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Abstract—Industry 4.0 applications rely on mobile robotic
agents that execute many complex tasks that have strict safety
and time requirements. Under this setting, the Edge Computing
service delivery model allows the robotic agents to offload
their computationally intensive tasks to powerful computing
infrastructure in their vicinity. In this study, we propose a novel
switching offloading mechanism for such robotic applications. In
particular, we design opportunistic offloading strategies for the
path planning and localization services of mobile robots. The
offloading decision is based on the uncertainty of the robot’s
pose, the resource availability at the Edge of the network and
the difficulty of the path planning. Our switching offloading
framework is implemented and evaluated using a robot in a real
Edge Computing testbed, where the trade-off between execution
time and the successful completion of the robot trajectory is
highlighted.

Index Terms—IoT, Edge Computing, Computational Offload-
ing, Robotics, Switching Control.

I. INTRODUCTION

Computation offloading in current and next-generation net-
works is becoming increasingly important due to the prolifer-
ation of Internet of Things (IoT) real world applications [1].
These applications introduce a vast number of low-capability,
low-energy devices to the networking ecosystem, which regu-
larly need to perform computationally intensive and/or energy-
hungry tasks. However, when latency and energy consumption
minimization are required, the limited resources of the IoT
devices prove inadequate [2]. For example, in Industry 4.0
and especially in collaborative robotics, where humans and
robots work together in dynamic environments, computation-
ally heavy algorithms enable IoT devices in sensing and
actuating [3]. Consequently, large amount of information has
to be processed and complex algorithms need to be executed
in real-time.

The increasing availability of networking in the Edge and
Cloud supports new approaches, where processing is per-
formed remotely, with access to extensive computing and
memory resources. In this direction, Edge Computing (EC)
alongside Fog Computing (FC) [4] constitutes a particularly
prominent way of dealing with the aforementioned shortcom-
ings of IoT devices. FC offers an attractive alternative pro-
viding low-latency and high energy efficient operation, while
maximizing system performance. This paradigm is currently

more relevant than ever, especially in the context of the
much-anticipated Industry 4.0 revolution [5] and Industrial IoT
(IIoT), where Fog Robotics (FR) [6] is introduced. FR can be
defined as the architecture that distributes computing, storage
and networking functions at the Edge/Cloud continuum in
a federated manner [7], i.e. where robots and automation
systems rely on data or code from a network to support their
operation.

Suitable as it may seem, solely utilising remote com-
putational resources is not enough; a number of unwanted
phenomena potentially take place in the transmission and
processing of the information, such as network latency, vari-
able Quality of Service (QoS), and downtime [8]. For these
reasons, autonomous mobile robots often have some capacity
for local processing when targeting low-latency responses,
and during periods where network access is unavailable or
unreliable. Consequently, a major challenge, from a control
design, estimation, and network optimization point of view is
to combine local and remote resources in an efficient way.

In this work, we propose a computation offloading mecha-
nism for robotic applications. In particular, we realize an IoT-
enabled localization and path planning framework and verify
the expected gains of computation offloading by utilizing a
real Edge Computing setting. To achieve this, we design and
implement local and remote localization and path planning
controllers, followed by a scheduling mechanism. The offload-
ing mechanisms are treated as switches, leading to different
dynamics of the resulting closed-loop system. Specifically, the
algorithms involved in the localization process are decided to
run remotely, rather than locally, when the uncertainty of the
robot’s pose is high and at the same time the network and
computing resources status at the Edge is favorable. On the
other hand, path planning is offloaded when the robot navi-
gates in a part of a map where better planning strategies can
be achieved through involved algorithms that can only be ex-
ecuted remotely. These switches compose a switching system
that is adaptive and can operate under different scenarios and
applications. This architecture perspective, which constitutes
the main contribution of this work, offers our framework a
degree of contextual awareness; that is the ability to sense
and dynamically adapt to the robot’s environment, implicitly
enhancing to an extent the robustness of its operation, as well



as improving the QoS of the supported applications.
Open challenges in this area throughout the literature

are concerned with developing adaptive multi-robot/machine
control, capturing, modelling, predicting and anticipating the
agent’s interactions and designing distributed control and path
planning algorithms that deliver flexible and safe working
environments. Approaches similar to ours include [9], where
gesture-based semaphore mirroring with a humanoid robot
is split to remotely and locally executed functionality; [10],
in which the authors identify a three-layered environment
(Robot, Edge and Cloud) to overcome the challenges of
network limits in a Deep Robot Learning application and [11]
where Dew Robotics is introduced; this concept posits that
critical computations are executed locally so that the robot
can always react properly, while less critical tasks are moved
to the Fog and Cloud, so to exploit the larger availability
in computing, storage, and power supply. However, none of
the aforementioned offloading decision schemes addresses the
dynamic nature of the robot’s environment.

The rest of the paper is organized as follows. In Section
II the architecture overview is presented, while in Section
III the system model and local tracking controller are pre-
sented. The algorithms used in the scope of this work for
localization and path planning are presented in Section IV. The
switching offloading mechanism is presented in Section V. An
experimental evaluation in Section VI. Finally, conclusions are
drawn and future plans are set in Section VII.

II. ARCHITECTURE OVERVIEW

The scenario addressed in this work involves a mobile robot
equipped with sensing, computing, and wireless communica-
tion capabilities, which makes its way from a starting position
to a target position in an operating ground (e.g. a factory floor),
navigating through obstacles. This functionality is a key com-
ponent to realizing autonomous robotic navigation in Industry
4.0 use cases, e.g. warehousing and logistic robots which
automate the process of storing and moving supply chain
goods. Tracking the robot location is essential for a robust
and safe trajectory planning. However, a common problem in
such a scenario is that the uncertainty in estimating the exact
pose (i.e. position and orientation) grows over time in motion,
due to inaccuracies in sensing, wheel slips, hardware failures,
etc., [12]. Thus, the importance of an accurate, dynamically
adjusted localization technique is evident.

In our case self-localization through landmark assisted pose
estimation is implemented; the robots are equipped with a
camera module, while in their proximity unique cylindrical
beacons are used as landmarks to assist in the pose estimation
process. In the computationally demanding involved algo-
rithms, two offloading opportunities are revealed in, namely,
pose estimation and path planning. To this purpose, a small-
scale network infrastructure is set up, connecting the robot
to a wireless LAN (WLAN) through an Access Point located
within the robots’ network range, which in turn connects via a
wired connection (LAN) to a server in the robot’s proximity,
the Edge Server.
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Fig. 1: Architecture Overview. The locally executed com-
ponents are highlighted with blue color, while the remotely
executed ones with green.

Locally, the intangible assets include the (i) the Tracking
Controller (TC), (ii) the Local Odometry-Based Estimator
(LOE), (iii) the Local Beacon-Based Estimator (LBE), (iv)
the Local Path Planner (LPP) and (v) the Offloading Decision
Mechanism (ODM) components, all located within the robot;
component (i) is responsible for carrying out movement-
related decisions, (ii), (iii) and (iv) are the locally executed
pose estimation and path planning applications respectively
and (v) encompasses the intelligence of our switching system
by monitoring the offloading-related metrics and realizing
the offloading decisions. On the remote side, containerized
counterparts of the path planning and pose estimation appli-
cations are co-hosted on the Edge Server; these are namely
(vi) the Remote Beacon-Based Estimator (RBE) and (vii) the
Remote Path Planner (RPP) which are able to receive offloaded
requests from the robot. A more detailed discussion on these
components follows in Sections III, IV and V.

In order to outline the sequence of interactions between the
main components of the architecture, we showcase a repre-
sentative scenario in which our solution applies successfully.
Fig. 1 depicts an overview of this scenario. Without loss of
generality, we assume that only one robot operates in the field.
Also, its starting pose, the operating space dimensions and the
obstacles’ and beacons’ positions and shapes are considered
known a priori.

A typical activity flow of our scenario, initiates with Local
Path Planner component calculating locally a trajectory from
the starting position to the target position. This triggers the
ODM for the first time; should a quick analysis on the
projected trajectory indicate room for significant refinement
of the selected path, the Remote Path Planner is invoked. This
analysis is based on the trajectory curvature and the degree
in which the more elegant remote component is potentially
able to smooth it around obstacles; Section V-C provides
more insight on this process. Eventually, the resulted trajectory
dictates the intermediate positions the robot needs to reach. In
order to sequentially perform the transition to the each of them,
the Tracking Controller component is invoked.

After reaching the next position of its trajectory, an un-
certainty indicator of the pose estimation is calculated; this



Fig. 2: The timing sequence in the proposed scenario.

indicator is a scalar that grows with time and actually ac-
cumulates the error between the estimated and the reference
pose after each move, as explained thoroughly Section V-A.
Here, the second decision occurs; if this indicator measures
bellow a predefined threshold, the robot continues to move
based on the feedback coming from the Tracking Controller’s
monitoring process, i.e. the Local Odometry-Based Estimator,
which leverages the robot’s photoelectric sensors (encoders)
attached to each wheel to measure the wheels’ angular ve-
locities during a period of time. Else, it invokes the more
precise, but computationally heavy, Beacon-Based Pose Es-
timator, leveraging information coming from the beacons in
the environment. That triggers the ODM once again; the Edge
Server is queried to provide an estimation on the duration of
the potentially offloaded pose estimation task. As described by
the mathematical modelling in Section V-B1, this duration is
proportional to the availability of the computational resources.
Based on this estimated duration, a decision is made on
whether to offload the pose estimation task to the Remote
Beacon-Based Estimator, or execute it locally. The flow ends
with the robot checking if the target position is reached. If
not, it reverts to first step.

It is worth highlighting that the tracking controller, as well
as the path planning and pose estimation are aperiodic. The
position of the robot on the operating ground, is defined by the
state vector xixixi =

[
x1 x2

]>
. The robot has to move towards

the next reference position xirefxirefxiref = [x1,ref(ti) x2,ref(ti)]
>,

generated by the path planning algorithms, to approach the
target position. Fig. 2 gives a brief insight on the timing
sequence in which the rest of the sections will refer to. Let
subscript i correspond to the step during which the robot
reaches the next reference position in ki actuation steps, while
simultaneously tracking its pose. In particular, at time t0i the
robot is in the position xi. When the next reference position
xi+1
ref is close, the uncertainty about the current estimation

is calculated. Thus, the time duration T 1
i corresponds to

the time spent for localization. When the local odometry-
based estimator is used, this time is equal to zero, while the
beacon-based estimation algorithm is time consuming. The
time duration T 2

i corresponds to the path planning algorithm
running time either remote or local, which generates the next
reference position. Similarly, the time to execute the local path
planning algorithm is equal to zero.

III. SYSTEM DYNAMICS

A. Robot dynamics

The differential drive robot used in this study has two
wheels that can turn at different rates, allowing motion by

changing the orientation and the position (x1, x2) either sep-
arately or simultaneously. For the robot dynamics, the 2D
coordinates, i.e. position, and the orientation of the robot are
denoted by the state variables z1, z2 and z3. Hence we consider

zzz =
[
z1 z2 z3

]>
=
[
xxx> θ

]>
. The robot is controlled by

the angular velocities wR and wL, accounting for the right and
left wheel respectively. The robot dynamics is defined by the
following continuous time system, based on the work in [13],
using the aforesaid state-space representation. Specifically, we
have for any t ≥ 0,

ż1(t) =
r

2
(wL(t) + wR(t)) cos z3(t), (1)

ż2(t) =
r

2
(wL(t) + wR(t)) sin z3(t), (2)

ż3(t) =
r

l
(wL(t)− wR(t)), (3)

where l, r are the distance between the two wheels and the
radius of each wheel respectively. The odometry measurements
w̃L(tji ),w̃R(tji ) are taken at each time instant tji , i = 0, 1, ...,
j = 0, . . . , ki of the timing sequence introduced in Section
II. The corresponding discretized system using Euler forward
method is:

z̃1(tj+1
i ) =

r

2
(w̃L(tji ) + w̃R(tji )) cos z̃3(tji )(t

j+1
i − tji ) + z̃1(tji ),

(4)

z̃2(tj+1
i ) =

r

2
(w̃L(tji ) + w̃R(tji )) sin z̃3(tji )(t

j+1
i − tji ) + z̃2(tji ),

(5)

z̃3(tj+1
i ) =

r

l
(w̃L(tji )− w̃R(tji ))(t

j+1
i − tji ) + z̃3(tji ). (6)

B. Tracking controller
As previously mentioned, the robot moves towards the next

reference position xirefxirefxiref to reach the target position. For this
actuation phase, given the specific robot dynamics, we propose
a tracking controller executed locally on the robot, by fixing
the control inputs wL, wR to be either equal or opposite.
Therefore, the control input is w, while |w| = |wL| = |wR|.
As a result, we restrict the motion of the robot to a straight
line, i.e. “translational motion”, or a rotation around the center
of the wheel axle, i.e. “rotational motion”, respectively. This
control structure is chosen as it is efficient for tracking pur-
poses, leading to a simple structure of the closed-loop system.
Specifically, the closed-loop dynamics for the translational and
rotational motion are

STran
1 :


ż1(t) = r

2
(w(t)) cos z3(t),

ż2(t) = r
2
(w(t)) sin z3(t),

ż3(t) = 0

(7)

SRot
2 :


ż1(t) = 0,

ż2(t) = 0,

ż3(t) = r
l
(w(t)),

(8)

where Stran
1 is used for the translational motion and Srot

2 when

the robot needs to rotate. Let R(tji ) =

∥∥∥∥∥∥
[
z̃1(tji )
z̃2(tji )

]
−
[
z1,ref(ti)
z2,ref(ti)

]∥∥∥∥∥∥
2

be the distance between the robot’s current estimation
and the reference position and let φ(tji ) = z̃3(tji ) −

tan−1

(
z̃2(t

j
i )−z2,ref(ti)

z̃1(t
j
i )−z1,ref(ti)

)
be the angle between the robot’s cur-

rent estimation of orientation and the line connecting the robot
and the reference position. Here, z̃ accounts for the estimation



Fig. 3: The hybrid automaton of our system.

of its current pose calculated by Equations (4) – (6) at the time
period of the actuation t = tji , j = 0, 1, . . . , ki.

The closed-loop system with the tracking controller can be
modeled by a discrete-event systems, see, e.g., [25], as shown
in Fig. 3, where the control input can be calculated as follows:

w(tji ) =


L1R(tji ), φ(tji ) ≤ ε2

∧
R(tji ) > ε1,Translational,

L2φ(tji ), φ(tji ) > ε2
∧
R(tji ) > ε1,Rotational,

0, R(tji ) ≤ ε1, Stop.

The quantities ε1, ε2 are positive constants, while the gains
L1, L2 are constant control parameters.

The reference position is reached when the estimation of its
position is close, and in particular is inside a ball of radius ε1
close to the reference, i.e., centered at B(xirefxirefxiref , z(t

j
i )) = {z ∈

R3 : ‖z − z̃(tji )‖ ≤ ε1}. The effect of the uncertainty is taken
into account explicitly in the offloading decision that follows.

IV. LOCALIZATION AND PATH PLANNING

In what follows, we present the algorithms chosen for
localization and path planning, with a varying degree of
complexity and accuracy, that are implemented locally and
remotely accordingly.

A. Localization

The localization problem is equivalent to the pose estimation
problem in our setting. Two algorithms of different complexity
are implemented, namely, (i) an odometry-based one, and (ii) a
camera-based estimation. The first estimation algorithm is light
enough to run efficiently on the robotic platform. Roughly, the
robot’s on-board wheel encoders readings are fed to the motion
model (4) – (6). While this is a lightweight and fairly accurate
localization technique when it comes to short trajectories,
odometry is known to be prone to accumulative errors [14].

The second localization technique is the computationally
heavier beacon-based estimator. Details on the technical parts
of the algorithm and its software and hardware implementa-
tion can be found in [15]. Roughly, the technique is based
on a bilateration method using principles of the projective
geometry. Distance calculation is based on feature extraction
from pictures depicting the landmarks, with the localization
algorithm relying on minimum two strategically positioned

landmarks. To address this requirement, the attached camera
scans the area in front of the robot, capturing pictures and
analysing them until two landmarks are detected. Hence, com-
putationally intensive, real time image processing is required
to achieve highly accurate results. Relevant works include [16]
and [17].

B. Path Planning

Many works exist in the literature addressing the path
planning problem; a realistic robot navigation and smooth
trajectory planning is a major challenge [18], [19]. Planning
algorithms generate a trajectory consisting of intermediate
reference positions to reach the final target position. In this
work, we select and adapt graph-based methods of varying
complexity, see, e.g., [13, Chapter 8]. As a result, the algo-
rithms described below, take as input a graph that represents
the real-space grid space along with the target positions, the
obstacles and the starting position. This grid has a predefined
cell size, that depends on the length of the robot. Each cell
corresponds to a possible reference position. In our case, the
obstacles are rectangular-shaped, in the sense of simplicity,
however, arbitrarily-shaped obstacles could also be included.

On the one hand, a lightweight implementation of the A?

algorithm [20] acts as the Local Path Planner. Similar to [21],
four directions of movement are allowed in the grid. The cells
containing obstacles are not connected with the neighboring
cells. The A? algorithm returns a sequence of positions to
reach the target position, according to a heuristic cost function;
in our case this is the Manhattan Distance. The implementation
is suitable for a robot with minimal computational resources
providing a solid and quick solution, however the generated
trajectory is not smooth.

The computationally intensive algorithm acting as the Re-
mote Path Planner is deployed on the Edge Server. Similar to
[22], the main process of the proposed algorithm is to locate a
possible move towards a node that is closer to the target given
the aforesaid graph. To this purpose, a multiple sources single
destination problem is solved, utilising Dijkstra’s shortest path
algorithm, which calculates a path from each node towards the
target position, offline. These precalculated paths, along with
the total cost to reach the desired destination, are stored in a
database on server’s startup. When the Remote Path Planner is
invoked, given the current location of the robot, a neighbour
pruning is performed similar to [23]. A node of the graph
is considered to be a neighbor of the current position if (i)
the distance between them is less than twice the specified
cell size and (ii) no obstacle is in the line of sight of the
current position to that node. Consequently, to retrieve the set
of possible neighbours, it is sufficient to search for avoidance
of line clipping (intersection) between the line connecting the
current position to each of the adjacent cells and the set of
obstacles present in the real-space grid. The optimal path is
chosen by comparing all possible neighbours. In particular, the
cost to reach each one of them from the current position is
added to the cost from each neighbour to reach the desired



Fig. 4: The block diagram of the switching system. Component
abbreviations and colors follow the pattern introduced in
Section II.

target. In this way, the algorithm allows “shortcuts’ to the
neighbouring nodes, while any-angle trajectories are feasible.

V. SWITCHING SYSTEM

In this section, we present the switching mechanisms that
are realizing the Offloading Decision Mechanism of our
framework. We assume that starting from a position x0x0x0 =
[x1(0) x2(0)]>, the closed-loop system converges asymptot-
ically to a reference position xrefxrefxref = [x1,ref(ti) x2,ref(ti)]

>

when exact measurements are available, i.e., when z̃̃z̃z(t) = zzz(t).
We identify two offloading opportunities related to the pose
estimation and the path planning problem. In Fig. 4 the
proposed switching system is presented. In particular, switches
S1 and S2 relate to the estimation procedure, and switch S3
concerns path planning part.

A. Sensor selection (Switch 1)
The measurements of the onboard sensors are imperfect,

thus the pose estimation error is accumulated. When the error
becomes too large, the more precise, yet more computationally
intensive remote localization algorithm is invoked. In order to
decide when to offload, we introduce the variable δ(·) that
describes the uncertainty in estimation. We set

δ(tj+1
i ) = δ(tji ) + b0 + b1δ̃(t

j
i ),

j = 1, . . . , ki, i ∈ N , where δ̃ is the deviation between the
measurements of the states z̃, computed by the Equations (4)
– (6) and the model-based estimations z̆̆z̆z, i.e.

δ̃(tji ) =
∥∥∥z̆̆z̆z(tji )− z̃̃z̃z(tji )∥∥∥

2
,

where z̆̆z̆z(tji ) consists of:

z̆1(tj+1
i ) =

r

2
(wL(tji ) + wR(tji )) cos z̆3(tji )(t

j+1
i − tji ) + z̆1(tji ),

z̆2(tj+1
i ) =

r

2
(wL(tji ) + wR(tji )) sin z̆3(tji )(t

j+1
i − tji ) + z̆2(tji ),

z̆3(tj+1
i ) =

r

l
(wL(tji )− wR(tji ))(t

j+1
i − tji ) + z̆3(tji ),

which are the model-based estimation of the dynamics at time
instants tji , j = 1, . . . , ki and wL,wR are the outputs of the
tracking controller. At time t00, the model-based estimation is
equal to a known initial position, i.e. z̆̆z̆z1(t00) = z̆̆z̆z01. As a result,

δ linearly depends on the deviation, and is getting bigger as
the robot actuates, especially when the actual motion of the
robot differs from what the model dictates.

The offloading mechanism, aiming to reset the uncertainty,
is triggered when δ becomes too large, namely larger than a
prespecified threshold δ?, i.e.,

S1(tki
i ) =

{
OFF, if δ(tki

i ) ≤ δ?,
ON, else,

where ki refers to the time instant, when the robot’s po-
sition, calculated by Equations (4) and (5), is close to the
next reference position xref,kxref,kxref,k. Moreover, ON corresponds to
using the beacon-based localization and OFF to proceeding
based on the local odometry estimation. In the scope of this
work, we assume that the uncertainty becomes equal to zero
when the beacon-based localization is used. Hence, when
S1(tki

i ) = ON, then δ(t0i+1) = 0, which means we get a valid
measurement of the states zzz. Otherwise, δ(t0i+1) = δ(t

kj

i ).

B. Estimation Offloading (Switch 2)

Switch S2 decides whether the localization algorithm will be
executed locally on the microcontroller mounted on the robot,
or remotely on the Edge Server. Although the execution of
such a computationally heavy algorithm on a battery-powered
IoT device is energy-consuming, it may be preferable in some
cases as offloading might result to larger response times due to
lack of available resources on the remote server and network
congestion.

1) Resource modelling and estimation: We assume that the
resources of the localization service on the Edge Server are
managed by the resource orchestrator of the infrastructure
provider and we can only estimate the allocated resources
through measurements. Thus, we model the resource allocation
strategy on the Edge Server as a linear dynamical system
subject to process and measurements uncertainty disturbances

c((k + 1)Ts) = c(kTs) + w(kTs),

z(kTs) = c(kTs) + v(kTs),

where c accounts for the virtual CPU cores of the container,
z is the measurement of c and Ts is a constant sampling
time. The terms w, v are the process and measurement noise
respectively, both following a normal distribution. Based on
previous measurements, we compute a current estimation
of the virtual CPU cores allocated to the container, ĉ, by
applying a Kalman Filter [24], which is a computationally
light prediction method.

2) Processing time estimation: Having acquired the estima-
tion of the available remote virtual CPU cores ĉ, the estimated
processing time of the beacon-based localization algorithm
can be calculated. To this purpose, the processing time, tp
is modeled as a linear relationship of the available resources,
tp = aĉ+ b. The coefficients a,b are calculated using the least
squares fitting method, on a set of pairs (tp, ĉ) produced offline
while experimenting with a dataset of pictures. Moreover, we
consider the wireless network induced delay tnet to be constant
as a standard network delay in a WLAN network.



3) Localization Offloading: The processing time is related
directly to the CPU availability. The local beacon-based local-
ization has an average time tloc to be executed based on the
robot’s resources. Hence, Switch S2 is formulated as:

S2(tki
i ) =

{
ON, if tp + tnet ≤ tloc,
OFF, else,

where ki refers to the time instant that the robot must decide
whether to offload or not the beacon-based localization algo-
rithm. Moreover, ON corresponds to the remote execution of
the self-localization algorithm and OFF to the local execution.

C. Path Planning Offloading (Switch 3)

Two path planning algorithms are implemented. By default,
the computationally light A? algorithm presented in Section
IV-B,provides a reference trajectory on the robot. However,
whenever a prediction cost indicates a possible amelioration
by choosing a more refined path, the remote path planning
algorithm is invoked. Both algorithms take as input the current
estimation of the position and the reference position and
generate a reference trajectory.

The offloading decision for the path planning depends on
a cost consisting of two parts; the first part estimates the
closeness of the generated reference trajectory to obstacles and
the second part evaluates the curvature of the trajectory. Both
terms follow theoretical aspects from standard works, e.g.,
[26]. We define the function D(xxx) that quantifies the “density”
of obstacles according to the estimation of the current position
x̂̂x̂x, either computed by the beacon-based localization or the
local odometry measurements.

D(xxx) =
∑

x̂obsx̂obsx̂obs∈Xobs

exp
(
−‖xxx− xobsxobsxobs‖

)
,

and XobsXobsXobs is the set of positions that correspond to the centers
of the cells that are unreachable, e.g., occupied by an obstacle.

Let {x̌̌x̌x(i)}i=1,....,M be the part of the path sequence con-
sisting of the first M positions, generated by the local path
planning algorithm.

The local path planning algorithm takes as input the current
position estimation x̂̂x̂x(tki

i ) at t = T ki
i + T 1

i and creates a
reference trajectory sequence {x̌̌x̌x(i)}i=0,1,...,M , with x̌̌x̌x(0) =
x̂̂x̂x(tki

i + T 1
i ). We define:

Jlocal(x̂̂x̂x(tki
i + T 1

i )) =
M−1∑
i=0

(∥∥x̌̌x̌x(i+ 1)− x̌̌x̌x(i)
∥∥)− ∥∥x̌̌x̌x(M)− x̌̌x̌x(0)

∥∥ ,
as a cost describing the curvature of the reference local
trajectory. The offloading strategy can be formulated as:

S3(tki
i + T 1

i ) ={
OFF, if D(x̂̂x̂x(tki

i + T 1
i ))− Jlocal(x̂̂x̂x(tki

i + T 1
i )) ≤ J?,

ON, else,

where tki
i + T 1

i indicates the time instant after the actuation
and pose estimation. The constant J? accounts for the degree
of difficulty of the next moves in terms of proximity to

obstacles and curvature of the trajectory. When S3 in ON,
the remote path planning provides the next step to reach the
target position. Otherwise, the robot relies on the local path
planning trajectory. It should be mentioned that, contrary to
Switch 2, here, we do not include the CPU availability in the
offloading decision, as we noticed that the remote path planner
chosen is mainly memory intensive.

VI. EXPERIMENTS AND EVALUATION

The experiments were conducted in an operating space of
2.5×2.5 meters, divided by 25×25 cells, with a cell size of
10×10cm. The robot chosen was the commercially available
AlphaBot1, equipped with a Raspberry Pi 3 device as the
control unit. The length of the AlphaBot is 22cm and the radius
of each wheel is 6.6cm. The coloured beacons were placed
at the periphery of the grid for the localization procedure
described in Section IV. The rectangular-shaped obstacles
were placed as depicted with grey colour in Fig. 5. The map
is considered known. The Access Point used was a MikroTik2

wireless SOHO AP, providing up to 100Mbs LAN connection,
Single Band (2.4GHz). The Edge Server deployed on the NET-
MODE, testbed part of Fed4FIRE3 initiative, was equipped
an Intel Atom CPU, up to 1Gbit Ethernet port and 8GB of
RAM. The services provided by the edge server were deployed
as Docker4 containers. For each Docker container, one can
set constraints, to limit a given container’s access to the host
machine’s CPU cores, by provisioning a percentage of them
as the virtual cores of the containers. Thus, containers can
be assigned with partial virtual CPUs using decimal values.
Using a collection of pictures from the actual experimentation
room, from different positions and viewing angles, a dataset
was created to estimate the time duration of the remote beacon-
based localization. In Table I, the values of the set of pairs
(tp, ĉ), introduced in Section V-B, are presented. Using the
least squares fitting method we calculated the coefficients
a = −1.34 and b = 1.675. Hence, the estimated processing
time of the remote beacon-based localization is given by
tp = −1.34ĉ+ 1.675. Provisioning over 1.5 cores resulted in
similar computation time, thus, the maximum CPU allocation
was set to that value. In our experiments, the allocated cores
of the containerized application were updated every 10sec,
following a Normal Distribution with a mean value of 0.75 and
0.5 variance. The following values were used for the aforesaid
constant values: b0 = 1; b1 = 0.2; e1 = 5cm e2 = 5°,
L1 = 0.2, L2 = 0.6, δ? = 6 and J? = 3. Finally, the average
network delay of the WLAN was empirically measured to
tnet = 1sec per offloaded picture and the average time for
each picture to be processed locally on the AlphaBot was
tloc = 3sec.

Three experiments were conducted, namely, local only
execution, remote only execution and the proposed switching
offloading scheme. In Table II the average completion time

1https://www.waveshare.com/wiki/AlphaBot
2https://mikrotik.com/product/RB951Ui-2HnD
3https://www.fed4fire.eu/testbeds/netmode/
4https://www.docker.com/



Fig. 5: The experiment setup and the trajectories produced by
the three experiments.

Average Time per picture (sec), tp Virtual Allocated Cores, ĉ
2.41 0.25
1.06 0.5
0.56 0.75
0.39 1
0.30 1.25
0.26 1.5

TABLE I: The average time for remote beacon-based estima-
tion per virtual allocated core to the container.

and the average success rate for 10 experiments of each
setting is presented. For the rest of the evaluation, we will
present the results of the best trials for each setting. Moreover,
in Fig. 5 the reference trajectories of these trials for the
three experiments, are illustrated, with green colour for local
only execution, red colour for remote only execution and
purple colour for the switching system. As outlined in Section
IV, the local A? algorithm allows only four directions of
movement, while the remote path planner allows any-angle
movements. For better visualization, we uploaded timelapse
videos5 from the conducted trials for each setting. In these
experiments, the starting position for the AlphaBot was the
already known position A(3, 14), while the desired target
reference positions were B(10, 5) and C(14, 18) in sequence.
The scale of uncertainty is illustrated as a percentage of δ?,
i.e. δ/δ?, which is the predefined quantity for Switch 1 to be
ON.

1) Experiment A - Local Only Execution: In the first exper-
iment Switches 1 and 3 were ON, throughout the experiment

5https://github.com/Dspatharakis/alphabot-ppl/tree/master/timelapsed-
videos

Experiment Average completion time (sec) Success Rate
Local Only Execution 61 40%

Remote Only Execution 105 100%
Switching System 90 100%

TABLE II: The average completion time and success rate of
10 experiments for each setting.

Fig. 6: Experiment B - Remote Only Execution.

and Switch 2 was never used. This setting results to a fast,
although not precise navigation with δ/δ? growing mono-
tonically. The average duration was 61 seconds as the main
time consuming process was the actuation. The amount of
successful experiments is low. Consequently, without a more
sophisticated localization algorithm and a more precise path
planning technique there is no guarantee the target reference
position is reached.

2) Experiment B - Remote Only Execution: In the second
experiment, whenever the uncertainty about AlphaBot’s pose
grew over a predefined threshold, δ?, beacon-based localiza-
tion was invoked (Switches 1 and 2 ON) on the Edge Server.
Moreover, the reference trajectory was always generated by
the remote path planning algorithm (Switch 3 ON). In this
setting the robot always reached the target positions, as shown
in Table II, although the completion time was heavily affected
as shown in Fig. 6. Beacon-based localization was executed
twice during this experiment and as a result, δ/δ? became
equal to 0. The setup of the particular experiment underlines
the importance of a slower but more precise navigation.

3) Experiment C - Switching System: As described in
Section V-C, Switch 3 decides which path planning algorithm
solution the AlphaBot will use to generate the next refer-
ence position. When, the curvature function of the trajectory
calculated by the A? algorithm and the obstacle density
function exceeded the threshold value J?, the remote path
planning solution was selected; e.g. from the beginning of the
experiment until the 25th sec of the simulation and from the
43rd sec till the 67th sec, as illustrated with green dashed
line in Fig. 7. In the same figure with red solid line, δ/δ? is
depicted. Two times during the experiment the more precise
beacon-based estimation was invoked to reset δ/δ?. The first
estimation attempt, at the 25th sec of the experiment, was
executed on the Edge Server, because S2 was ON. The second
one, at the 71st sec of the experiment, was executed locally,
as S2 dictated (OFF), because the estimation of the CPU



Fig. 7: Experiment C - Switching System.

availability of the Edge Server, provided by the Kalman Filter,
along with the network delay for each picture, at that time,
would have provided worse results than local execution. This
setup provided a very precise and robust navigation for the
robot, leading to a very high success rate of the experiments,
reaching a trade off between execution time and trajectory
accuracy.

VII. CONCLUSION

In this study, we introduced a switching offloading mecha-
nism for localization and path planning applications of mobile
robots. The offloading decision for localization is based on
pose uncertainty and the availability of edge resources, while
the offloading decision for path planning depends on the diffi-
culty of the trajectory. The proposed framework achieves more
precise navigation than the case of exclusive local execution of
the applications, without paying the price of slower execution
time such as the case of only remote execution of the algo-
rithms. Also, it is modular and applicable for various scenarios,
applications and objectives under the dynamic robot’s environ-
ment. Our future work will focus on extending the proposed
mechanism, to more sophisticated control algorithms, provide
theoretical guarantees for stability and convergence of the
proposed robot’s dynamics. Furthermore, we plan to develop
more precise estimation, planning algorithms in multi-robot
scenarios and more sophisticated control algorithms in the
co-design setting, that will take into account the available
resources on the infrastructure side.
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