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Abstract

Source localization is a challenging issue for multisensor
multitarget detection, tracking and estimation problems in
wireless distributed sensor networks. In this paper, a novel
source localization method, called passive source localiza-
tion using power spectral analysis and decision fusion in
wireless distributed sensor networks is presented. This in-
cludes an energy decay model for acoustic signals. The new
method is computationally efficient and requires less band-
width compared with current methods by making localiza-
tion decisions at individual nodes and performing decision
fusion at the manager node. This eliminates the require-
ment of sophisticated synchronization. A simulation of the
proposed method is performed using different numbers of
sources and sensor nodes. Simulation results confirmed the
improved performance of this method under ideal and noisy
conditions.

1 Introduction

Wireless Distributed Sensor Networks (WDSN) are a
promising research topic in the literature due to their huge
potential in different application areas from the monitor-
ing to manipulation of physical world in a seamless fash-
ion [6], [5], [8], [4]. WDSN comprise cheap nodes that
have limited sensing, communication and computation ca-
pabilities. There are also some nodes designated as control
nodes having powerful computational and communication
ability. Each WDSN node can have different types of sen-
sors such as acoustic, seismic and image. The fusion of
data collected through sensor nodes to improve decision is
a major research issue for WDSN.

Source localization is the most fundamental part of mul-
tisensor multitarget detection. The objective is to estimate
the position of a source within the region covered by a
WDSN.

Localization methods depend on three types of physi-
cal variables measured by or derived from, sensor read-

ings: time delay of arrival (TDOA)[3], direction of ar-
rival (DOA)[7] and received signal strength[9]. The source
localization problem is solved by TDOA and DOA for
WDSN using the same philosophy for localization as used
in RADAR applications. This is not a suitable approach
for WDSN since RADAR and WDSN nodes have funda-
mental differences in their sensing quality, computational
ability and communication framework. The basic advan-
tage of WDSN is that it has sufficient number of cheap
and redundancy nodes that are feasible to deploy for track-
ing the source in close proximity. The critical issues in
the application of WDSN to source localization are to cope
with the efficient collaborative management specifically for
decision fusion from readings of non-sophisticated nodes
having scarce power, computational and communication re-
sources. Only a selective subset of nodes should be allowed
to communicate with the control node to reduce power con-
sumption of individual nodes and the bandwidth overhead
of the network.

A maximum likelihood(ML) source localization method
using acoustic energy measurements from individual sen-
sor in WDSN was presented in [9]. The ML method has
several limitations for applications in WDSN. Specifically,
it is sensitive to the parameter perturbation and computa-
tionally very expensive for multitarget location estimation
[10]. These limitations made the ML estimation unsuitable
for WDSN.

Particle filters were applied in [10] to overcome the lim-
itations of ML estimation, by making an assumption about
source dynamics such as source velocity and acceleration,
which is not suitable for enemy/adverse situation surveil-
lance.

To address these issues, this paper presents a novel
method for source localization namely, passive source lo-
calization using power spectral analysis and decision fusion
in wireless distributed sensor networks. The motivation be-
hind using power spectral density (PSD) for source localiza-
tion is that any rotating object emits its signal at a particular
frequency. Analyzing this feature using PSD for a sample
of a specific source helps identify the source.
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The probabilistic localization is made from PSD analysis
at each node. Statistical decision fusion of these estimates
is made at a control node. The issue of accurate synchro-
nization among the sensors is also resolved by their coarse
time series data collection.

The paper is organized as follows: Section 2 gives a short
overview on the PSD and its significance for source local-
ization in WDSN. Section 3 provides a detailed descrip-
tion of the theoretical underpinning of the proposed method.
Simulation results are described in Section 4, and finally
some conclusions are presented in Section 5.

2 Power Spectral Density Analysis

The energy ξ(t), of an arbitrary time varying signal x(t)
is represented in both time and frequency domains by Par-
seval’s theorem as,

ξ(t) =
∫ ∞

∞
x1(t)x2(t)dt =

∫ ∞

∞
X1(f)X2(f)df (1)

where X(f) is equivalent Fourier transform representation
of x(t). Setting x1(t) = x2(t), we get,

ξ(t) =
∫ ∞

∞
x2(t)dt =

∫ ∞

∞
|X(f)|2df (2)

|X(f)|2 is known as the power spectral density function.
The Wiener-Khintchine theorem proves that the spectral
density P (f) = |X(f)|2, of a stationary random process
is just the Fourier transform of the autocorrelation function
Rxx(τ) and is represented by the pair:

P (f) =
∫ ∞

∞
Rxx(τ)e−jωτdτ (3)

and

Rxx(τ) =
∫ ∞

∞
P (f)ejωτdf (4)

The periodogram is a commonly used PSD estimation tech-
nique using (3) [1]. Transforming from time domain to fre-
quency domain for source localization is an integral part
of signal analysis and hence periodogram for PSD estima-
tion forms the fundamental basis for the proposed new algo-
rithm. There are other methods for PSD estimation. Since,
we are focusing on use of power spectral analysis for source
localization we have chosen the simplest one to implement
i.e. periodogram.

3 Source Localization using Power Spectral
Analysis and Decision Fusion

As alluded in Section 1, source localization using power
spectral analysis and decision fusion is motivated by energy

based source estimation algorithms [10], [12]. Using the
formula for acoustic signal attenuation, it is possible to esti-
mate the source location using redundant reading at differ-
ent, known sensor locations.

Figure 1. Block Diagram of Proposed Source
Localization using Power Spectral Analysis
and Decision Fusion

3.1 Feature Identification

As shown in Fig. 1, feature identification is one of the
processing steps of source localization using power spectral
analysis and decision fusion method. This can be obtained
in different ways: - (1). collecting sampling data and (2).
for a given set of features for a particular source. Sampling
data can be collected for featured sources at ideal noise free
condition at very short distance. The periodogram of a spe-
cific source signal at this condition gives the PSD estimation
of the sampled data. The obtained PSD is then processed for
power peak detection and corresponding frequency finding.
The obtained peak power level and corresponding average
frequency forms power-frequency pair [P, f ], where P rep-
resents the power level and f represents corresponding fre-
quencies. This [P, f ] pair denotes the characteristic feature
for the specific source.

3.2 Realtime Source Localization

The realtime source localization is the heart of the pro-
posed source localization using the power spectral analysis
and decision fusion method shown in Fig. 1. For the sake
of the clarity , it is assumed that there are M sources and
N sensors in a WDSN field. A node in the WDSN is mod-
eled by [xi, yi, σi], where (xi, yi) denotes the node position
and σi its associated standard deviation of the estimation
process for source localization. σi can be varied based on
sensor quality measure or it can be estimated by an adaptive
process. Assume that the signal received by the ith node is
the sum of attenuated signals emitted from each of these M
sources. Thus, the signal energy received by the ith node
over a time interval t, denoted by yi(t), is expressed as fol-
lows:
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yi(t) = γi

M∑
m=1

sm(t)
‖ρm(t) − ri‖2

+ εi(t) (5)

where εi(t) is a perturbation term that summarizes the
net effect of background additive noise and the parameter
modeling error. γi and ri are the gain factor and location of
the ith sensor respectively. sm(t) and ρm(t) are the energy
emitted by the mth source and its location during the tth

time interval. The probability distribution of εi(t) has been
shown to be independent and identically distributed (i.i.d.)
Gaussian random variable when the time period T for aver-
aging the energy is sufficiently large [9].

Each node collects data for a specific T time period. The
PSD estimation for ith node Pi(f) is made over the period
T for each sampling time. The recent collected data over the
period of T is used for PSD and hence location estimation.
Sources are detected from the obtained PSD by matching
with characteristic power-frequency pair. Due to the con-
sideration of noise, the matching for particular frequency f
is spread over within the range of f ±df frequencies, where
±df is the width of the variation of a particular frequency
f caused by noise perturbation term εi(t). The peak power
within f ± df is used as detected power level.

For the jth frequency component, ρ̂ij
m represents the ra-

dial distance estimation of mth source from ith node using
calculated PSD and characteristic power-frequency pair for
individual sources, where j = 1..k and k is the number of
distinct features present in the power-frequency pair. The
final estimation of ρi

m is found by averaging all ρ̂ij
m’s. This

is derived from (5), considering the fact perturbation term
εi(t) is eliminated by PSD estimation and expressed as fol-
lows:

ρi
m =

1
k

k∑
j=1

(
γi

SPm

RP j
m

) 1
2

(6)

where SPm denotes the signal power level at origin, RP j
m

denotes received signal power level for mth source using
jth frequency feature component and γi is a constant.

The obtained ρi
m is transmitted to the control node for

decision fusion. A 3D probability density function pi
m(x)

having mean ρi
m and standard deviation σi is constructed

for each node and source m at the control node through
proper normalization. For location estimation from all sup-
ported data, all the probabilistic density functions from all
nodes need to be fused together at the control node. There-
fore, all probabilistic measures are fused together using
weighting factor wi for ith node. This process generates
an integrated 3D probability density function for the final
decision making. This process for source m is formulated
by the following equation.

pm(x) =
N∑

i=1

wip
m
i (x) (7)

To localize a source from this pm(x), a peak detection
technique is employed in the pm(x). The locations of the
detected peaks having probability estimation greater than a
preset threshold h corresponds to detected source locations.

4 Simulation Results

The proposed algorithm was simulated using Matlab
6.5.1 (The Mathworks Inc.). For the simulation, three
sources having characteristic frequencies at 200, 300 and
400 Hz and signal strength at source of 70, 75 and 80 dB
respectively were used. The sound level and the dominant
frequencies that have been used are in conformance with
the power and frequency levels generated by conventional
and military vehicles [11], [2]. The values of sampling fre-
quency and σi were taken as 1000 Hz and 2 respectively.
The weighting factors wi are considered same for each node
and set to 1

5 . The original node and source positions and the
detected source positions are shown in Fig. 2.
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Figure 2. Ground Truth and Simulation Re-
sults for Three Sources
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Figure 3. PSD Estimation at node 1

For better understanding of how a power level peak being
generated for a particular source having a distinct frequency
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in the PSD, a representative sample of the estimated PSD
from the simulation for node 1 is shown in Fig. 3. It is clear
from this figure that representative frequencies for the three
sources used here, generate distinct peaks in the PSD. These
peak power levels provide the radial source distance by the
use of the attenuation model described in Section 3.

The contribution of source 1 location estimation from
individual node are fused together at the control node as
shown in Fig. 4(a). The resulting 3D probabilistic estima-
tion plot is shown in Fig. 4(b). The same results for source
2 are shown in Fig. 5.

Figure 4. Source Localization Result for
Source 1, a) A 2D radial basis location esti-
mation for different nodes, b) A 3D probability
space for source localization

From the obtained results in Fig. 2, it is shown that the
proposed localization method can locate sources within the
error range of 1 m. Also, due to radial estimation, it has
been found that there are circular regions of a source lo-
cation generated by different nodes. Fig. 4 and 5 show
how the redundant information from the nodes play a role
to make a decision for a source localization. The individual
decisions from nodes are aggregated using (7). At the inter-
section of the circular regions the decision is strengthened
to ultimately predict the source location estimation shown
in Fig. 4 and 5 for Source 1 and 2 respectively. It is evident

Figure 5. Source Localization Result for
Source 2, a) A 2D radial basis location esti-
mation for different nodes, b) A 3D probability
space for source localization

from the obtained results that the decision fusion using the
redundant information of the sensor nodes plays a vital role
to make a decision for source localization.

Another experiment was conducted using the same
ground truth information including addition of Additive
White Gaussian Noise(AWGN) of 5 dB in order to simulate
this method for testing its performance in a real-life context.
Simulation showed exactly the same result as the AWGN is
filtered out in frequency domain power spectral density es-
timation. It is clearly evident that the location estimation of
the proposed method is not sensitive to AWGN and hence,
suitable to determine the location of the source in a real-life
environment.

5 Conclusions

In this paper, a novel energy based source localization
using power spectral analysis and decision fusion method
in WDSN has been introduced. A simulation has been con-
ducted for multitarget location estimation for different lev-
els of noise perturbation. The results have shown the ac-
curate location estimation of the proposed method, which
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used the periodogram for PSD estimation. Other existing
methods for PSD estimation could also be investigated and
compared in future work.
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