form a bigger particle. After some time, the mntainer is expeded to contain a
significant amount of big sized particles. The idea of particle allisions is ill ustrated in
Figure7.2.1.

The analogy between the particle wllisions and solution searching is as foll ows.
Often, a solution to a problem consists of multiple dements, A, B, ...,N, and eadh

element has various instances, for example, A={ a,,a,, ...,a, }. Therefore, an instance of

an element can be thought of a particle in a container. Then, a solution can be seen as a
compound(a big particle) that consists of exadly n particles ead from an element. The
randam motion d the particles creates colli sions that combine particles to form a big
particle if it is dable. This medanism is paralel to combining two partial solutions of a
problem if the resulted (partial) solution is valid. Under suitable condtions, the small
particles are expeded to interad and form the desired products. Therefore, with careful
design, ane can also exped the Particles Algorithm to produce desired solutions to the

problem. The Particles Algorithm is presented as pseudo-code in Figure 7.2.2.
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The important concepts of the Particles Algorithm are discussed in this chapter.
However, the implementation cetail s are beyond the scope of this chapter. Therefore, the
discusson is limited to the general functionality and the possble strategy. The Particles
Algorithm involves a series of parameters. the number of particles, the initial particles,
the ollision rate, the terminating condtion and the wllision medcanism. Furthermore,
eadt parameter isdiscussed in detail below.

Number of particles

The number of particles is the number of “building blocks’ to solutions in the
container. The more particles in the cntainer initially, the more big particles are
expeded at the end. However, more particles also require longer computational time to
simulate the wllisions. Therefore, the number of particles in the mntainer shoud be
propartional to the complexity of the problem, such that it is sufficient and efficient to
seach for goodsolutions.

Initial particles

The initial particles determine the upper boundof the quality of solutions unless
injedions of new particles or transformations of particles are dl owed later in the process
Therefore, the initial particles must cover the good portion d the solution space (if not
the eitire solution space). In addition, it is posshble to optimize the initial particles to
some known particles (i.e. known (partial) solutions) so that the prior knowledge can be
incorporated in the seach.

The collision rate
The alli sion rate defines the number of collisionsin an iteration. Assume that at

any moment, one particle can at most colli de with ore other particle. Then, the maximum
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collision rate shoud define a“total collision’. Let the wllision rate be avalue O [0,1],
then collision rate =1 means that al particles (except when the number of particlesis an
odd number) will colli de with ore axather. Similarity, collision rate =0 means that there
will be no callision undrtaken. However, the wlli sion rate does not need to be afixed
parameter. In fad, the idea of temperatures can very well cooperate with the Particles
Algorithm to vary the allisionrate. The idea of temperatures is to vary the wlli sion rate
acording to the temperature of the environment. When the temperature is high, the
randam motions of the particles are rapid and therefore result in high collision rate. On
the other hand, when the temperature is low, it results in low collision rate. This idea
allows the Particles Algorithm to either escape or focus on local optima by varying the
collisionrate.
The terminating condition

The terminating condtion is usually motivated by two concerns, the user-defined
condtion and the conwvergence of solutions. The user-defined condtionis alimit that the
user impaosed (e.g. time limit). Therefore, the Particles Algorithm must return a solution
when the @ndtionis reached (e.g. when the time is up). The mnvergence of solutionsis
the situation where the quality of the solutions remains sttled in a significant number of
iterations. Then, the Particles Algorithm returns the best solution kecaise it is unlikely
that a better solution would be foundin further searching.
The collision mechanism

The olli sion medhanism perhaps is the most interesting and flexible componrent
of the Particles Algorithm. The olli sion mecdhanism shoud define how particles colli de,

for example, ore-to-one llisions or multi-way collisions, randan collisions or
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collisions that are based on some molecular attradions, merging only collisions or
colli sions that breeks up kig particles ... etc.

The Particles Algorithm itself is a very interesting topic that opens the doars of
various researches. The Particles Algorithm, although it is a new technique (as far as the
author is aware of), shares various concepts of other search tedhniques, such as the
Genetic Algorithm [28] and the Smulated Annealing [39]. All three tedhniques use the
natural computing paradigm [49] to solve mmplex problems where posshble solutions to
aproblem is represented as a natural entity (an individual) and the search for the optimal
solution is sSmulated as a natural event. These techniques navigate the solution space by
different principles according to the natural models behind the techniques. Most natural
computing techniques require an individual to be afull solution to the problem. In
Particle Algorithm, however, a particle is a partial solution to the problem. That in turn
allows the dgorithm to simultaneously search for good prtial solutions to the problem

andfindfor goodpartia solutionsto combine.

7.3 TheH-algorithm

The H-algorithm is an application d the Particles Algorithm to the (optimal) AFP
problems. (See Sedion 4.4for the definitions of the problems.) With the H-algorithm,
aaceptable solutions can be obtained even in the cae where the BF-algorithm and the G-
algorithm rejed the matrix. Furthermore, the H-algorithm, although considers, bu it does
not visit the entire solution space As aresult, fast performance is expeded.

Before the discusson d the H-algorithm, new definitions for solutions are

needed. Throughou the dapters, the term optimal solution hes been used to mean the

69



minimum adjusted matrix M’ (from M and 2r) that is a fuzzy phylogeny. In addition, the
term valid solution has been used to mean amatrix M’ (adjusted from M and 2r) that is a
fuzzy phylogeny. Now, define a reduced matrix of an m x n matrix M as the m x k matrix
K resulting from the removal of any n-k columns from M. Furthermore, define an
adjusted reduced matrix of an m x n matrix M as the [0,1] m x k matrix that is adjusted
from K by at most r where K isareduced matrix of M and 2r is the adjustable range of M.
As aresult, a new term, acceptable solution, is introduced to mean a matrix K’ that is an
adjusted reduced matrix of M’ and is a fuzzy phylogeny. Finally, an acceptable solution
K’ (an mx k matrix) is called a k-acceptabl e solution where k is the number of columns of
K’ (and it is the number of charactersit used to infer the fuzzy phylogeny).

All in dl, the term (k-)acceptable solution is introduced to describe solutions that
use less than al n characters to infer the fuzzy phylogeny. Some of the experimental data
of characters may deviate beyond the expected deviation (which is captured by the
concept of the adjustable range). Also, some characters are poorly chosen and are
actually not suitable to be used to infer the fuzzy phylogeny. The term (k-)acceptable
solution allows an algorithm to return a solution under these circumstances. As a result,
the H-algorithm solves another variation of the AFP problem, called the relaxed AFP

problem.

Definition of the relaxed AFP problem:

Given an m x n [0,1] matrix M and a value r 00 [0,1], find an m x n” matrix M’

where n < n’, such that each column j’ in M’ is associated with an unique column j in M,
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IM[1,j]-M'[i,j’]] < rand M'[ij’] O[0,],forl<i<mand 1<j <n, M isafuzzy

phylogeny, and the total adjustment ais small.

The H-algorithm views ead configuration as one particle, and a particle is gable
if and orly if notwo configurations are of the same type (i.e. they are both configurations
of charader i) and the matrix K’ which that particle correspondsto is afuzzy phylogeny.
Notice that each stable particle is, in fad, an acceptable solution. The H-algorithm
initi alizes the cntainer with randamly generated configurations and simulates one-to-one
colli sions between the particles. In addition, the wlli sions are simulated based onrandam
motions. Therefore, if two particles collide and they are wmpatible, then they will
combine and form a big particle; otherwise, the allisionis ineffective. At the end of all
iterations, the H-algorithm returns the “best” particle in the container. The best particle is
the k-acceptable solution that has the maximum k, and in the cae of a tie, the best

particle is the one that has the minimum total adjustment.

74 Conclusion

The three #&gorithms, the BF-algorithm, the G-algorithm and the H-algorithm,
solve the (optimal or relaxed) AFP problems in dfferent ways. The BF-algorithm is the
first attempt to solve the problems. It uses Lemma 5.4.1to dvide the infinite solution
gpaceinto a finite number of equivalent classes. Then by using the brute-force method,
the BF-algorithm exhaustively enumerates the possble solutions and \erifies ther

correctness and ogimality. The BF-algorithm is intuitive and solves the problems
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exadly. However, due to the exhaustive enumeration, the BF-algorithm is expeded to
have slow performances.

On the other hand, the G-algorithm uses the techniques from the SC-algorithm
that prunes off invalid search spaceonce the partia solution is determined to be invalid.
The G-agorithm nat only reduces the search space over the BF-algorithm but also solves
the problems exadly. The G-algorithm is expeded to have fast performances in general.
However, due to the inherited complexity of the questions, slow performance may still
occur in the high complexity problem instances.

Therefore, the H-algorithm is proposed to provide an alternative over the BF-
algorithm and the G-agorithm. The H-algorithm is an application d a new genera
purpose searching technique cdl ed the Particles Algorithm. The H-algorithm extents the
definition d valid solutions to cover more “second class” solutions. The H-algorithm
heuristicadly searches for good solutions and is expeded to have fast performances even
in the case of high complexity problem instances.

In the next chapter, an empiricd study of the three dgorithms is presented. The
study compares the dgorithms in dfferent dimensions and then dscusses and concludes

the experimental results.
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Chapter 8 The Performance Analysis

8.1 Simulated Biological Data

To analyze the performances of different proposed methods, simulated biological
data are used. The performance analyses consist of both positive data and negative data.
Positive data is a matrix that is a fuzzy phylogeny. Negative data is a matrix that is not a
fuzzy phylogeny. The simulation of negative data is trivia. An m x n matrix M is
generated where each M[i,j] is uniformly chosen from [0,1]. If M is occasionally a fuzzy
phylogeny, it will ssmply be discarded. Notice that the adjustable range 2r is not required
when generating negative data.

To simulate positive data, an evolutionary model of fuzzy charactersis used. The
model is compatible with the fuzzy phylogeny model. Over time, it simulates the
character development of the objects. Therefore, at the beginning, every object is
primitive and does not have any character. This is depicted by the root node of the FP-
tree. Then, a divergence occurs and divides the objects into two groups, which is depicted
by the two child nodes of the root node. A divergence is an evolutionary event where
some objects develop a degree of a character while other objects remained unchanged.
These evolutionary events repeat over time and further divide the objects into smaller
groups. Figure 8.1 shows an example of a FP-tree and the divergence of objects.

In order to simulate different frequencies and rates of character development, each

character is associated with two values, weight and rate; each of which is uniformly
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Figure 8.1: A FP-tree and the divergence of the objects.

chosen from [0,1]. For each divergence, a character is chosen randomly according to the

weights. In addition, the development increment is chosen randomly from a Gaussian
[9,25] distribution with mean = rate and variance = (izte)z. Next, the division of the

groups is chosen in uniform; each object has equal chance to go to either group.
Furthermore, the occurrence of divergence is chosen randomly among the current
leaf nodes. Findly, the frequency of divergence is chosen uniformly from [n,m). The
term n is the number of characters, which is an obvious lower bound of the frequency of
divergence. The term m is the number of objects, so m-1 is the number of divisions
required to separate the m objects. Notice that the rate of the character development is

chosen randomly. Therefore, normalization is required after the tree is generated. The



MIi, j]

MaxM[i, ]]

normalization replaces the expression value M[i,j] by . Thus, all expression

values are between [0,1].
Now, positive data is generated. To simulate the experimental errors and other
biological noises, the valuesin M are to be deviated. As aresult, for each MJi j], thereisa

probability deviation_pr that adeviation will be injected, in which the deviation is chosen
randomly from a Gaussian distribution with mean = 0 and variance = (%)2. If the

deviation is beyond the adjustable range 2r, then it is replaced by M[i,j]+r or M[i,j]-r
accordingly.

The simulation of positive data ensures the matrix M is adjustable to a fuzzy
phylogeny with respect to the adjustable range 2r. In addition, the origina matrix, the
matrix before the injection of deviations, provides a referenced matrix M’ (and a FP-tree).
The advantage of using simulated data is that the performance analyses can be conducted
in various parameters, such as the number of objects, the number of characters, and the
adjustable range. In fact, it is impractical (or even impossible) to collect real biological

data satisfying the dimensions of all parameters.

8.2 Empirical studies

With the ssimulated data, it is possible to conduct empirical studies on the
proposed agorithms. This section explains analyses that are designed to evaluate the
performances. Specifically, the time analysis assesses the computational time required for
an agorithm and the quality assesses the quality of the solution from an algorithm. (Note

that the performance of an algorithm is subjected to the implementation). The time
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analysis is performed to all three agorithms (the BF-algorithm, the G-algorithm and the
H-algorithm); however the quality analysis is performed ony on the H-algorithm (since
the BF-algorithm and G-algorithm both solve the (optimal) AFP problems exadly).

All three dgorithms are implemented in JAVA [35] using J2SE 1.4.2.1n addition,
the empiricd studies are onducted in a DELL madiine with a 1GHz Intel processor and
256VIB RAM running Windows XP. The testing data ae generated acording to the

simulation dscussed in Sedion 8.1.In addition, the set of parameters are & follows. Let

m be the number of objeds, then, the number of charaders n = %E the one-sided

adjustable range r = 21+ random(——) £ where random(K) is uriformly distributed over
% am E

[0,K]; the deviation probability deviation pr = 0.8. Finaly, eadh reported result is an

average of ten trias.

83 Reaults
Performance of the Brute-force Algorithm

The time analysis is condwted on the BF-algorithm solving both the AFP
problem and the optimal AFP problem. There ae threeseries of tests, “Positive” denotes
the AFP problem using positive data, “Positive Optima” denates the optimal AFP
problem using positive data and “Negative” denotes the AFP problem using negative
data. Noticethat, there is no “Negative Optimal” because it is expeded to be the same &
“Negative’. Figure 8.3.1shows the time analysis of the threetests of the BF-algorithm on
a logarithmic scde. In addition, zeros are abitrarily reset to ore in the logarithmic plot.

The data of results can aso be foundin Table 8.3.1in Appendix A.
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Performance of the General Algorithm

Thetime analysisis conducted onthe G-algorithm, solving both the AFP problem
and the optimal AFP problem. There are again three series of tests, “Positive”, “ Positive
Optimal” and “Negative”. Figure 8.3.2shows the time analysis of the threetests of the G-
algorithm on a logarithmic scde. In addition, zeros are abitrarily reset to ore in the
logarithmic plot. The data of results can also be foundin Table 8.3.2in Appendix A.
Performance of the Heuristic Algorithm

The parameters to the H-algorithm are seleded for the best results. The
parameters are & follows. The termination condtion termination = 30 (i.e. the best
solution remains in termination iterations); the lli sion rate coll_rate = 0.7; the number
of particles size = 100 (note that size is the number of particles for each kind. i.e. the total
number of particleisn x size).

Both time analysis and quality analysis are mnducted onthe H-algorithm solving
the relaxed AFP problem. There ae only two series of tests, “Positive” and “Negative”.
Figure 8.3.3 shows the time analysis of the G-algorithm on the two series, and Figure
8.3.4shows the quality analysis of the G-algorithm on the two series. The data of results

can aso befoundin Table 8.3.3and Table 8.3.4in Appendix A.

8.4 Discussion
Discussion on the Brute-force Algorithm

The BF-algorithm is the first attempt to solve the (optimal) AFP problems. The
correctnessand termination d the dgorithm is guaranteed; however, it is expeded to be

slow due to the mmplexity of the problems. Figure 8.3.1shows a mnsistent result that
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the computational time increases rapidly in a smal interval. When m = 4, the BF-
algorithm (in general) terminates in less than a seand. However, it takes amost two
hous to terminate when m = 6. Furthermore, the cmputational time quickly becomes
infeasible to measure when m = 8.

Among the three series, “Positive”, “Positive Optimal” and “Negative’, there are
only dight differences in their performance. The similar behavior between the two series,
“Positive Optimal” and “Negative”, are expeded. It is becauise of that the BF-algorithm
would have to brute-force al possble solutions for either series before termination.
However, a doser look at the two series reveds that “Positive Optimal” has a dlight
advantage over “Negative’. The slight advantage is indeal due to the ntent of the data
(i.e. the matrix M). A biologically simulated matrix M is expeded to have fewer distinct
values than a randamly generated matrix M’; therefore the BF-algorithm takes longer to
compute M than M’. On the other hand, when comparing “Positive” with “Positive
Optimal”, the BF-algorithm quits when ore valid solution is found and examines all
possble solutions, respedively. Therefore, “Positive” is expeded to yield a better
performance than “Positive Optimal”. Due to the scale of the plot, this fad is not obvious
in Figure 8.3.1.However, it can be concluded from Table 8.3.1.

In conclusion, athough the @rrectnessand termination are guaranteed in the BF-
algorithm, the computational time requires is infeasible in pradice size. Furthermore,
thereislittl e differencein performance regardliessof the type of the data and the problem
(optimal or nat). It indicates that the BF-algorithm is not taking full advantage of the
structure of the data. These observations are indeed consistent with theoreticd prediction.

Discusson onthe General Algorithm
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The G-algorithm is the second attempt to solve the (optimal) AFP problems. The
correctness and termination d the dgorithm is again guaranteed. Figure 8.3.2 shows a
significant improvement of the G-algorithm over the BF-algorithm. For instance, the G-
algorithm takes lessthan ore second when m = 8 while the time required in the BF-
algorithm is already infeasible. However, due to the complexity of the (optimal) AFP
problems, the computational time still quickly increases with m.

Among the three series, “Positive”, “Positive Optimal” and “Negative’, there is
much dfference in their performance. There are dear distinctions in performance with
the order, “Positive Optimal” > “Positive” > “Negative’. Since the G-agorithm prunes
off invalid solutions once they are detected, performance distinctions are very evident.
Most naticeadly, “Negative” terminates quickly because dl solutions are invalid. Again,
“Positive” terminates quicker than “ Positive Optimal” because of the early termination.

In conclusion, the G-agorithm not only guarantees the @rredness and
termination, bu it also has a significant improvement on the computational time over the
BF-agorithm. Furthermore, the G-algorithm takes full advantage of the structure of the
data and reduces computational time when passble. Finally, these observations are dso
consistent with theoreticd prediction.

Discussion on the Heuristic Algorithm

The H-agorithm is the third attempt to solve the (optimal) AFP problems.
Actualy, it solves the relaxed AFP problem, which is a variation d the optimal AFP
problem. The @rrectness and termination o the dgorithm are not guaranteed na
required in the H-algorithm. The goal is to retrieve a*“good’ solution quckly. Figure

8.3.3 shows that the G-algorithm only takes sconds to retrieve the solution. For
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instance it takes abou three to six seands to retrieve solution when m = 30. Similarly,
due to the number of distinct values, “Positive” again has a dight advantage over
“Negative’.

Figure 8.3.4shows how the quality of the solutions deaeases with increasing m,

where quality = (E X 10®%). The H-algorithm retrieves lution with quality = 100%
n

when m< 10.Noticethat these solutions are dso solutions to the AFP problem sincen’ =
n. In addition, the H-algorithm retrieves a solution with quality = 50% when m < 22.
Then the quality decreases geadily when m> 22.

In conclusion, the H-algorithm does not guaranteethe optimality of the solution;
however, it offers a virtually instant retrieval of solution with reasonably good quality.
When m < 10, the H-algorithm adually solves the AFP problem. However, it only takes
less than ore sewnd, compared to abou half an haur for the G-algorithm. The H-
algorithm is a good dternative to solve the (optimal) AFP problem. Furthermore, it is
possble that the quality of the solutions can be increased by compromising the
computational time (which is virtually instant currently), by adjusting the parameters to

the H-algorithm.
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Chapter 9 Future Work

9.1 TheEnhanced Algorithm

By using the data structure L (and L’), configurations are enumerated in a tree
fashion. However, the G-algorithm reveals that two configurations ¢, and ¢, impose the

same phylogenetic information (structurally) if they have the same order of objects.
Furthermore, the G-algorithm also shows how to obtain the minimum adjustment given a
particular order of objects. Therefore, it is possible to further reduce the solution space by
partitioning configurations that impose the same phylogenetic information into
equivalence classes. In other words, instead of enumerating all possible combinations of
configurations, one wants to enumerate all possible permutations of configurations. This
algorithm is temporarily called the (Enhanced) E-algorithm.

The E-algorithm should only enumerate configurations with unique order.
Therefore, the enumeration scheme needs to be modified. In fact, the modification is
simple. Recall from Chapter 6 that a non-fixed configuration in the enumerated tree
expands into two children. One is that the rightmost element is moved to its far right
position, and the other one is that the rightmost element has count-1. It is not difficult to
see that both children might have the same order of objects. Therefore, in the E-
algorithm, instead of moving the rightmost element, the first (from right to left) element
that creates an order change is moved. Figure 9.1 depicts the enumerated tree for the E-

algorithm. This way, all leaf configurations of the enumerated tree would have unique
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Figure 9.1: Anillustration of the enumerated tree for the E-
algorithm.

order of objects. As a result, the solution space is further reduced, and the optimality of
the algorithm is reserved. Finaly, given a particular order of objects, the minimum
adjusted configuration (that has the same order) can be obtained using similar scheme as
the G-algorithm (see Section 6.2). The E-algorithm is expected to further improve the
performance from the G-algorithm. With a good choice of implementation platform, the
author also expects that the (optimal) AFP problem could be solved within a good

practical range.

9.2 MoreReaxation Problems

The (optimal) AFP problems suggest a new angle to phylogenetic tree
constructions. Recall from Chapter 4 that there are two main approaches for building
phylogenetic trees. one heuristically constructs the phylogenetic tree without a validity
check on the experimental data, and the other one requires the experimental data to

follow a tight definition. The (optimal) AFP problems offer a medium of the two, in
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which it requires a validity check on the experimental data and also provides a relaxed
definition of the phylogenetic model.

For instance, relaxation problems can easily be formulated for the ultrametric tree
and additive tree models. Here two possible formulations are suggested. Furthermore,

these two formulations are called the AUP problem and the AAP problem respectively.

Definition of the AUP problem:

Given an m x n symmetric matrix M where each entry M[i,j] O [0,0] and avauer
O [0, o], find amatrix M’ such that |M[i,j]-M’[i,j]| £r and M'[i,j] O [0, o], for 1 <i<m

and1<j<n,and M’ isultrametric.

Definition of the AAP problem:

Given an m x n symmetric matrix M where each entry M[i,j] O [0,0] and avauer
O [0, o], find amatrix M’ such that |M[i,j]-M’[i,j]| £r and M'[i,j] O [0, o], for 1 <i<m

and1<j<n,and M’ isadditive.

9.3 Confidencesof the Solutions

The concept of the adjustable range r allows us to construct the phylogenetic tree
with imperfect data values. In addition, the concept of the total adjustment provides an
elementary method to assess how confidently M’ infers the true evolutionary relationship.
A better measurement could be introduced that assesses the confidence of T, not M’.

Below are three possible formulations of the problems.
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1. Let AM be the set of M’ that is adjustable to a fuzzy phylogeny, and let TM be the set
of FP-tree topologies induced from AM. Given M and r, compute the size of TM (i.e.

|T™M]).

2. Let Sbe the space where M is within the adjustable range, and let s be the subspace of

Sthat yields T. The confidence of T is that, conf(T) = sizeOf(s)/sizeOf(S). Given M, r and

aFP-treetopology T, find conf(T).

3. Given M and r, find a FP-tree topology T, such that conf(T) is maximized.
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Chapter 10 Conclusions

The study of phylogenetics involves the identification o evolutionary
relationships between species. Perfed phylogeny is one of the dasscd character-based
models. In this model, there ae only two states for ead charader, zero, where the
character is absent, and ore, where it is present. The perfed phylogeny problem is to
verify whether a given set of species with a set of charaders form a phylogenetic tree,
and if it does, construct the @rrespondng phylogenetic tree. Dan Gusfield describes an
O(mn) time dgorithm for this problem where m is the number of spedes and n is the
number of characters. In addition, this algorithm is proven to be asymptoticdly optimal
intime.

All previous perfed phylogeny based models assume the states of the daracters
are discrete. However, fuzzy boundries between spedes and degrees of charader
development are commonly foundin nature. Fuzzy boundxies refer to the anbiguous
definition between presence and absence of a daracter and degrees of charader
development refer to the various expresson levels of a dharader. These phenomena show
the need for a more relaxed mode. This dissertation popaoses the fuzzy (perfeq)
phylogeny model that extends the perfect phylogeny model to allow fuzzy memberships
of the charaders. The mnwversation d properties in the new model is then proven. This
dissertation also shows how the fuzzy phylogeny problem can be transformed to the
perfect phylogeny problem so that it can be solved by previously developed algorithms,

such as Gusfield’s algorithm. Due to the fuzzinessof charaders, two relaxation problems
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for the fuzzy phylogeny are proposed, namely the AFP problem and the optimal AFP
problem. However, the problems are proven to be NP-hard.

Three agorithms are then proposed to solve the adjustment problem, namely the
BF-agorithm, the G-algorithm and the H-algorithm. The BF-algorithm and the G-
algorithm are both exact algorithms where the optimality of the solution is guaranteed.
The BF-algorithm reduces the unaccountably infinite solution space to a finite solution
space of equivalent classes. The BF-algorithm is intuitive; however, it is impractical due
to its slow performance. The G-algorithm improved from the BF-algorithm so that
invalid solution space is pruned off. The G-algorithm is practical for small instances.
However, due to the complexity of the problem, the G-algorithm is impractical for large
instances. On the other hand, the H-algorithm is proposed with the aim for fast
performances where solutions are found in seconds even for large instances. Furthermore,
the H-algorithm produces quality solutions for small to medium instances.

Finally, future works for this research is discussed. The E-algorithm further
improves the G-algorithm by preventing redundant configurations that impose the same
phylogenetic information. Relaxation problems to other phylogenetic models are also
suggested for future investigation. Moreover, possible problems that assess the

confidence of aphylogenetic tree are introduced.
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APPENDIX A

Table 8.3.1: Experimental results of the time analysis of the BF-algorithm.
m is the number of objects and the timeis recorded in seconds.

BF-algorithm |Fositive Fositive Optimal  |Megative
m=4 Oz Oz 1K

m=5 Os 629755 810355
m=4 345600+5 345600+5 345600+ 5

Table 8.3.2: Experimental results of the time analysis of the G-algorithm.

m is the number of objects and the timeis recorded in seconds.

5-algarithm |Paositive Fositive Optimal  |Megative
m =4 Oz Oz 0z
m=k 4.25s 16583 Os
m=g 19.755 41533 5 1.25¢
m =10 1913.25¢ 5000 = 49255
m=12 44176 5 50000 5 H318 5
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Table 8.3.3: Experimental results of the time analysis of the H-algorithm.
m is the number of objects and the timeis recorded in seconds.

H-algarithrm  [Fositive Megative
m=5 Os 0s
m =10 Os 13
m=15 13 15
m =20 1585 25
m=25 25 45
m =230 2.25% Gs

Table 8.3.4: Experimental results of the quality analysis of the H-algorithm.
m is the number of objects and the quality is measured in percent n’'/n.

H-algorithm |[Positive
m= 5 100 %
m=10 100 %
m=15 B7 55 %
m =20 525%
m=25 4583 %
m =30 30 %
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