

University of Westminster Eprints
http://eprints.wmin.ac.uk

An e-learning tool for database administration.

Paul Douglas
Cavendish School of Computer Science, University of Westminster

Steve Barker
Department of Computer Science, King’s College, London

Copyright © [2005] IEEE. Reprinted from International Symposium on Information
Technology: Coding and Computing (ITCC 2005), 04-06 Apr 2005, Las Vegas, USA.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

An E-learning tool for Database Administration

Paul Douglas
University of Westminster, London, UK

P.Douglas@wmin.ac.uk

Steve Barker
King’s College, London, UK

steve@dcs.kcl.ac.uk

Abstract

In this paper, we describe an item of “intelligent”
educational software that is intended to help students
taking university computer science courses to under-
stand the fundamentals of transaction scheduling. The
software, implemented in PROLOG, empowers stu-
dents to construct their own learning environment and
is able to provide tailored forms of feedback to differ-
ent types of learner. We describe the development and
evaluation of the software, and we present details of
the analysis of the results of our investigation into the
effectiveness of the software as a teaching and learn-
ing tool. Our results suggest that our learning tool
provides students with a different and valuable type of
learning experience, which traditional methods do not
provide.

Keywords
E-Learning, Educational Software, Databases, Trans-
action Scheduling, Recovery.

1 Introduction

In this paper, we describe an item of educational
software that we have developed and used to help us to
teach certain key notions from the realms of database
transaction processing to undergraduate computer sci-
ence students. More specifically, the software is an
educational tool that is intended to “intelligently” as-
sist computer science students in developing their un-
derstanding of schedule property satisfaction. In this
context, “intelligently” may be interpreted as an ability
to respond to a student’s self-selected input by detect-
ing and explaining his/her errors to them or confirming
that his/her understanding is correct.

Ours is one of the first pieces of courseware to
provide students with help in understanding the ba-
sic notions of database transaction processing and, to
the best of our knowledge, is the first piece of soft-
ware that is specifically intended for helping students
to learn about properties of schedules. The software
provides students with a tutorial aid that is able to re-
spond to questions about schedule property satisfac-
tion in the same way that an “expert tutor” might; it
enables a student to investigate schedule properties at
his/her leisure and enables teaching staff to use tuto-
rial sessions to answer any “non-standard” questions
that students might have. This tool is also important
because it provides students with a learning experi-
ence that no textbook can provide. More specifically,
the software encourages students to learn about sched-
ule properties by making and testing hypotheses. This
approach appears to be the most natural way for stu-
dents to learn about schedule properties (certainly it
is the approach they naturally adopt). The traditional,
text-based method that we have previously used to
teach material on schedule property satisfaction does
not support learning by hypothesis formulation.

The rest of the paper is organized in the following
way. Section 2 provides a brief introduction to sched-
ule properties. In Section 3, some key features of the
software are outlined. In Section 4, the main results
produced from the evaluation of the software are de-
scribed and discussed. In Section 5, some conclusions
are drawn, and suggestions are made for further work.

2 Schedule Properties

Schedule properties are criteria which should be sat-
isfied by a schedule, a sequence of interleaved read and
write operations performed on the objects which are

1

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

stored in a database. These operations are performed
by a database management system (DBMS) on behalf
of a set of transactions on which the schedule is de-
fined.

Unfortunately, certain interleavings of the opera-
tions from different transactions in a schedule can
cause anomalous behaviours (which cause the integrity
of the data in a database to be compromised) and can
raise a number of practical difficulties. For instance, it
is possible for the value of a data item which has been
updated by one transaction ti in a schedule to be over-
written by another transaction tj before ti’s update is
performed on the database (this phenomenon is usu-
ally referred to as the lost update problem [5]).

Schedule properties [6] solve this type of problem
by imposing certain constraints on the order in which
operations are performed in a schedule; by ensuring
that these constraints are satisfied, a database manage-
ment system is guaranteed to produce schedules which
are free of a class of potential problems which may vi-
olate the integrity of the data contained in a database.
Moreover, the DBMS can be configured to optimize
the performance of transaction processing.

The schedule properties that we have implemented
are: conflict serializability, view serializability, re-
coverability, avoids cascading aborts, strictness, and
rigor. These properties are defined formally below.
In these definitions, ti and tj denote arbitrary transac-
tions, T (σ) denotes an arbitrary schedule σ defined on
a set of transactions T , ri, wi, ai and ci are respectively
read, write, abort and commit operations by transac-
tion ti, → is “implication”, ∧ is ‘and’, ∨ is ‘or’, ¬ is
negation, and < denotes the “earlier than” relationship
between operations.

Definition 2.1 A schedule σ on a set of transactions
T is conflict serializable iff the following holds:

∀ti, tj ∈ T (σ) conflict(ti, tj) → ¬conflict(tj , ti)

where conflict is defined thus:

∀ti, tj ∈ T (σ) ri(x) < wj(x) → conflict(ti, tj)

∀ti, tj ∈ T (σ) wj(x) < ri(x) → conflict(tj , ti)

∀ti, tj ∈ T (σ) wi(x) < wj(x) → conflict(ti, tj).

Definition 2.2 A schedule σ on a set of transactions
T is recoverable iff the following holds:

∀ti, tj ∈ T (σ) read from(ti, tj) →
cj ∈ σ ∧ cj < ci.

Definition 2.3 A schedule σ on a set of transactions
T avoids cascading aborts iff the following holds:

∀ti, tj ∈ T (σ) read from(ti, tj) →
cj < ri(x) ∨ aj < ri(x).

Definition 2.4 A schedule σ on a set of transactions
T is strict iff the following holds:

∀ti, tj ∈ T (σ) wj(x) < ri(x) ∨ wj(x) < wi(x) →
aj < ri(x) ∨ cj < ri(x)∨
aj < wi(x) ∨ cj < wi(x).

Definition 2.5 A schedule σ on a set of transactions
T satisfies the property of rigour iff σ is strict and the
following holds:

∀ti, tj ∈ T (σ) rj(x) < wi(x) →
aj < wi(x) ∨ cj < wi(x).

Definition 2.6 The auxiliary predicate read from is
defined thus:

∀ti, tj ∈ T (σ) ∃x[read from(ti, tj) ←
wj(x) < ri(x) ∧ ¬(aj < ri(x))∧

[∀tk ∈ T (σ) wj(x) < wk(x) < ri(x)
→ ak < ri(x)]].

Definition 2.7 For each data item x, if (i) wi(x) <
rj(x) holds in a schedule, (ii) ti does not abort before
rj(x), and (iii) every transaction (if any) that writes
x between wi(x) and rj(x) aborts before rj(x) then
tj reads from ti. In other words, rj(x) is a read from
wi(x) if wi(x) is the last transaction to have written x
prior to rj(x), and ti has not aborted.

Definition 2.8 For each data item x, wi(x) is a final
write of x in a schedule σ if ti commits and there is no
wj(x) operation in σ such that wi(x) precedes wj(x)
and tj commits.

Definition 2.9 Two schedules, σ1 and σ2, are view
equivalent iff the following conditions are satisfied:

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

1. σ1 and σ2 include the same set of committed
transactions and the same sets of operations;

2. tj reads x from ti in σ1 iff tj reads x from ti in
σ2;

3. For each data item x, the transaction that per-
forms the final write of x in σ1 must perform the
final write of x in σ2.

Definition 2.10 A schedule σ over a set of transac-
tions T is view serializable if the committed projection
of σ is view equivalent to some serial schedule over T .

3 An Overview of the Software

Our teaching tool enables students to test any syn-
tactically correct schedule that they choose as input to
the system. Students also have complete freedom to
choose to investigate the satisfaction of any of sched-
ule properties by these schedules.

The software which implements the system is writ-
ten in PROLOG. PROLOG has been widely used for
implementing items of educational software (see, for
example, [10] and [8]) and is appropriate for devel-
oping applications, like this, which require that some
form of “intelligence” be captured [2]. The fact that
the rules which define schedule properties can be di-
rectly translated into PROLOG’s rule-based language
was another reason for choosing the latter for the im-
plementation of the software.

Our design of the software has been influenced
by Gagne’s work [3]. Gagne’s event-based model
of instruction helped us to decide what an individual
learner ought to be offered and the order in which in-
formation ought to be presented to them. Following
Gagne’s suggestions, when students use the software
they are reminded what the learning task to be per-
formed is, and what it is they are supposed to be able to
do once the learning task has been completed. Promi-
nence is given to the distinctive features that need to be
learned, different levels of learning guidance are sup-
ported for different types of learners, informative feed-
back is given, and learning takes place in a student-
centred, interactive way, but with support available to
students as and when they need it. Prior to devel-
oping our software we adopted a phenomenographic

method [7] for information gathering on students’ un-
derstanding of concepts in transaction processing. By
conducting ‘dialogue’ sessions with students we iden-
tified the strategies students used to understand sched-
ule properties. From our review of the notes taken at
the dialogue sessions, we were able to develop a proto-
type system for supporting students in learning about
schedule property satisfaction.

When engaging with our software, a user enters a
schedule and selects a schedule property to evaluate
with respect to the schedule. The schedule is displayed
to the user who may then pose queries on the schedule
to test it for satisfaction of schedule properties with
respect to the set of axioms A that defines these prop-
erties and the auxiliary predicates in terms of which
schedule properties are defined (see Definitions 2.4-
2.8). The axioms in A are converted into PROLOG
code for implementation.

Each operation in a schedule may be represented by
a 4-tuple, (o,tj ,i,ts). Here, o denotes an operation (i.e.
read or write), tj denotes a transaction performing the
operation, i denotes the data item read or written by
tj , and ts is the time at which o is performed i.e., the
timestamp for o. In the case where o is a commit or an
abort, the data item is null since these operations are
not performed on a data item. In our PROLOG imple-
mentation, each 4-tuple that describes an operation is
represented as a fact of the form o(a, tj , i, ts) where
a ∈ {r, w}. In this context, a schedule σ is a finite
set of o operations, and a PROLOG program is a pair
(AP , σ) where AP is the PROLOG form of A.

An example of the output for a schedule σ produced
in a user session and an example of engaging with the
system follows next.

Example 3.1 Suppose that a user’s choice of schedule
is as follows:

〈w1(x), w1(y), w1(z), w2(z), c1, w2(x), r2(y), w2(y), c2〉

Then, the software displays the user schedule, thus:

Your chosen schedule was:

w,1,x,90
w,1,y,95

w,1,z,105

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

w,2,z,110
c,1,null,115
w,2,x,120
r,2,y,125
w,2,y,130

c,2,null,135

Thereafter, the user may evaluate schedule proper-
ties with respect to the schedule. For example, the user
may ask “is this schedule an ACA schedule?” i.e., ?-
aca.. In this case the output is “yes”. A user can ask
for an explanation of this result by posing the follow-
ing query: ?-explainaca. To which the software will
respond:

Transactions in this schedule only read data
items AFTER they have been written by
transactions that have committed.

Similarly, the query ?-st. for the schedule above
(i.e. “is this schedule strict?”) is answered “no”
by the software. If the user then poses the query ?-
explainnonst. (i.e. why is this schedule not strict?)
then the software will respond with the following ex-
planation:

Transaction 2 overwrites the data item z
written by transaction 1 but BEFORE trans-
action 1 reaches its commit point.

All schedule property satisfaction questions are
evaluated as described in the previous example, and
several levels of explanation are provided by the soft-
ware.1

Our early development and testing made use of the
PROLOG program run by the students on the Univer-
sity of Westminster Unix system.

Although students had no real difficulty using the
command-line-driven interface that was initially de-
veloped, continued evaluation of the software revealed
that students found entering the schedule and testing
queries frustrating. For that, students had to enter com-
plete schedules into a file and had to recompile the ap-
plication each time a new schedule was chosen to test
some schedule property. In response, we have devel-
oped a prototype web-based interface for the program:

and providing the user with feedback:

1Several levels of explanation are offered in the sense that users

Figure 1. Entering a Schedule

Figure 2. Program Response

4 Testing the Software

We carried out primarily formative testing of the
software, with some additional summative testing to
evaluate student perceptions of using the software. We
focussed primarily on testing the part of the software
aimed at teaching schedule properties (students tend to
find this difficult).

In overview, for the formative evaluation of the soft-
ware a formal verification of the technically important

are able to check the correctness of a query in respect of any of
schedule properties. If the query is not correct they can attempt
to correct it; alternatively, they can ask the software why it is not
correct.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

soundness and completeness properties [4] of the soft-
ware was initially performed. Thereafter, comments
on the software were sought from: two members of
the teaching staff at the University of Westminster (the
“expert reviewers”, Tessmer, 1993); a volunteer stu-
dent from the university’s MSc course in Software En-
gineerings (the one-to-one study); and a group of four
volunteer students from the same course (the small-
group testing).

Initial demonstrations to the two expert reviewers
provided some suggestions on how the software could
be improved. In response, the explanations of schedule
property violation were changed to try to make them
more meaningful.

The one-to-one evaluation took place over a period
of two weeks and involved approximately 3 hours of
contact time with the student volunteer. At the first of
the one-to-one sessions, the student was introduced to
the software using a 10 minute presentation, and was
provided with a quick reference guide to remind her of
the basic functions supported in the version of the soft-
ware she was to use. We deliberately chose to make
the introduction short in order to see whether the soft-
ware was as easy to use as we anticipated it would be.
The student was assured about the confidentiality of
any information she might provide and the purpose of
conducting the study was explained to her. She was
also encouraged to ask questions about the software if
she felt she needed to. Thereafter she was free to use
the software on her own.

In the one-to-one test our data was gathered using
observation and informal “interviews”. This involved
one of us sitting alongside the subject and encourag-
ing her to articulate her feelings about the learning
package as she was using it. In general, the student
was quite enthusiastic about the software and reported
that it was of value in helping to improve her under-
standing of schedule property satisfaction. She par-
ticularly liked the fact that the software enabled her
to decide what schedules and what schedule proper-
ties she wanted to investigate. She suggested that this
was a major advantage of the software relative to a
text, like [1], which can offer only a fixed set of pre-
determined schedules. She also suggested a number of
useful modifications which we chose to make.

The small-group testing was performed over a three
week period (involving approximately 4 hours of con-

tact time spread over five sessions) with the set of
four student volunteers. The main purpose of the
small-group evaluation was to collect data by observ-
ing a larger group of students using the software. The
methods employed to gather this data were the same
as those used for the one-to-one sessions. As with
the one-to-one sessions, the power to investigate any
schedule and schedule property was reported to be an
attraction of the software; the students commented that
they particularly liked the fact that they could “inter-
act” with the software, and that it “lets you decide what
to learn”.

After incorporating some minor modifications that
were suggested by the students involved in the small-
group testing, we introduced to a full cohort (18) of
MSc students. The students used the software during
tutorials for a three week period, and were encouraged
to use it further for individual work.

In order to attempt to minimize the possibility of
any researcher bias in measuring student attitudes, we
conducted our summative testing by using a Likert
scale to collect data about the perceptions the students
had of the software and [1] as methods for facilitat-
ing understanding of schedule properties, and their at-
tractiveness as learning instruments. To analyse the
data produced from the Likert scale, we chose to use
a t-test; the idea was to compare the matched pairs of
scores produced by each respondent for the software
and [1].

A 5-point Likert scale was used for the investiga-
tion of student perceptions of the value of the software
and [1], in terms of helping them to learn about sched-
ule properties, the motivational appeal of the different
forms of instruction and the perceived relative value of
some common features of the software and [1] which
could be compared.

To analyze the information produced from the Lik-
ert scale, t-statistics were computed to compare the
mean scores for the perceptions students had of the
software and [1]. The results produced from the Lik-
ert scale were very clear. In the overall measure of the
two methods, the average difference in the ratings of
the software and [1] was 17.24 in favour of the soft-
ware, and no students reported that [1] was “better”
than the software. The t-statistic for the comparison
of average differences was 7.75. This is statistically
significant at the 1% level.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

It would be interesting in future to try to compare
the assessment results of students who have used our
learning tool with the results of those who have not.
However, this would ideally involve comparing the re-
sults of two groups of students taking the same module
at the same time, and various ethical issues arise when
attempting to undertake this kind of test. It might be
possible to compare the results achieved by a group
of students who use the software in a future year with
those of past students who did not.

5 Conclusions and Further Work

Our software shows that a suitable tool can be de-
veloped to help computer science students to learn
about schedule properties. The package enables stu-
dents to construct their own learning environments by
using a piece of courseware that is able to interpret and
immediately explain a student’s mistakes as well as be-
ing able to confirm it when his/her understanding is
correct. As such, the software provides students with
“intelligent” tutorial support for learning about sched-
ule properties. The software is also based on sound
principles of learning [1], is able to deal with any syn-
tactically correct schedule, and it can be extended to
accommodate any number of examples or exercises
without requiring changes to the core set of rules on
which the software is based.

Using the software enables students to: choose
to investigate any of the schedule properties using
schedules of their own choice; make hypotheses about
schedules satisfying schedule properties; test these hy-
potheses; and explore the consequences of schedule
property satisfaction by manipulating the operations
included in a schedule. As such, the software empow-
ers students to take control of their own learning, they
can learn at their own preferred pace, they can inves-
tigate their own misunderstandings and reinforce their
own understanding of schedule properties. The fact
that the software encourages students to “learn by hy-
pothesizing” is particularly important because this is
the approach students naturally adopt to learn about
schedule properties. Using textbooks does not enable
this type of learning to be supported, and can only of-
fer students a limited number of schedules and exam-
ples of schedule property satisfaction; textbooks can-
not provide interactive feedback to students investi-

gating schedules and schedule properties of their own
choosing. Unlike their human tutors, the software has
the additional attraction of providing students with tu-
torial support in their learning of the schedule proper-
ties whenever they require it.

The results produced by our summative assessment
of the software indicate that it was perceived by our
students to be superior to [1] in a number of respects.
However, more work will be required on the issue of
student perceptions of the software and [1] before any
definite conclusions may be drawn about their relative
value. Our experience of conducting this study has
also revealed that some students have a tendency to
believe that a piece of educational software has to in-
variably be better than a text; these students regard the
former as being “the future” whilst the latter is viewed
as being distinctly passé. We intend to investigate the
implications of this attitude in the near future. More-
over, while the Likert scale test revealed that the soft-
ware was perceived to be helpful to students learning
about schedule properties, further research is required
to try to establish why this is the case.

A number of extensions to the software are possible.
For example, with minor modifications the software
can be used as a tutorial aid for learning about opti-
mistic concurrency control and various locking proto-
cols may be implemented.

References

[1] P. Bernstein, N. Goodman, and V. Hadzilacos. Con-
currency Control and Recovery in Database Systems.
Addison Wesley, 1987.

[2] I. Bratko. PROLOG Programming for Artificial Intel-
ligence. Addison-Wesley, 1986.

[3] R. M. Gagne. The Conditions of Learning. Holt, Rein-
hart and Winston, 1970.

[4] M. Genesereth and N. Nilsson. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, 1987.

[5] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[6] V. Kumar. Performance of Concurrency Control Mech-
anisms in Centralised Database Systems. Prentice Hall,
1996.

[7] F. Marton and P. Ramsden. What does it take to improve
learning? Kogan Page, 1988.

[8] J. Nichol, J. Briggs, and J. Dean. Prolog, Children and
Students. Kogan-Page, 1988.

[9] M. Yazdani. New Horizons in Educational Computing.
Ellis Horwood, 1983.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

