
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.”

Page 1

Design of Unit Testing using xUnit.net

Zenon Chaczko, Robin Braun, Lucia Carrion and Julian Dagher

Faculty of Engineering and Information Technology

University of technology, Sydney (UTS), Sydney, NSW, Australia

E-mail: {Zenon.chaczko, Robin Braun, Lucia.C.Carrion}@uts.edu.au, Julian.Dagher@alumni.uts.edu

Abstract—This paper presents an in-depth study of

designing, implementing and executing unit test cases using

the xUnit.net testing tool in general and in the context of the

TeleMedicine Cluster System project within the ICT Design

subject delivered at UTS, Australia. The case studies are

based on the utilisation of the tool in Visual Basic 2012 using

the .NET framework for C#. The paper elucidates on how

and why the xUnit framework can be applied in the context

of the TMC system, and how it can be tailored to meet the

testing ad integration needs of the delivery of TMC system.

Keywords—Unit Testing, Automated Testing, Software

Development Process

I. INTRODUCTION

In development of software intensive system, the main

goal of test automation is to help improve the efficiency of

production and development of software. It is targeted at

giving the developers engaged in software projects the

tools and process to be more efficient, agile and precise.

This is able to be achieved by providing the developer

with instant feedback due to any changes or new code

implemented. The benefits of this are that it reduces the

stress felt by the developers, having this instant feedback,

which allows them to focus more closely on their task at

hand. For test code to be effective however, it is expected

that there is about as much code used solely for testing as

there is code used for the actual production and

development of the software. The challenge in this

scenario is now to provide that test code without inhibiting

the development process and increasing the effort needed

to maintain the software being developed.

A. The Need for Automation

Test automation needs to be implemented at many phases

throughout the development process. This can start before

any development code is written. These tests are written to

test according to specifications, therefore when a test

programmer is writing the development code he is given

instant feedback on how the code meets the requirements,

or breaks unexpectedly. After the code is written, test

programmers are required to run tests as documentation, as

well as, to discover any bugs and defects in the code. All

of this can be automated as part of the testing process and

if the tests are designed correctly, made fully automated,

repeatable and robust, and the cost of running these tests

throughout the whole development process can be

minimised. As a result, it is possible to minimise the total

cost of the development process itself, as one can gain the

rewards of automated tests. Test code may be as numerous

as production code, as production code, but it must also be

maintained along with the production code. The aim

however, is to make the test code easier to maintain. If this

is done incorrectly it will cause more problems than

benefits and be a source of delay, eventually becoming

redundant. In other words, if test code is not easy to

maintain, it will get left behind and lose all its value,

eventually forcing the programmer to turn away from it

and go to another approach such as manual testing. To

avoid this it must be kept in mind that tests need to be

written in a maintainable format. The following figures

below show how automating tests can improve

productivity and help to reduce effort, or if written in an

un-maintainable style, lose all their value, forcing the test

programmers to turn back to the original model of manual

testing. Here the original effort placed into the

development over time is demonstrated, while no extra

efforts were added into automating test at any other stage

of the development process. This approach requires

consistent work throughout the whole development

process.

Figure 1a

Figure 1b

Figure 1c

Figure 1 – Development effort before (a) and after automation

(b), Unmaintainable automation (c); adopted from Meszaros [2].

Page 2

 Figure 1b shows the effort needed to implement test

automation. In this process it can be seen there is a large

initial increase in effort the write and maintain test

automation code. This at first seems very unappealing, but

as demonstrated, if the unit tests are implemented correctly

and in a maintainable fashion, the effort required to

maintain the tests is very minimal. The effects of having

these tests in place can be seen on the development side of

project. It shows as the tests are developed and become

automated, the development effort is greatly reduced as

the automation of tests work their magic. This is because

the automation instantly allows the developer to see the

flaws in their code and makes the rest of the development

process flow easier due to more peace of mind from the

developer making the coding much efficient and effective.

The benefits gained from test automation, however, might

be lost, if the tests produced are not easy to maintain, and

therefore unsustainable. Here the same initial increase in

effort can when attempting to automate the testing process

can be seen. However, this is not greatly reduced after the

initial increase, as the tests made are not always easy to

maintain, as a result, a doubling effect in the effort might

be needed to maintain both the development and testing.

The effort saved in the development is more than

replicated in the maintenance of the tests, thus eventually

causing the developer to turn away from automation and

back to the original testing methods.

B. Test Smells

Test Smells are underlying problems in the code which

arise due to the automation of testing. As soon as test

developers begin to write their unit tests, some problems in

the written code become to be noticeable. The symptoms

underlying this problem are referred to as test smells.

These are not necessarily the actual cause of the problem,

but rather just a set of symptoms which may be defined by

several causes. There are several different types of test

smells [2] known as the following:

 Code smells – These are problems in test code

which

 are visible in the actual code itself.

 Behaviour smells – These are problems caused by

 incorrectly written test code, which are not obvious

 until they result in tests performing unexpectedly or

 in an incorrect manner.

 Project smells – These are testing problems related

 to the entire project as a whole.

Code smells are the cause of behaviour smells, which are

then the cause of project smells. Code smells can also be

directly the cause of project smells. Basic types of code

smells can be simple issues such as hard coding values

into the tests. This can lead to fragile tests which are not

robust as need or intended by the developer. An example

is shown below [2]:

assertEquals(new BigDecimal("30"),

actualLineItem.getPercentDiscount())

Figure 2 – Code Smell Fragile Test

Another common smell could be testing each individual

method of an object in a single test; which can lead to a

verbose and difficult to read test (see Fig 3 below).

assertEquals(expectedLineItem.getInvoice(),

actualLineItem.getInvoice());

assertEquals(expectedLineItem.getProduct(),

actualLineItem.getProduct());

assertEquals(expectedLineItem.getQuantity(),

actualLineItem.getQuantity());

assertEquals(expectedLineItem.getPercentDiscou

nt(), actualLineItem.getPercentDiscount());

assertEquals(expectedLineItem.getUnitPrice(),

actualLineItem.getUnitPrice());

assertEquals(expectedLineItem.getExtendedPrice

(), actualLineItem.getExtendedPrice());

Figure 3 – Code Smell Verbose Test [2]

C. Test Patterns

A test pattern is referred to as a “recurring solution to a

recurring problem” [2]. The problems arise from test

automation and are called test smells as discussed above.

Test patterns are simply solutions to problems which one

may keep replicating due to the fact that the problem

appears several times, and needs the same solution to solve

the issue. There may be some problems which can be

solved with a single pattern, while others may need more

than just once pattern to solve.

 There are three general categories of test patterns

which are at different levels of abstraction. These levels

[2] are defined as follows:

 Strategy level
 Test design level
 Test coding idioms level

In order to implement test patterns first the test code need

to be written, starting with the simple tests first, then doing

a review of the code and identify the test smells; test

programmer is able to find. Once these are identified, then

test patterns are used to solve these issues. As a result,

rewriting the code in a more effective and maintainable

manner. The test patterns can be applied to solve the above

code smells. For the first code smell an expected line item

is defined with the chosen variable value set to it. This

allows for robust and repeatable coding, which then can

include assertions defined as the variable values [2] as

shown below:

LineItem expectedLineItem =

newLineItem(invoice, product, QUANTITY);

assertEquals(expectedLineItem.getPercentDis

count(),

actualLineItem.getPercentDiscount())

Figure 4 – Test Pattern Robust Test

For the second code smell the pattern which can be used to

solve the issue is the use of expected objects rather than

expected methods. In this a whole collection of

assertEquals is replaced with a single assertion which

includes the expected object only [2]:

assertLineItemsEqual(expectedLineItem,

actualLineItem)

Figure 5 – Test Pattern Expected Object

Page 3

II. CASE STUDY

A. Overview

The following case study describes design and

development methodology of xUnit.net based unit tests for

C# using Visual Basic (VB) 2012 and the .NET

framework. The paper discusses the xUnit framework and

its application to the TMC. It will explain why xUnit test

are required for the TMC, and discuss and demonstrate

how this framework will be applied and tailored

specifically to the TMC. It will then provide users with a

quick set up procedure of how to install all the related

components and prepare test programmers to get started. It

will then proceed to provide a framework for building unit

test cases, and show how to execute these third party unit

tests within the existing Visual Basic test explorer.

Following on from this, several examples of relevant unit

tests are demonstrated. These test examples utilise the

xUnit.net testing tool and were developed to use as a guide

for creating all unit tests during the development of the

TMC system in ICTD [13] in Autumn 2013.This paper

explains the need for the use of the xUnit framework on

the TMC project, and how it was used to benefit the

project over the course of the development and system

integration.

B. Scope

This case study will assume the following:

 User has basic knowledge of VB 2012

 User has basic knowledge of C#

 Use has installed VB 2012

 User has installed the .NET framework

The case study will try to address the following issues:

 What is xUnit unit testing

 The need for xUnit in the TMC

 Downloading and installing NuGet Package

Manager

 Downloading and installing xUnit.net runner

 Downloading and installing xUnit.net

 Creating a class library for the xUnit.net unit tests

 Creating a class which will comprise the unit tests

for this tutorial

 Giving samples of unit test cases based on the TMC

as developed by the Blue Team

 Executing unit tests within the VB test explorer

C. xUnit.net Framework

The xUnit facility is a collection of test automation

frameworks, it is available in most languages and its end

goal is to help developers automate their tests. It does this

by attempting to make it easier for developers to write

their tests using the same language they are developing in.

This allows the developer to focus on the important tasks

at hand rather than attempt to code tests in an unknown

language. The aim is to make unit testing simpler, by

allowing tests to be implements at a class or object level,

without the need of any of the remaining code being

written. Therefore as long as tests are designed correctly, it

enables developers to start testing from the minute the

coding phase gets started. The xUnit tool aims to improve

the way tests are executed. This should be a simple

process which allows the developer to run a single test, a

collection of tests or all the tests with the single click of a

button. This provides instantaneous feedback allowing the

developer to instantly see where there is a break in the

code. This enables the developers the reduce the costs

involved with constant testing, encouraging them to run

test more frequently, and as a result improving the overall

quality and execution of the software. Unit testing is used

to test code and make sure that it performs as expected.

Unit tests are able to:

 Discover vulnerabilities in the code to see might

break

 Highlight where changes to the code, even simple

changes, may unexpectedly break the code

 Discover any design flaws during the code

development

 Allow for a greater understanding of the

functionality of the code

The xUnit.net framework is a third party testing tool which

can be integrated into Visual Studio (VS) to provide all the

above benefits and many more to help discover all the

bugs imbedded in the code, helping to ensure more

effective solutions. Some features available to xUnit

include automation features such as AutoFixture (Evans

2013), this extension can be used to generate random

variables at the beginning of each test, this enables the

automation of the first phase of unit testing discussed

below, the Arrange phase. This phase is used to define all

the variables to be tested, and through this feature

programmers are now able to automate that part of the

testing. This makes for more efficient tests which are more

flexible, independent and repeatable. The AutoFixture

feature can also be very useful when developing unit tests

in boundary cases. This can help the user define a range of

arbitrary values for the inputs based on boundary cases in

the code to help analyse at which points they may break

the code [1]. By automatically generating the inputs from

the other units and projects programmers are able to test

just the unit under test at several different boundary cases

with just one repeatable test. This allows the developer to

analyse weaknesses in the code which may be incorrectly

defined, and help them gain a clearer understanding of the

code and how to properly define the necessary boundaries,

and avoid any unplanned for or undesired breaks in the

code.

 As far as the boundary cases are concerned, there are

also other helpful tools that can be used such as the PEX

tool. This tool, which is an add-on to VS, can allow for

automated white box testing [3]. This will automatically

generate the input values into the unit, thus allowing

programmers to test without having the actual inputs into

the code. This allows once again for easier automation of

the code when it comes to testing boundary cases. The

xUnit functionality is also integrate-able into Visual

Studio, thus allowing for the tests to be run repeatedly

through the test explorer in Visual Studio [10]. The tests

Page 4

can be automatically run whenever required, at any stage

of the development. This feature saves a lot of time and

helps with continual troubleshooting and debugging of the

code, and allows the developer to remain on top of any

issues that may arise due to changes, even minor changes,

which may unexpectedly break the code.

1) Attributes

Listed below (Table 1) are the attributes and their

definitions specific to the xUnit.net framework [5, 6].

These attributes can be used to set or define certain

parameters throughout the test code and create the tests to

the exact specifications needed to achieve the desired

testing scenario. Through these attributes one is able to test

things such as whether or not the code throws and

Exceptions, and even define which type of exception is

expected the code to throw. This allows a thorough

analysis of the code in order to ensure it executes as

expected and breaks where expected.

Table 1 xUnit Attribute. Adapted from [5, 6]

xUnit.net Attributes Comments

[Fact] Marks a test method.

Assert.Throws or

Record.Exception

xUnit.net has done away with the

ExpectedException attribute in favor

of Assert.Throws. See Note 1.

Constructor

 It is believed that use of [SetUp] is

generally bad. However, one can

implement a parameterless constructor

as a direct replacement.

IDisposable.Dispose

There is a consensus that the use of

[TearDown] is generally bad. However,

one can implementIDisposable.Dispose

as a direct replacement.

IUseFixture<T>
To get per-fixture implement

setup, IUseFixture<T> on the test class.

IUseFixture<T>

To get per-fixture teardown,

implement IUseFixture<T> on the test

class.

[Fact(Skip="reason")

]

Set the Skip parameter on the

[Fact] attribute to temporarily skip a test.

[Fact(Timeout=n)]

Set the Timeout parameter on

the [Fact] attribute to cause a test to fail

if it takes too long to run. Note that the

timeout value for xUnit.net is in ms

[Trait] Set arbitrary metadata on a test

[Theory],[XxxData] Theory (data-driven test).

2) Assertions

In the code assertions can be made at the end of the code

to ensure the desired test scenario is met. For example if

the test is to ensure that a certain double value generated

by calling a certain method is the same as the expected

double value, one would define the expected value and

then Assert.Equal() using the correct parameters to ensure

that the right output is generated. These assertions are

specific to the xUnit framework and used as the final stage

of a unit test method. The methods of creating a unit test

stages [8, 9, 11] are discussed in the tutorial section of the

document. Through the assertions, test developers are also

able to test reactions to invalid inputs and how the code

behaves or responds in those scenarios.

Table 2 xUnit Assertions. Adapted from [5, 6]

xUnit.net

Assertions
Comments

Equal
MSTest and xUnit.net support generic

versions of this method

NotEqual
MSTest and xUnit.net support generic

versions of this method

NotSame Ensures two values are not the same

Same Ensures two values are the same

Contains
Ensures a certain value is contained in

the code

DoesNotContain
Ensures a certain value is not included in

the code

DoesNotThrow
Ensures that the code does not throw any

exceptions

InRange

Ensures that a value is in a given

inclusive range (note: NUnit and MSTest

have limited support for InRange on

their AreEqual methods)

IsAssignableFrom
Ensures a value is assignable from a part

of the code

Empty Ensure an empty value is returned

FALSE Ensures a certain Boolean returns false

IsType Ensures code return is a certain type

NotEmpty Ensures a non-empty value is returned

IsNotType Ensures code return is not a certain type

NotNull Ensures a Null is not returned

Null Ensures Null is returned

TRUE Ensures a certain Boolean returns true

NotInRange
Ensures that a value is not in a given

inclusive range

Throws
Ensures that the code throws an exact

exception

III. UNIT TESTING USING XUNIT.NET IN THE TMC

In the TMC system development project, during its

implementation and test phases the xUnit framework was

used for unit testing. The developers and testers were able

to continually debug and update the test code in order to

ensure it is not vulnerable to any unexpected changes in

the source code which may cause it to break. This is seen

to be very beneficial to the quality and efficiency of the

of the code development as it would allow for continual

automated testing through the test explorer at any stage of

the development. Also, it was expected, the xUnit

framework would allow for the code developers to have

instant debugging with any changes they make to the code,

ensuring that it does not break, and being able to debug

when it actually does.

There are some drawbacks to this approach, as it can

be very time consuming and requires a lot of effort which

could have been solely focused into the development of

the code. On the other hand though, the effort spent

developing the unit tests can be very beneficial throughout

the development, as identifying issues would become

simpler and could save time throughout the process.

http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note1
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note1
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note1
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note2
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note3
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note3
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note3
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note3
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home#note3

Page 5

A. Background to the TMC

What is the significance of unit testing? In general, the

developed Tele-Medicine Cluster (TMC) system is a

solution to automate and simplify the ordering of medicine

in medical institutions. It consists of several modules

which define the overall system and make up the final

product. Unit testing involves the testing of these modules

throughout the development of the TMC. This will allow

for the TMC developers to progressively validate and

ensure the functionality each individual module. This

procedure is very important in the TMC as every module

is a key aspect to the overall operation of the system, and

to be able to integrate this solution, one must be able to

ensure each module first functions as desired.

The TMC is designed to be a scalable solution where

one is able to continually add functional units to the

supervisor and allow the functionality to continue as

normal. For this to be achievable each unit must be

correctly developed and coded to allow for seamless

integration with other units. This is where xUnit unit tests

come in to allow for continual monitoring throughout the

development process, ensuring the critical functions of

each unit are able to perform as specified. In order to tailor

the functions of the xUnit to the TMC, there is a need to

incorporate an additional software, called the xUnit runner,

for Visual Studio. This add on will allow for easy, and

repeatable automation and running of the design unit tests

whenever deemed necessary to assist with the continual

monitoring, and allow the Blue team to save its limited

resources for the development of the TMC itself. Through

this process, and by correctly implementing the xUnit

framework, developers are then able to save time in other

areas of the development by this automation and ease of

debugging.

1) Advantages

Advantages of implementing unit test using xUnit for the

TMC are as follows:

 Automated testing through the test explorer

 Automated variable generation through

AutoFixture

 Instant debugging

 Identifying issues due to changes

 Testing code reliability (if and where it breaks)

 Saves time down the track after tests are written

2) Disadvantages

Disadvantages of implementing unit test using xUnit for

the TMC are as follows:

 Time consuming

 Limited resources in the Blue team would

become even less

 Time could be spent developing code

 Incorrectly coding the tests could lead to

misleading results

B. Setting up xUnit

1) Scope

This section presents as a procedure to simplify the

structure and act as a quick start set by step guide in

setting up the system to be ready to start writing and

executing test cases. The paper will not show any samples

of unit tests, rather just the required format the tests need

to be in and how they are to be referenced in Visual Basic

to represent xUnit test methods. Actual samples relating to

the TMC will be discussed in the following section of the

document.

The below listed quick set-up steps covers the activities

needed to get started using the xUnit testing tool. It will

just cover the basic software which needs to be added on

to Visual Studio in order to get started, as well show how

to set up a class in Visual Studio which will be used to

hold the unit test created. It will also cover a basic outline

and format which is the recommended format the test

methods will be created in. Then finally this guide will

show how to build and run the unit tests created through

Visual Studio’s in built test explorer.

2) Process Steps

a) Step 1

The first step is downloading the xUnit.net package. The

testing tool can be downloaded directly from the following

link http://xunit.codeplex.com/downloads/get/423827,

then the extract has to be downloaded into the root of the

selected project directory.

b) Step 2

The next step is to download the NuGet Package Manager

which is just a set of “tools to automate the process of

downloading, installing, upgrading, configuring, and

removing packages from a VS Project”. This can be

downloaded from the following link by clicking the

download button:

http://visualstudiogallery.msdn.microsoft.com/27077b70-

9dad-4c64-adcf-c7cf6bc9970c.

Once downloaded, one needs to execute the file and follow

the prompts to install it. Visual Basic will need to be

restarted for this to take effect.

c) Step 3

Once Visual Basic is restarted, users would need to install

xUnit.net runner for Visual Studio 2012 {VS 2013) . This

tool allows running xUnit unit tests from inside the Visual

Basic test explorer. It can be found using the following

link:http://visualstudiogallery.msdn.microsoft.com/463c59

87-f82b-46c8-a97e-b1cde42b9099.

Similarly, one must click the download button, execute

once downloaded, and follow the prompts. Once again

users must restart Visual Basic after this process is

completed.

d) Step 4

The next step in this process is to create a class for the

xUnit.net tests. To do this one must click on the class

library holding the code that is to be tested right click and

add Class. A class can name as required. In this tutorial

the tests will be based on the TMCConveyor so the class

will be named TMCConveyorTests for reference.

http://xunit.codeplex.com/downloads/get/423827
http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c
http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c
http://visualstudiogallery.msdn.microsoft.com/463c5987-f82b-46c8-a97e-b1cde42b9099
http://visualstudiogallery.msdn.microsoft.com/463c5987-f82b-46c8-a97e-b1cde42b9099

Page 6

Figure 6 – Add Class

e) Step 5

Once this is completed programmers must add a reference

from that class library, TMCConveyor, to xunit.dll (Fig.

7). This can be achieved by right clicking the

library>>Add reference>>Browse. This file will be located

in the xUnit.net package which was downloaded in the

first step.

Figure 7 – Add xUnit.dll reference

f) Step 6

One must now edit the class holding the tests for this

tutorial. To set up the class to use xUnit test programmers

must refer to using Xunit; The following format will be

used for the tests which will be run using this tutorial

(Wilson 2013).

namespace TMCConveyor

{

 public class TMCConveyorTests

 {

 [Fact]

 public void EnterTestMethodNameHere()

 {

 Enter test data here; // Arrange

 //Act

 Call the required method to implement

what one would like

 to test;

 //Assert the required assertion is

met.

 Assert.EnterAssertionFromAboveHere

 }

 }

}

Figure 8 – xUnit.net unit test format

For each new unit test method created, a new name will be

assigned and new steps relevant to the class being tested

will be added. As discussed above, the [Fact] attribute

defines it as a new test method, allowing it to be picked up

by the test explorer to be run as a test. After this, a new

test method has to be declared, named according to the test

which is being performed. In this method, the steps

necessary to complete the test are entered. The above

format of Arrange, Act and Assert is the recommended

format to structure each test method. Arrange is just to

define the variables and create instances of code for

testing. Act is acting upon the code selected for testing by

calling the relevant method [4]. At the end of each test

method there is an Assert. These assertions are as

discussed above and are called using the Assert method,

followed by the type of assertion one would like to make.

This is then completed by entering the variables

programmers would like to make the assertion based on,

based on what is acceptable by the type of assertion being

made.

g) Step 7

The test programmers then build this solution to ensure

that there are no errors. Due to the installed runner in step

3, these tests will now show up in the test explorer as

shown (Fig. 9) below.

Figure 9 – Test Explorer

From the test explorer these tests can be run one by one or

all at once using the run all button. If the tests are

successful, it will result in the following output.

Figure 10 – Successful Tests

h) Step 8

Once the test code is written, once again one needs to

build the solution to ensure that there are no errors. When

this is confirmed, programmers need to execute all the

tests using the run all method discussed in Step 7. This

allows us to see if there are any errors in the code and then

change the code as needed to ensure it is operational.

C. TMC xUnit Test Cases

Now, when all the basics are out of the way it is time to

select a few classes which will be run unit tests on. At

first, the code for test must be selected, and then it needs

to be analysed it to see what the expected output is. After

this task is completed one can write some code to test the

functionality to see if it performs as planned, and then

finally execute the test and make adjustments as necessary

to fix the code.

1) Case 1: Emergency Stop

Page 7

The first test that is run should be a simple test to ensure

the emergencyStop function of the TMCConveyor is

functioning correctly. The reference to the code will be

tesed in the FullConveyor.cs class can be found below:

Figure 1 – emergencyStop code

Then the emergencyStop procedure is referred to in the

RS485Controller class file (see Fig 12).

Figure 2 – RapidStop code

This also leads us to the following code relating to the

currentState under the class.

Figure 3 – currentState code

Figure 4 – getState code

As can be seen from the above code, calling the

emergencyStop sets the currentState of the conveyor into

the RapidStop state. Programmers then can be able to get

this state using the getState method which converts the

code to strings. In this scenario, one can set an expected

state which is expected the conveyor to be in, call the

command, and then by using the Assert method used by

xUnit, one can compare, if the state is as expected. One

must first ensure though that the conveyor was not already

in this state. This leads to the following code:

[Fact]

//declares method as an xunit test method

public void TestEmergencyStop()

{

 RS485Controller m_euroDrive;

 m_euroDrive = new RS485Controller();

 //create a new instance of RS485Controller

 string RapidStop = "RapidStop";

 // define a string with the expected value

 // of currentState after calling emergencyStop

Assert.False(m_euroDrive.getState().Equals(Rapi

dStop));

 // Test if the conveyor is not in emergencyStop

 // state

 m_euroDrive.emergencyStop();

 //Call the emergencyStop method

Assert.True(m_euroDrive.getState(.Equals(RapidS

top));

 //Test to ensure that the state correctly

changed

 // to the emergencyStop state.

}

Figure 5 – TestEmergencyStop code sample

2) Case 2: Resume from Emergency Stop

Using a similar method to the first test, it is possible to

make a test in order to ensure that the conveyor is able to

resume after being in an emergency stop state, the code for

this is as shown below. Here, the conveyor is put in the

emergency stop state and then test to ensure it is in fact not

enabled. Then, the operation can be resumed and test

executed to see, if the operation resumes correctly.

[Fact]

public void TestResume()

{

 RS485Controller m_euroDrive;

 m_euroDrive = new RS485Controller();

 // create a new instance of RS485Controller

 string Enable = "Enable";

 //define a string with the expected value of

 // the currentState after the Resume is called

 m_euroDrive.emergencyStop();

 // Put the conveyor into emergencyStop state

Assert.False(m_euroDrive.getState().Equals(Enab

le));

 //Test to check the conveyor is not enabled

 m_euroDrive.startDrive();

 // Resume the operation of the conveyor

Assert.True(m_euroDrive.getState().Equals(Enabl

e));

 // Test to ensure the conveyor correctly

resumed

 // and changed state to enabled

}

Figure 6 – TestResume

D. Case 3/4: Change Direction

This case will involve running two tests to confirm the full

functionality of the requirement. Once again, one needs to

look through the classes and find the following sets code

relating to the direction of the conveyor and to where it is

moving.

Figure 7 – Move To and From Assembly Methods

Page 8

Figure 8 – Move To/From Methods in RS485Controller

Figure 9 – Direction enum

In the existing code, there was no get method to convert

the private value currentDirection into an exportable

string. Such a get method can be added to the

RS485Controller code (Fig. 20) to facilitate the string

export.

Figure 20 – Get currentDirection code

Using the following sets of code one is able to design a

test to check whether the direction of the conveyor

changes as defined in the code, when the move to and

from assembly methods are called. Samples of the code

developed are shown below.

[Fact]

public void TestMoveToAssemblyDirectionChange() {

 RS485Controller m_euroDrive;

 m_euroDrive = new RS485Controller();

 //create a new instance of RS485Controller

 string expectedDirection = "Forward";

 //create a string containing an expected

 direction

 m_euroDrive.moveFromAssembly();

// call the method moveFromAssembly which sets

// the conveyor in the Backward direction

Assert.False(m_euroDrive.getCurrentDirection().Eq

uals(expectedDirection));

//Test to ensure that the current direction does

not match

// the expected forward direction

 m_euroDrive.moveToAssembly();

//call the method moveToAssembly to set the

conveyor is the

//expected forward direction

Assert.True(m_euroDrive.getCurrentDirection().Equ

als(expectedDirection));

// test to ensure the current direction equals

the expected direction

}

[Fact]

public void TestMoveFromAssemblyDirectionChange()

{

 RS485Controller m_euroDrive;

 m_euroDrive = new RS485Controller();

 //create a new instance of RS485Controller

 string expectedDirection = "Backward";

 //create a string containing the expected

 direction

 m_euroDrive.moveToAssembly();

 //call the method moveToAssembly which sets

 the conveyor in the Forward direction

Assert.False(m_euroDrive.getCurrentDirection()

.Equals(expectedDirection));

 //Test to ensure that the current direction
 does not match the

 //expected backward direction

 m_euroDrive.moveFromAssembly()

 //call the method moveFromAssembly to set the

 conveyor is the expected backward direction

Assert.True(m_euroDrive.getCurrentDirection().

Equals(expectedDirection));

 //test to ensure the current direction equals

 the expected direction

 }

}

Figure 10 – Change direction test code

IV. CONCLUSION

It is apparent that there was a need for unit testing to be

implemented throughout the development of the TMC.

There were several reasons for this, and the main reasons

being:

 Continual debugging of the TMC throughout the

development process.

 Automated testing through the test explorer

 Automated variable generation

 Identifying issues due to changes

 Testing code reliability (if and where it breaks)

 Saves time down the track after tests are written

 There are several important notes to remember when

attempting to implement these unit tests. This mainly

refers to the structure of the test methods. The general

structure includes such steps as: Arrange, Act, Assert. The

Arrange step can be automated, if designed correctly, but

it is, in simple terms, the arranging of the variables needed

for the test to be performed. Act, is where one calls the

Page 9

method under test to put the code in action. Assert is the

key element where programmers ensure that the code was

achieved the desired result based on the inputs given to it.

 Some pitfalls to avoid while implementing unit test are

to ensure that the code is well understood, and that one is

able to implement the correct procedures to test the code,

otherwise this may lead to test results which report false

positives, and thus misleading testers to believe the code is

functioning correctly. Other pitfalls one may want to avoid

include spending too much time on developing the unit

test cases, taking away the time from developers by

implement the unit tests right the first time, and therefore

be able to continually run them in an automated fashion

throughout the remainder of the development process.

Therefore, if implemented correctly early on, the hard

effort put it at this stage will make it easier through the

remainder of the project.

 Unit testing using the xUnit framework is a very

effective way of developing and automating unit tests

throughout the development of the TMC project. It enables

developers and testers to gain a greater understanding of

their code while developing a test method(s), which

stretches code boundaries and thus ensures the code to

behave as desired. This work is a good lesson to take in,

especially for inexperienced developers, as inheriting these

habits now will lead to improving their ability to code and

debug issue that may arise.

 Test automation is a very important task through the

whole software development process. In particular, it is

important to developers, as it helps reducing costs of

software development throughout the entire software

development cycle. If tests correctly automated, it was

demonstrated here how test automation enables the

reduction of effort required throughout the development

process. Test automation is also important in increasing

the efficiency and the effectiveness of development and

thus contributing to improvement in the quality of the final

product. The xUnit testing framework enables test

developers to use an integrate-able platform which allows

for automation of their code tests in an efficient and

effective manner. Test automation, however, may lead to

several problems which are here referred to as test smells

which are due to errors in the test code, which then may

eventually branch out and cause problems, such as

unexpected behaviour in test code. A remedy to this

particular problem is to apply test patterns. These are a

recurring solution to a recurring test smell problem, which

arise due to automation. Solving these problems increases

the quality and effectiveness of the test code and as a

result the implementation of test patterns, through

refactoring code, allows the test automation to become

easily maintainable. Consequently, this leads to a

reduction in effort spent maintaining the test code, which

could greatly reduce the effort spent in developing code.

V. ACKNOWLEDGMENT

We would like to acknowledge work and help received

from 48481 ICTD students of the Blue Team in A2013.

VI. REFERENCES

1. Evans, B. 2013, AutoFixture, Microsoft Corporation,

viewed June 27th 2013, <http://autofixture.codeplex.com/>.

2. Meszaros, G. 2007, xUnit Test Patterns: Refactoring Test

Code, Addison Wesley Professional.

3. Pex and Moles - Isolation and White box Unit Testing for

.NET, 2013, Microsoft Corporation, viewed June 27th 2013,

<http://research.microsoft.com/en-us/projects/pex/>.

4. Wills, A. & Hilliker, H. 2012, '2: Unit Testing: Testing the

Inside', in R. Corbisier & N. Michell (eds), Testing for

Continuous Delivery with Visual Studio 2012, Microsoft

Corporation.

5. Wilson, B. 2013, Comparisons, Microsoft Corporation,

viewed June 25th 2013,

<http://xunit.codeplex.com/wikipage?title=Comparisons&re

ferringTitle=Home>.

6. Wilson, B. 2013, How do I use xUnit.net?, Microsoft

Corporation, viewed June 25th 2013,

<http://xunit.codeplex.com/wikipage?title=HowToUse&refe

rringTitle=Home

7. About xUnit.net, 2013, Microsoft, viewed June 25th 2013,

<http://xunit.codeplex.com/>.
8. Pragmatic Unit Testing: Summary, 2004, The Pragmatic

Programmers, viewed June 27th 2013,

<http://media.pragprog.com/titles/utj/StandaloneSummary.p

df>.

9. Unit Testing, 2013, Joomla, viewed June 27th 2013,

<http://docs.joomla.org/Unit_Testing>.

10. Visual Studio Gallery, 2013, Microsoft Corporation, viewed

June 25th 2013,

<http://visualstudiogallery.msdn.microsoft.com/>.

11. Unit Testing, 2013, Joomla, viewed June 27th 2013,

<http://docs.joomla.org/Unit_Testing>.

12. Visual Studio Gallery, 2013, Microsoft Corporation, viewed

June 25th 2013,

<http://visualstudiogallery.msdn.microsoft.com/>.

13. 48481 ICTD,

http://handbook.uts.edu.au/subjects/48481.html

http://autofixture.codeplex.com/
http://research.microsoft.com/en-us/projects/pex/
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home
http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home
http://xunit.codeplex.com/wikipage?title=HowToUse&referringTitle=Home
http://xunit.codeplex.com/wikipage?title=HowToUse&referringTitle=Home
http://xunit.codeplex.com/
http://media.pragprog.com/titles/utj/StandaloneSummary.pdf
http://media.pragprog.com/titles/utj/StandaloneSummary.pdf
http://docs.joomla.org/Unit_Testing
http://visualstudiogallery.msdn.microsoft.com/
http://docs.joomla.org/Unit_Testing
http://visualstudiogallery.msdn.microsoft.com/

