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More Behind Your Electricity Bill: a Dual-DNN
Approach to Non-Intrusive Load Monitoring

Yu Zhang, Guoming Tang, Qianyi Huang, Yi Wang, Hong Xu

Abstract—Non-intrusive load monitoring (NILM) is a well-
known single-channel blind source separation problem that aims
to decompose the household energy consumption into itemised
energy usage of individual appliances. In this way, considerable
energy savings could be achieved by enhancing household’s
awareness of energy usage. Recent investigations have shown that
deep neural networks (DNNs) based approaches are promising
for the NILM task. Nevertheless, they normally ignore the
inherent properties of appliance operations in the network design,
potentially leading to implausible results. We are thus motivated
to develop the dual Deep Neural Networks (dual-DNN), which
aims to i) take advantage of DNNs’ learning capability of latent
features and ii) empower the DNN architecture with identification
ability of universal properties. Specifically in the design of dual-
DNN, we adopt one subnetwork to measure power ratings of
different appliances’ operation states, and the other subnetwork
to identify the running states of target appliances. The final
result is then obtained by multiplying these two network outputs
and meanwhile considering the multi-state property of household
appliances. To enforce the sparsity property in appliance’s
state operating, we employ median filtering and hard gating
mechanisms to the subnetwork for state identification. Compared
with the state-of-the-art NILM methods, our dual-DNN approach
demonstrates a 21.67% performance improvement in average on
two public benchmark datasets.

Index Terms—Non-intrusive load monitoring, energy break-
down, deep neural networks, multi-task DNN

I. INTRODUCTION

According to the statistic from UN, residential and commer-
cial buildings consume almost 60% of the world electricity [1].
In the United States, particularly, more than 70% of the na-
tional electricity is consumed by the building sector [2]. Mean-
while, with the explosion of high-rise building construction
along with the worldwide urbanization, the building energy
consumption continues increasing dramatically. Hence, energy
saving in buildings is of vital importance to the reduction of
overall energy consumption.

Effective and efficient energy saving in buildings can be
achieved through real-time power monitoring of the end-
use appliances. On the one hand, with appliances’ energy
consumption information in real-time, households could learn
more about where their power are draining, and thus engage
in sustainable energy usage campaigns more actively. It has
been demonstrated that the fine-grained power consumption
feedback of individual appliances could stimulate households
to save 5%∼15% energy usage [3]. On the other hand, the
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Mains Meter

Fig. 1. Power readings of a whole household and two appliances based on a
real-world dataset. The pie chart illustrates the energy disaggregation results
of the household appliances.

disaggregated energy consumption of household appliances
could be leveraged to provide references for various power
management strategies [4]. For example, in demand-side man-
agement programs, with real-time information of disaggre-
gated power, utilities are able to target particular appliances
(e.g., air conditioners and fridges) and suggest them to turn off
or switch to energy saving modes, to shave the overall power
demand in peak hours [4].

Nevertheless, current power meters are incapable to reveal
any fine-grained information but merely report the whole-
building energy consumption. To install sensors (like smart
plugs) for each sub-meter or appliance is financially prohib-
ited, e.g., it may cost up to $500 per house for individual
sub-metering [5]. This triggers the demand of computational
techniques to infer the appliance-specific energy consumption
from only the mains power reading, which is referred to as
non-intrusive load monitoring (NILM) [6]. The most promi-
nent advantage of this technique is that it can be easily adopted
in existing buildings without introducing any inconvenience to
households, namely being non-intrusive. However, as NILM
is essentially a single-channel blind source separation (BSS)
problem, i.e., to extract separated power readings of individual
appliances from the single aggregated signals (as illustrated
in Fig. 1), it is inherently unidentifiable and theoretically
intractable [7].

Recently, it has been shown that the single-channel BSS
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problem can be tackled by using sequence-to-sequence
(seq2seq) learning with deep neural networks [8], [9]. In
particular, both deep convolutional (CNN) and recurrent neural
networks (RNN) have been applied to the NILM problem [10],
[7], among which the CNN architecture performs better.
Specifically, the CNN structure in [7] is demonstrated to be
able to automatically learn instrumental features in energy
disaggregation, resulting in a significant (up to 83%) reduction
rate of the estimation error. Although with decent performance,
most approaches do not exploit the inherent state switching
property of electric devices, and thus are not guaranteed to
identify the actual operation status of end-use appliances (refer
to § VI for detailed demonstrations).

Based on our observations of modern appliances’ power
usage (see snippets of several household appliances in Fig. 2),
there are two common properties in their operations. We name
the first one as multi-state property: although with some
transients, the power readings of appliances are usually stable
at several values, each corresponding to the power rate of
one operation state. The other property from our observation
is sparsity property: at most of the time, an appliance
works under the “stand-by” mode, and infrequently it switches
between operation states. In other words, it is impractical
for most appliances to change states frequently in a short
time interval. Thus their energy consumption is largely piece-
wise constant over the time. However, few DNN based NILM
algorithms took these important and universal properties into
consideration, to say nothing of incorporating them in the
network modelling. Instead, they expected that the deep neural
networks could automatically learn everything (including the
above properties) from scratch, which proves to be largely
inefficient and sometimes impossible. Based on our analysis
in § II, DNNs are normally effective in learning the latent
features which cannot be explicitly formulated (which is also
the key to DNN’s success in solving general machine learning
problems), whereas for the NILM problem they are insufficient
in ensuring those universal features of appliances’ operations.

To address the aforementioned challenges, we borrow the
idea from the multi-task neural networks and propose a dual-
DNN approach to the NILM problem, by adopting one DNN
for estimating power ratings of individual appliances with
multiple operation modes, and the other one for identifying
the correct operation states of corresponding appliances. The
outputs from the dual-DNN are thus formed by multiplying the
estimated power ratings with corresponding identified states.
Specifically, the dual-DNN approach leverages the multi-state
property to breakdown the whole regression task into two
subtasks, i.e., the power estimated task and state identifica-
tion task, and guarantees the sparsity property of appliance
operation through median filtering.

As the major contribution of this work, we make the first
step to incorporate universal properties in appliance operations
with the design of NILM algorithms and present a novel
dual-DNN approach to the NILM problem. The dual-DNN
approach tailored for NILM is capable to ensure unique
appliance-specific properties and thus could further improve
the energy disaggregation performance. We also investigate
several variants of the proposed model that exploit both
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Fig. 2. Several household appliances’ operation frequency during one week.

median filtering and hard gating mechanisms, which are more
compliant with the practical settings. Compared with the state-
of-the-art NILM methods, our dual-DNN approach shows
24.61% and 27.89% performance improvements in average on
the REDD and UK-DALE datasets, respectively.

The rest of this paper is organized as follows. § II introduces
how we investigate the two universal properties from modern
appliances’ operations. § III shows the basic formulation of
NILM problem and sequence-to-sequence learning. In § IV,
we formally present the general framework and detailed design
of the dual-DNN approach, and then present three of its
variants in § V. The implementations of this algorithm on real-
world datasets and performance evaluations are shown in § VI.
§ VII reviews the related work for NILM and § VIII concludes
the paper.

II. OBSERVATION AND INSPIRATION

In this section, we show our observations on two general
properties from modern appliances’ operations and give our
insights on why and how to leverage them in solving the NILM
problem with a novel dual-DNN model.

A. Observations from appliance operations

1) Multi-State Property: A universal property we have
observed for most household appliances is their multi-state
operation. Based on Fig. 3, we find that typical household
appliances, such as the fridge and dish washer, usually have
multiple operation states, each of which corresponds to a
different power rate. Normally, the multi-state appliances only
work under one specific mode at any given time. Therefore,
despite of some transient impulses, the power readings of an
individual appliance would always be equal or approximate
to the power rate of corresponding operation mode. In other
words, with the power rate information of a multi-state appli-
ance, by identifying its current state, we can readily estimate
the appliance’s power consumption in real-time.

2) Sparsity Property: This property refers to the sparsity
in both operation and variation of household appliances. On
the one hand, appliances such as microwave and dish washer
mostly operate in its OFF state (as illustrated in Fig. 2).
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Fig. 3. Snippets of four typical household appliances in the REDD dataset.
The different operation states of (a) the dish washer and (b) the fridge are
annotated above the curves, respectively.

Particularly, the stand-by state could take up to 95% of the
whole appliances’ working time. This implies that only a
small number of appliances are under the ON state across the
building, demonstrating the operation sparsity of household
appliances in the spatial dimension. On the other hand, for
one specific appliance, although any of its state transitions is
possible, it is rare to switch modes frequently in a short time
interval. For example, as the real-world trace data shown in
Fig. 3(c) and Fig. 3(d), initially at the stand-by mode, the
appliances first switch to their active modes and operate in
these states for several sampling intervals, then return to the
OFF state and stay there for a certain period of time. Thus,
we can infer the operation (i.e., state switching) sparsity of
appliances in the temporal dimension. Generally speaking,
a majority of the household appliances continuously stay at
the stand-by mode, with each infrequently switching between
its multiple states and resulting in piece-wise constant power
readings over the time.

B. Inspirations for dual-DNN

In light of the multi-state property, we develop a dual-DNN
framework in tackling NILM: one power estimation neural
network to specifically measure power readings of different
states of appliances, and the other state classification neural
network to explicitly identify the current appliance’s operating
state. The dual-DNN framework virtually follows the multi-
task DNN principles while it is tailored in this work for the
specific purpose of energy disaggregation (ED)1.

To leverage the sparsity property, we further enforce a me-
dian filtering mechanism into the proposed dual-DNN frame-
work, specifically in the state classification neural network
to encourage the continuity of appliance states as well as
(switching) operation sparsity.

1The NILM task is also well known as energy disaggregation or ED, and
we interchangeably use the two terms in this paper.

C. Rationale behind dual-DNN

As we have mentioned, the DNN was demonstrated to
be able to automatically learn instrumental features for ED,
including change points, typical durations and power demands
of appliances [7], all of which contribute to the performance
improvements in DNN based NILM algorithms. Thus, we may
assume that the DNN is capable to automatically learn the
aforementioned properties during model training, and thus to
enforce the aforementioned properties into our model seems
unnecessary. In tackling the NILM task in practice, however,
things get much more complicated and the above assumption
turns to be problematic.

As a matter of fact, deep neural networks are promising
for the ability to extract latent features, which might be
the appliance-specific features or household specialized usage
patterns in NILM. Such hidden features cannot be explicitly
formulated in any equations, so the only way to obtain them is
through the way of deep learning. Nevertheless, household ap-
pliances also possess some general practical features, namely
the aforementioned multi-state property and sparsity property.
For one thing, there is no need to extract these appliance-
general features through deep neural networks, as we have
already learnt them as empirical knowledge in practice; for
another, the performance of DNNs on learning such common
features is not guaranteed, according to the results of previous
DNN based NILM algorithms.

Therefore, we develop the dual-DNN approach, which is
expected to automatically learn the latent features while ex-
plicitly ensure the general features (university properties) from
the appliance operations.

III. PRELIMINARY

A. Problem formulation of NILM

The goal of non-intrusive load monitoring is to recover the
energy consumption of individual appliances from the mains
readings which measure the aggregated energy consumption
of the whole household. Given the aggregated power con-
sumption for time T periods as X = (x1, x2, ..., xT ), where
xt ∈ R+. Let Y i = (yi1, y

i
2, ..., y

i
T ) where yit ∈ R+ denote the

power readings of i-th appliance. Therefore, at each time t, xt
is assumed to be the sum of several individual power readings,
plus a Gaussian noise εt with zero mean and variance σ2,
which is formulated as follows:

xt =
∑
i

yit + εt (1)

Suppose that we are only interested in the top I appliances,
i.e., the ones that consume the most energy and are widely
used in most of households. Then, other (unknown or low-
power) appliances’ energy consumption can be represented as
U = (u1, u2, ..., uT ), and Eq. (1) can be updated as:

xt =

I∑
i

yit + ut + εt (2)

The NILM problem is thus formulated to extract power
readings of individual appliances from the mains readings, i.e.,
to infer Y 1, Y 2, ..., Y I from X .
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B. Seq2seq learning for NILM

The so-called sequence-to-sequence (seq2seq) learning ap-
proach in energy disaggregation is referred to as learning a
nonlinear regression between the sequence of mains readings
and the sequence of a specific appliance’s power readings at
the same time instances [10], [7], [11]. Both CNN and RNN
architectures have been employed for the seq2seq learning in
NILM.

To be specific, seq2seq architectures define a neural network
f ipower that maps a partial sequence x̃t,s = (xt, ..., xt+s−1) of
the mains readings (as input) to the corresponding window
ỹit,s = (yit, ..., y

i
t+s−1) of an individual appliance’s power

readings (as output). In addition, the input sequences are
generally padded with two additional windows of length w at
the beginning and the end, respectively, to fully leverage the
context information. Therefore, the input sequence is further
modified as x̃t,s,w = (xt−w, ..., xt+s+w−1), and the power
estimation model for each individual appliance can be denoted
as f ipower : Rs+2w

+ → Rt
+ in the seq2seq learning.

IV. DESIGN OF DUAL-DNN

Recently, it has been shown in recent literature that deep
neural networks are able to automatically detect specific
appliance features and thus achieve better energy disag-
gregation performance than the optimization based NILM
approaches [10], [7], [11]. However, previous DNN based
approaches did not take the appliance inherent state properties
into consideration and thus yielded impractical state estima-
tions for appliances, as introduced in § II.

A. Framework

To better leverage the multi-state and sparsity properties
of appliance operations, we propose the dual deep neural
networks (dual-DNN) that are tailored to perform NILM.
Specifically, we first decompose a multi-state appliance into
several virtual devices with just two states of “ON” and
“OFF”. Then, the sigmoid cross entropy loss is used to
ensure that only one virtual device could operate at each time
instant. By doing this, we are able to convert the one-at-a-time
constraint to a classification problem.

The design of the dual-DNN framework is illustrated in
Fig. 4. As we can see, this framework combines two DNNs:
i) the power estimation subnetwork that aims to measure
the power ratings of appliance in different operation states,
and ii) the state classification subnetwork that is responsible
for identifying the ON/OFF states of the decomposed virtual
devices.

B. Theoretical basis

We then introduce the detailed design and theoretical basis
of the dual-DNN model.

1) Left DNN Design: For the left DNN in Fig. 4, the
power estimation subnetwork performs to learn a nonlinear
regression between the sequence of the main power readings
x̃t and the appliance power readings in different states p̃i.
Supposing that the i-th appliance has li states (include the OFF

Power Estimation Subnetwork State Classification Subnetwork

tx

i

ty

ip i

to

Fully Connected Layer

Fully Connected Layer

Conv Layer4

Conv Layer1

Fully Connected Layer

Fully Connected Layer

Conv Layer4

Conv Layer1

……

Fig. 4. Framework of the dual-DNN approach to NILM.

state), the power ratings of this appliance can be represented as
p̃i = [pi1, ..., p

i
li
], i = 1, ..., I . As mentioned before, we further

expand the input sequence with fixed windows of length w
on both end sides. Therefore, for each time instant t, given
a fixed sequence length s, the power estimation subnetwork
uses the main power sequence x̃t,s,w = [xt−w, ..., xt+s+w−1]
as the input and then estimates appliance power ratings
p̃i = [pi1, ..., p

i
li
] as the output. Overall, the appliance power

estimation part can be modelled as f ipower : Rs+2w
+ → Rli

+.
Note that in spite of the input sequence length, the length
of output sequence is fixed as it represents the predefined
operation modes of a specific appliance. Hence, the power
regression model of an individual appliance can be formulated
as:

f ipower(x̃t) = p̃i (3)

2) Right DNN Design: For the right DNN in Fig. 4,
the state classification subnetwork serves as the choosing
unit for the main estimation task, in light of the inherent
state property of household appliances. For appliance i, let
oit(j) ∈ {0, 1}, j = 1, .., li, denotes the ON/OFF state of a
decomposed virtual appliance j at time t, and:

oit(j) =

{
1, if yit = pij ,

0, otherwise.
(4)

Same as the power estimation subnetwork, we utilize x̃t,s,w =
[xt−w, · · · , xt+s+w−1] as the input sequence. However, unlike
the fixed output length in power estimation subnetwork, the
length of output sequences in state classification subnetwork
largely depends on the sequence length s, since it aims
to predict which virtual device would be active at time t.
The virtual ON/OFF state sequence could be denoted as
õt,s,j = (ot(1), · · · , ot(lj), · · · , ot+s−1(l), · · · , ot+s−1(lj)).
Hence, the ON/OFF state subnetwork could be defined as
f iON : Rs+2w

+ → {0, 1}s∗li and the mapping model is:

f iON(x̃t) = õit (5)

Here the state identification subnetwork is indeed a classifi-
cation model, with oit(j) denoting the probability that virtual
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appliance j is at ON state at time t. With Eq. (3) and Eq. (5),
we then can obtain the final output of the dual-DNN by:

f ioutput = f ipower(x̃t)⊗ f iON(x̃t) (6)

where f ioutput(t) is the output of dual-DNN at time t, and ⊗
represents the matrix multiplication.

3) Loss Functions Design: With the above design, natu-
rally, the loss function of the dual-DNN architecture can be
formulated as follows:

Li
output =

1

T

T∑
t=1

(yit − õitp̃i)2 (7a)

Li
power =

1

li

li∑
j=1

(pij − p̃ij)2 (7b)

Li
ON = − 1

T

T∑
t=1

li∑
j=1

oit(j) log õ
i
t(j) (7c)

Note that the power estimation subnetwork and the whole
dual-DNN both aim to estimate the power consumption metric,
so the mean squared error (MSE) loss is used in both loss
functions Li

power and Li
output. Meanwhile, the state identification

subnetwork is responsible to learn the running state of each
(virtual) appliance, namely to identify whether the appliance
is currently at ON or OFF state, and therefore Li

ON is indeed
the sigmoid cross entropy loss.

For the whole dual-DNN architecture, we leverage the sum
of the overall network loss and the state classification network
loss for joint optimization, and thus define the whole loss
function as:

L = Li
output + Li

ON (8)

Note that the cross entropy loss term Li
on is of vital importance

to the whole loss function as it not only explicitly reflects
the state classification error, but also guarantee an appliance
operation rule that household appliances can only operate
in one mode at any given time. Hence, only through joint
optimization can we obtain accurate and practical ED results.

V. VARIANTS OF DUAL-DNN

In this section, we further modify our approach by enforcing
the sparsity property to the dual-DNN and propose several
variants, which are expected to enhance the performance of
original model on energy disaggregation.

A. Median dual-DNN

Based on the sparsity property of appliance operations, it is
not realistic for home appliances to changes states at each time
instance. Therefore, we propose to employ the median filter-
ing, which is commonly employed in image processing to filter
out pepper noise [12]. Specifically, we perform the median
filtering operation for the outputs from the state classification
subnetwork (i.e., right DNN of the dual-DNN). Without loss of
generality, we consider a particular appliance with two states:
s1 and s2, and we do not expect the transition between these
two states occurring frequently in short intervals, namely its
power readings are expected to be piece-wise constant over the

TABLE I
APPLIANCE PARAMETERS FOR THE EXPERIMENTS. POWER UNIT IS WATT.

Kettle Micro
wave Fridge Dish

Washer
Washing
Machine

Window
Length

REDD - 864 864 864 864
UK-

DALE 432 432 432 432 432

State
Number

REDD - 3 4 4 3
UK-

DALE 3 3 4 3 4

Power Mean 700 500 200 700 400
Standard Deviation 1000 800 400 1000 700

time. With ot denoting the estimated appliance state at time
instance t, the median filtering is applied as follows:

ot−L =

{
s1, if ot−L = s2 and med(ot, ..., ot−L) = s1

s2, if ot−L = s1 and med(ot, ..., ot−L) = s2
(9)

B. Hard dual-DNN

From another viewpoint, the outputs of state identification
subnetwork are essentially the probabilities of virtual appli-
ances at ON/OFF states. Therefore, instead of multiplying
the estimated power ratings with the probability outputs, it is
intuitive to multiply the power ratings by 1 or 0 (i.e., the ON or
OFF state). This kind of “hard gating” seems more compliant
to the practical appliance operation. In implementation, the
hard gating goal can be achieved simply by replacing the
greatest probability as 1 and other smaller probabilities as
0. A condition function for hard gating can be formulated
accordingly:

h(x) =

{
1, if x is the greatest probability
0, otherwise

(10)

Then the final output, given by Eq. (6), can be updated by:

f ioutput = f ipower(x̃t)⊗ h(f iON(x̃t)) (11)

Specifically, we employ the gumbel softmax2 to convert prob-
abilities to one-hot codes, while ensuring the derivability of
networks.

Furthermore, we also consider dual-DNN with both hard
gating and median filtering, i.e., first modify the original
outputs with hard gating function h(x), and then filter out
implausible impulses through median filtering. Accordingly,
we name such a variant as hard median dual-DNN.

VI. EXPERIMENTS

A. Datasets

We evaluate the proposed dual-DNN for NILM tasks on
two public datasets, namely REDD [14] and UK-DALE [15]
datasets, both of which contain not only the aggregate power
consumption but also the individual appliance power readings.

2Gumbel softmax technique is based on Gumbel-Softmax distribution that
is smooth and has a well-defined gradient. In this way, the discrete one-hot-
encoded categorical distributions can be further replaced by gumbel softmax
samples to compute gradients [13].
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Fig. 5. Detailed architecture of Dual-DNN implemented in experiments for UK-DALE dataset.

REDD dataset: The REDD dataset contains power se-
quence data for six US houses, with 1 Hz sampling frequency
for mains meter and 3 Hz for 10−25 types of appliances meter.
Since there is no kettle data, we only consider microwave,
fridge, dish washer and washing machine, as these appliances
are normally used in previous work [16], [10], [7], [11]. In this
way, we can compare our performance with existing solutions.

UK-DALE dataset: In UK-DALE, the mains readings were
recorded every 1 second and appliances power readings were
recorded every 6 seconds from November 2012 to January
2015. This dataset contains aggregate power consumption and
measurements of 4 − 54 appliances from five UK houses. In
this paper we also focus on kettle, microwave, fridge, dish
washer and washing machine for the same reason mentioned
above.

B. Data preprocessing

Filling: After inspection, we find that it is not uncommon to
see chunks of missing values, range from seconds to minutes,
in mains and appliances power readings, possibly due to
switched-off sensors or dead batteries. Therefore, for gaps
shorter than 3 minutes, they are filled by the backward filling
method, and for gaps longer than 3 minutes, they are assumed
to be due to the appliance and meter being switched off and
thus are filled with zeros.

Normalization: For both REDD and UK-DALE data, the
aggregate power consumptions and individual appliances’
power consumptions are preprocessed by subtracting the mean
values and dividing by the standard deviations. The mean and
standard deviation values of individual appliances are given in
Table I, both of which are obtained via statistical analysis in
NILMTK [17]. After normalization, this data can be fed into
DNN models for training.

State identification: A rough knowledge of appliance op-
eration modes, i.e., the number of states for each appliance,
is required to build the dual-DNN. This information can be
obtained from appliances’ power readings in training datasets
through k-means clustering or a simple visual detection. In
this paper, we leverage k-means clustering to determine the
state information of selected appliances in REDD and UK-
DALE datasets. Moreover, in order to save clustering time
and enhance accuracy, we first use 15 watts as the ON state
threshold, and merely cluster power rating that are larger than
this threshold. The state information will be utilized in the last
fully connected (FC) layers of both subnetworks to regulate
the length of network outputs (refer to FC Layer2 in Fig. 5).

In real world, such state information can be readily acquired
from user manuals of household appliances.

C. Networks training

As benchmarks, the performance of Factorial Hidden
Markov Models (FHMM) [18], [16], denoising autoencoder
(DAE) [10] and Seq2Point [7] (a variant of Seq2Seq)
are evaluated. We implement the above benchmarks with
NILMTK [17], an open toolkit for analysis on non-intrusive
load monitoring. As the most relevant work to ours, SGNN is
also implemented according to the architectures and training
details in [11].

The detailed dual-DNN structure is shown in Fig. 5,
which adopts convolutional neural network (CNN) as basic
architecture for each subnetwork, as empirical studies have
demonstrated that CNNs outperform RNNs in NILM [10]. Our
network has the following hyperparameters: the batch size is
16, the leaning rate is 1.0 ∗ 10−3, and the number of epoch is
10. The dual-DNN model is trained on Tesla T4 with 16GB
of RAM using Pytorch. For evaluation, we leverage the last
week data of each dataset for testing and the data before last
week as the training set.

As shown in Fig. 5, the input sequence length for both power
estimation subnetwork and state classification subnetwork is
432 for UK-DALE dataset, which is made up of partial
sequence s = 32 and additional window w = 200 on both
sides. The only difference in subnetwork structure is the
number of neurons in the last fully connected layer, which is
li for the power estimation subnetwork and 32∗ li for the state
classification subnetwork. Then, we further reshape the outputs
of these two subnetworks and conduct matrix multiplication
to obtain the final output. The input window lenth of REDD
dataset is 864, with partial sequence s = 64 and additional
window w = 400. The input mains sequence for both REDD
and UK-DALE datasets is of 43.2 minutes and the output
sequence is 3.2 minutes as in the previous work [11].

D. Evaluation metrics

We apply the mean absolute error (MAE) and signal ag-
gregate error (SAE) to evaluate the performance of different
approaches, both of which are commonly used metrics for
NILM approaches. Denoting yit as the ground truth and ỹit as
the estimated power consumption for appliance i at time t, the
MAE for appliance i can be defined as:

MAEi =
1

T

T∑
t=1

∣∣yit − ỹit∣∣ (12)
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TABLE II
EXPERIMENT RESULTS ON UK-DALE AND REDD DATASETS, RESPECTIVELY, WITH BEST RESULTS HIGHLIGHTED IN BOLD.

Metric Model UK-DALE REDD
AVG

ImproveKettle Fridge Microwave Dish
Washer

Washing
Machine Fridge Microwave Dish

Washer
Washing
Machine

MAE

FHMM 38.44 60.93 47.83 48.25 66.94 78.67 87.00 98.30 86.24 -
DAE 22.52 26.72 19.47 29.44 18.35 56.82 25.47 29.38 36.25 -

Seq2Point 13.43 16.77 10.61 27.42 14.55 20.89 17.61 27.70 22.67 -
SGNN 11.07 16.71 9.87 23.16 12.31 22.86 15.98 14.97 18.24 0.00%

Dual-DNN 17.60 17.67 12.15 17.31 13.11 18.47 13.24 17.20 18.57 -1.03%
Median Dual-DNN 9.05 19.72 11.84 17.04 13.16 16.72 14.18 18.08 19.22 4.24%

Hard Dual-DNN 8.56 14.55 10.89 14.18 12.46 12.26 10.15 16.84 18.66 18.34%
Hard Median Dual-DNN 8.80 18.30 11.67 13.40 11.49 10.89 12.67 16.40 17.49 16.57%

SAE

FHMM 1.85 0.98 1.04 2.50 5.50 1.46 1.35 0.98 4.50 -
DAE 1.35 0.77 1.14 1.98 3.83 1.06 1.04 0.78 2.84 -

Seq2Point 1.21 0.56 0.69 1.59 2.45 0.89 0.86 0.65 1.35 -
SGNN 0.99 0.52 0.70 0.78 2.28 0.62 0.70 0.45 0.83 0.00%

Dual-DNN 0.86 0.50 0.78 0.98 2.66 0.73 0.78 0.72 0.85 -12.64%
Median Dual-DNN 0.94 0.47 0.77 0.92 2.05 0.54 0.77 0.57 0.83 0.76%

Hard Dual-DNN 0.77 0.37 0.65 0.83 1.45 0.45 0.62 0.35 0.66 21.82%
Hard Median Dual-DNN 0.78 0.36 0.59 0.79 1.28 0.39 0.57 0.33 0.67 26.77%

We utilize the normalised signal aggregate error (SAE) to
evaluate the aggregate estimation error over a certain period of
time. Let ri and r̃i represent the ground truth and inferred total
energy consumption of appliance i in the total time period.
Thus, the SAE can be formulated as:

SAEi =

∣∣r̃i − ri∣∣
ri

(13)

A method could be accurate enough to estimate the daily
appliance energy consumption (i.e., high SAE) yet may fail to
achieve per-timestep prediction (i.e., low MAE). Hence, only
by jointly considering MAE and SAE can we find the most
practical NILM approach.

E. Experiment results

1) Overall Results: Table II demonstrates the performance
of benchmarks and our dual-DNN approach on REDD and
UK-DALE datasets, respectively. The bold numbers denotes
the best ED algorithms, which show that dual-DNN has
surpassed the state-of-the-art performance in most cases.
Specifically, our hard median dual-DNN reduces MAE by up
to 16.57% and SAE by up to 26.77%, with improvements
for 8 out of 9 cases in MAE and all 9 cases in SAE,
respectively. On average, hard dual-DNN and hard median
dual-DNN demonstrate approximately 16%-27% reduction in
errors compared with the best of previous works. Median
dual-DNN tends to perform worse than hard dual-DNN but
still slightly outperforms the state-of-the-arts, and significant
error deduction could be achieved by hard median dual-DNN.
Therefore, in reality, we can choose from hard dual-DNN or
hard median dual-DNN based on the appliance types.

2) Detailed Results: Figure. 6 shows three examples of
the proposed dual-DNN, median dual-DNN (MDDNN in the
figure) and hard median dual-DNN (HMDNN in the figure). In
the case of fridge, median filtering mainly works for filtering
out the noises at the beginning of operation and hard gating
mechanism helps to regulate the power estimation, i.e., to
avoid the influence of higher power states. In the case of
microwave, median filtering again takes the responsibility to
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Fig. 6. Disaggregation results of the fridge, microwave and dish washer, re-
spectively, in which “MDDNN” stands for median dual-DNN and “HMDNN”
stands for hard median dual-DNN.

make sure power signals piece-wise constant over time. In
the case of dish washer, all three algorithms demonstrate
satisfied performance in estimating power consumption of
dish washer during this activation. Based on our observation,
we find that the state identification subnetwork in dual-DNN
is capable to learn features that indicate appliances’ states,
and thus succeeds in estimating typical operation durations of
appliances. Meanwhile, the power estimation subnetwork does
its job of estimating the power rate information of a multi-state
appliance.

3) Deep Dive: Seemingly, a pure dual-DNN (without me-
dian filtering and hard gating) performs worse than SGNN on
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average. Thus, we extend our experiments to further investi-
gate the effectiveness of dual-DNN framework. Specifically,
we implement a SGNN variant by introducing both median
filtering and hard gating mechanism, and perform comparison
experiments among the SGNN, the SGNN variant and the
dual-DNN variant. For fast validation purpose, we only use
one-house load data from UK-DALE and REDD, respec-
tively. The results from new experiments are summarized in
Table. III, from which we find that: i) the SGNN variant
outperforms the original SGNN with a ∼18% performance
improvement (12.50% for MAE and 22.67% for SAE, re-
spectively), and ii) our approach (dual-DNN with median
filtering and hard gating) outperforms the SGNN variant by
∼11% (8.32% for MAE and 13.12% for SAE, respectively).
Therefore, we can conclude that the strength of our approach
indeed comes from two factors: the dual-DNN block, and
the median filtering and hard gating block. The former is
designed to extract appliances’ latent features through deep
neural networks, and the latter part is designed to enforce the
general features in appliances’ operations. The experimental
results also verified that, only through the combination of
the two parts can we achieve plausible and accurate energy
disaggregation results.

VII. RELATED WORK

Non-intrusive load monitoring or energy disaggregation,
was first introduced by George Hart in 1992 [6]. Since that,
various approaches have been proposed to solve this single
channel BSS problem. The NILM methods can be broadly
classified as i) optimization based approaches and ii) DNN
based approaches.

Optimization based Approaches: To begin with, optimiza-
tion based algorithms generally define the load aggregation
task as an optimization problem, and usually employ tech-
niques such as evolutionary algorithms [19], [20], linear and
nonlinear integer programming approaches [21], [22]. The
prior knowledge of appliances, including the operation states
and corresponding power ratings which can be easily acquired
from users’ manual, is frequently leveraged to obtain the
optimal solution. The ED performance of optimization-based
algorithms largely depends on the objective functions and
related constraints. Apart from the most commonly employed
objective function - least square error (LSE) between measured
and approximated aggregate power consumption [19], there are
several enhancements via median filtering [22], convex penalty
term [23] and linear-programming based refinement [24].
However, such optimization based algorithms fail in practical
settings as they assume the aggregate energy consumption
equals the sum of considered appliances’ usage. But the thing
is we cannot input all the household appliance information into
the model and literature shows that the energy consumption
from unknown sources, such as living room usage and electric
cars, can take up 51.86% of total energy [25], which limit
the practicability and effectiveness of optimization based ED
algorithms.

DNN based Approaches: Deep learning approaches are
demonstrated to be promising for NILM with its excellent

performance. In [10], the authors take the first step to leverage
various deep learning models including convolutional neural
networks (CNN), recurrent neural networks (RNN), and De-
noising Autoencoder (DAE) in NILM problems. In light of
sequence-to-sequence (seq2seq) learning, the authors in [7]
suggest a sequence-to-point learning based on CNN structure
to map the single mid-point of appliance’s power reading
with mains reading. Also inspired by seq2seq learning, the
authors in [26] propose a novel deep generative architecture for
performing sequence-to-many-sequence learning, i.e., mains
power consumption to several appliances’ power consumption.
Then, in [11], the researchers begun to utilize ON/OFF state
property of electric devices to serve as a “gating unit”, namely
refinement, for their regression results. While demonstrating
significant performance improvement, none of these deep
learning based NILM methods leverage inherent operation
properties of end-use appliances, leading to rather implausible
energy breakdown results.

In summary, the optimization based approaches utilize ap-
pliance state information to obtain accurate ED results but
suffer from practical settings; the DNN based approaches
leverage deep learning to enhance NILM performance yet fail
to take appliances’ properties into account. To the best of our
knowledge, our solution is the first DNN based approach that
aims to measure the appliance’s operation state and leverages
underlying appliance properties to enhance ED performance.

VIII. CONCLUSIONS

In this paper, we investigated the well-known non-intrusive
load monitoring problem. Our data analysis revealed that the
operations of household appliances generally have notable
multi-state and sparsity properties, which can be exploited
for NILM. We were inspired to develop a dual-DNN for
energy disaggregation. Specifically, we introduced a multi-
task neural network framework that consists of two parallel
subnetworks, one aims to estimate the power ratings of appli-
ances at different states, and the other is responsible to identify
current operation states of devices. Empirical evaluations on
benchmark datasets and algorithms validated the effectiveness
and practicability of our solution. The dual-DNN approach
presented in this work could be potentially applied to other
learning tasks that can be divided into one estimation problem
and the other classification problem.
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