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Abstract—At present, the study of upper limb posture 
recognition is still in the primary stage, due to the diversity of 
the objective environment and the complexity of the human 
body posture, the upper limb posture has no Public dataset. In 
this paper, an upper extremity data acquisition system is 
designed, with a three-channel Data acquisition mode, collect 
acceleration signal and gyroscope signal as sample data. The 
data sets were pre-processed with de-weighting, interpolation, 
and feature extraction. With the goal of recognizing human 
posture, experiments with KNN, logistic regression, and random 
gradient descent algorithms were conducted. In order to verify 
the superiority of each algorithm, the data window was adjusted 
to compare the recognition speed, computation time and 
accuracy of each classifier. For the problem of improving the 
accuracy of human posture recognition, a neural network model 
based on full connectivity is developed. In the process of 
constructing the network model, the effects of different hidden 
layers, activation functions, and optimizers on the recognition 
rate were experimentally for the comparative analysis, the 
softplus activation function with better recognition performance 
and the adagrad optimizer are selected. Finally, by comparing 
the comprehensive recognition accuracy and time efficiency 
with other classification models, the fully connected neural 
network is verified in the human posture Superiority in 
Identification. 
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I. INTRODUCTION 
There are more than 10 million new strokes per year 

worldwide [1], and stroke is still the leading cause of death 
and disability among adults [2]. With the accelerating aging 
of the society and the prevalence of unhealthy lifestyles, 
stroke diseases have shown explosive growth and are getting 
younger. Strokes are characterized by high incidence and 
disability, with World Health Organization data showing that 
strokes have a disability rate of up to 80%. The economic 
burden is 10 times greater than that of myocardial infarction. 
Therefore, prevention and treatment are urgent, and the 
rehabilitation system for patients needs to be improved. 

Stroke patients' recovery of limb function is one of the 
most important aspects of rehabilitation. Such as 
electromyographic feedback therapy, electrical stimulation 
therapy, and motor imagery mental training therapy, while the 
most highly regarded in clinical practice is functional 
electrical Functional Electrical Stimulation (FES). With 
stimulation electrodes worn on the limbs of stroke patients 
consisting of The controller sends out stimulation signals to 
electrically stimulate specific muscles to enable the limb to 
perform various types of functional rehabilitation or to 
perform daily activity, which in turn leads to the recovery of 
limb function. Due to unavailability of specialized data sets, 
what algorithm will be used to analysis the rehabilitation 
equipment data since the process of restoring limb function in 
stroke patients requires specific movements. The use of sensor 
data in the middle for the identification of upper limb postural 
movements in stroke patients is an urgent problem. 

The paper is divided as follows: section 2 presents the 
related work on this field. Section 3 demonstrates the 
methodology. Section 4 shows the results and discusses the 
findings. Finally, section 5 concludes the paper. 

II. BACKGROUND 
The human body posture recognition mode is divided into 

vision-based human body posture recognition and sensor-
based human body posture recognition. The first one mainly 
using support vector machine, hidden Markov and other 
algorithms. The recognition success rate or the efficiency of 
the algorithm is ideal, but it is more environment dependent, 
the conditions are limited, and the sensor used to capture the 
human body posture has the characteristics of small size, high 
sensitivity, and is easy for users to carry. 

Naiusvandi et al. proposed a holistic posture-based 
analysis model [3] that uses the Kinect The sensor acquires the 
data, estimates the joint angle of the human body by inputting 
the depth image and uses a deep convolutional neural network 
model for the joint perspectives for regression, use 
comprehensive training images to simulate different body 
movement tasks and obtain highly generalized learning 
models to achieve higher Attitude prediction rate. In 2019, Xu 



et al. implemented depth information and skeletal tracking 
based on Microsoft Kinectv2 sensors to perform Human 
posture recognition [4], and based on this, human fall 
detection was implemented. First, a Kinect V2 sensor was 
used to process the human joint data generated by the skeletal 
tracker, and then the optimized The BP neural network is used 
for posture recognition and based on this to detect falls. By 
training the neural network using a dataset generated by the 
Kinect tracker, using other body trackers for testing. Finally, 
posture recognition and fall detection were experimentally 
validated and tested in real time over the entire operating range 
of the sensor. The overall accuracy of the NITE tracker used 
for the drop test was experimentally 98.5%, and the worst 
accuracy was 97.3 percent. University Brahem et al. mounted 
an accelerometer on the foot to track and identify foot 
movements [5]. University of Munich Schwarz et al. used a 
MEMS sensor to capture and recognize hand movements, 
which in turn accomplished a medical office doctors' human-
computer operation with a computer [6]. The feedback from 
the sensors effectively reduces the possibility of injury during 
jumping [7]. Lim et al. at Nanyang Technological University, 
Singapore, invented a wearable wireless human arm motion 
capture sensing system [8] that Capturing and recognizing 
human posture using acceleration sensors and bending sensors 
for human-computer interaction in medical applications for 
Stroke patients in recovery training. Wang et al [9] analyzed 
the signal characteristics of accelerometers and gyroscopes on 
representative The feature information is extracted, a DT 
model-based classifier is proposed, and the angle deviation is 
weighted by an improved PCA algorithm. On average, the 
experimental results proved that the average accuracy of the 
pose is other was close to 97.1%, improving the PCA-based 
angular bias method Judgment accuracy. 

In 2018, Cai et al. presented a process analysis and Fisher 
vector based encoded human action recognition framework 
[10], first by applying Procrustes analysis and local retention 
projections, Apply pose based features extracted from 
silhouette images. The distinguishing shape information and 
the local manifold structure of the human pose are preserved 
and remain invariant for translation, rotation, and scaling. 
After the pose features are extracted, a recognition framework 
based on Fisher vector coding and multi-class support vector 
machines is used for the human motion classification, the 
experimental results demonstrated the effectiveness of the 
method. 

III. ALGORITHM 

A. Data Acquisition Equipment 
In this paper, the MPU6050 sensor module that satisfies 

the above characteristics is used as a data acquisition device 
to provide a reliable data source for subsequent research work. 

The MPU6050 is a scalable digital motion sensor that 
integrates a 3-axis MEMS accelerometer and a 3-axis MEMS 
gyroscope. processor, which accurately tracks fast and slow 
movements. The measurement range of the sensor is user-
definable, and the accelerometer can sense ranges of ±2g, ±4g 
±8g and ±16g. The angular velocity can be sensed in the range 
of ±250, ±500, ±1000 and ±2000°/sec (dps). In the data 

acquisition process, the MPU6050 first puts the calculated 
values into registers, and then the microcontroller reads them 
via I2C. 

 
Fig. 1. The data collection device. 

B. Data Pre-processing 
To further process the raw dataset, the dataset was de-

weighted, using the gyroscope data as an example, and the 
waveforms before and after de-weighting are shown in figure 
2. 

 
Fig. 2. Sensor data waveforms before and after weight removal. 

Data sawtooth has been eliminated, but still not smooth 
enough, in order to complete part of the missing value, the 
need to interpolate the data set to get a smoother interpolation 
function, the use of three sample interpolation on the data set 
to deal with the processing of A, B, C three sensors of the 
attitude signal shown in figure 3. 

 

Fig. 3. Waveform diagram after pre-processing of the side lift data. 

C. Feature Extraction and Selection 
The experiments are mainly conducted using time domain 

analysis for feature extraction, with N denoting the number of 
rows of data in a time window and 𝑖 denoting the row of data, 
and the selected variance, range, interquartile range, standard 
deviation and coefficient of variation as features define as 
follows. 
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The simple structure of a fully connected neural network 
is as follows: 



 
Fig. 4. Structural diagram of a fully connected neural network. 

where 𝑎$%  denotes the output of the neuron, where 𝑙 
denotes the number of layers and 𝑖 denotes the neuron number; 
𝑧$%  denotes the output of the inactivated neuron, where 𝑙 
denotes the number of layers and 𝑖 denotes the neuron number; 
and 𝑤$&%  denotes the weighting factor of the neuron. 

The formula for each parameter is as follows: 

𝑧$% = 𝑤$&% 𝑎$%'( + 𝑏$%                                      (6) 
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                         (9) 
where 𝑏$% denotes the bias coefficient and 𝜎(𝑧$%) denotes 

the activation function of the fully connected neural network, 
𝑊 is the weighting factor matrix, 𝑎 is the learning rate. 

The experimental posture recognition scheme based on a 
fully connected neural network is shown in the following 
figure: 

 
Fig. 5. Posture recognition schemes for fully connected neural networks. 

Hot codes is performed on the labels of the posture dataset 
to convert the label variables into a form that the neural 
network can easily exploit to model operational efficiency as 
well as the nonlinear capabilities of the model. 

A fully connected neural network model is constructed. 
The fully connected network model constructed in this paper 
consists of four components. The first one is the input layer 
module, which is responsible for inputting the format of the 
posture data and the initialization task of neuron parameters at 
each layer during the first execution, setting the for each 
reading of a set of 1590 × 6 pose matrix data. The hidden layer 
module consists of a hidden layer containing 30 neurons, the 
number of layers is determined by comparing the recognition 
rate, and is responsible for the upper layer neurons' The output 
data are weighted and summed, and the activation function is 
used to generate the input values from the lower layer neurons. 
The output layer module is responsible for obtaining the 
predicted probability values for the six postures from the 
incoming data from the upper layer neurons. The tuning 

module is responsible for calculating the activation value for 
each neuron, the loss of each layer based on the activation 
value, and the parameter gradient from the output the layers 
start to make parameter adjustments going forward. 

The posture dataset is trained by the above method to 
derive the final recognition model. 

IV. EXPERIMENT 
In order to verify the effectiveness of the fully connected 

neural network model for human posture recognition, this 
section takes the six human posture data collected above as an 
example and performs experimental validation. 

The experimental dataset contains the six classical 
postures of forward flattening, lateral flattening, upward 
elbow bending, bent elbow backward, wrist upward bending 
and horizontal elbow flexion MEMS sensor signals, in order 
for the pose dataset to be applied to the neural network model, 
the dataset needs to be pre-processed first. Since the 
completion time required for various postures varies, the 
length of the sensor signals collected for the posture samples 
is inconsistent, so as not to Losing the original information of 
the attitude requires adding the original signal data to make 
the data window consistent. Before performing the 
experiments, this paper starts with a procedure to find the 
longest pose sample for the pre-lift, with a completion time of 
5.3 seconds, and to add all the sensor data through three 
sample interpolation for the data set plus windows, 
interpolation is complete, splicing three sensor data, so that 
each attitude The data sample then becomes 1590*6 in the 
form of a two-dimensional matrix. When solving multi-
classification problems using neural networks, the labels need 
to be digitized and the digitized class labels converted to 
binary matrix representation, such an operation is called 
creating dummy variables (one hot encoding) from categorical 
variables to As an example, the anterior flattened pose data 
used in this paper is transformed into the following labels: [0, 
1, 0, 0, 0, 0]. 

TABLE I.  IDENTIFICATION RESULTS FOR DIFFERENT NUMBER OF 
HIDDEN LAYERS 

Number 
of hidden 

layers 

Average 
recognition 

rate 

Time 
(seconds) 

1 91.27% 14.576 
2 81.34% 18.743 
3 94.08% 20.492 
4 84.18% 26.533 
5 89.87% 23.33 
6 79.41% 31.106 

TABLE II.  IDENTIFICATION RESULTS FOR DIFFERENT ACTIVATION 
FUNCTIONS 

Activation 

Function 
Relu Softplus Sigmoid Tanh Softsign 

Average 

Accuracy 91.31% 93.07% 37.84% 81.96% 90.33% 

 

In order to study the effect of the number of hidden layers 
on the recognition accuracy and recognition efficiency, this 



paper investigates the recognition accuracy of hidden layers 1 
to 6 and the time taken, the number of neurons were all 30, 
and the judgment index was the recognition accuracy. The 
comparison results are shown in Table 1. 

TABLE III.  IDENTIFICATION RESULTS OF DIFFERENT OPTIMIZERS 

Optimizer adam rmsprop sgd adadelta adagrad adamax 

Average 

Accuracy 
94.25% 96.01% 13.07% 93.17% 97.19% 94.35% 

 To summarize the above comparative experiments, the 
fully connected neural network selected a 3-layer hidden layer 
structure with an activation function of softplus as well as an 
adaptive gradient descent optimizer. And three ten-fold cross-
validation to take the mean value, the recognition rate of each 
algorithm and the calculation of the duration as follows. 

 
Fig. 6. Accuracy and computation time of each algorithm. 

 Known datasets without feature extraction retain good 
pose information, and the KNN model has a very good handle 
on such pose datasets. Good recognition performance (KNN-
NFE) with up to 98% recognition accuracy. However, due to 
the large sensor signal data, the resulting computation time is 
costly and takes as much as 1 second. In contrast, the 
calculation time of KNN classifier after feature extraction has 
been shortened by an order of magnitude and improved 
greatly, but due to the pose information was incomplete and 
the average recognition rate dropped to 94%. The logistic 
regression model outperformed the stochastic gradient descent 
SGD using a linear support vector machine classifier in terms 
of recognition rate and computation time. classifier, the 
recognition rate is also improved compared to the feature-
extracted KNN model. In addition, the fully connected neural 
network model has a similar recognition rate and takes less 
time to compute than the KNN-NFE, which has the highest 
recognition rate. Therefore, combining the recognition 
accuracy and time efficiency, fully connected neural networks 
still have some superiority in pose recognition. 

V. CONCLUSION 
 In order to identify human posture, this paper starts with 
building a posture data acquisition platform, and collects 6 of 
them in a three-channel data acquisition mode. MEMS sensor 
signal data for the classical attitude in the medium. Then, pre-
processing such as de-weighting and triple sample bar 
interpolation was applied to the acquired data set, and time 
domain analysis was applied from the sensor signal Features 
useful for posture recognition are extracted. Subsequently, 

KNN, logistic regression, random gradient descent was 
performed using an experimentally validated classification 
model with the goal of recognizing human posture 
Experiments of the algorithms. To verify the superiority of 
each algorithm, the data window was adjusted to compare the 
recognition speed, computation duration, and accuracy of 
each classifier. In order to improve the accuracy of human 
posture recognition, a fully connected neural network-based 
model is established. In the process of constructing the 
network model, this paper investigates different activation 
functions and optimizers, and after experimental comparative 
analysis, it selects the recognition better-performing softplus 
activation function as well as adagrad optimizer. Finally, by 
comparing the combined recognition accuracy and time 
efficiency with other classification models, the adjusted fully 
connected neural model in human It is more effective and 
superior in posture recognition. 
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