
An Interference-aware Approach for Co-located
Container Orchestration with Novel Metric

Xiang Li1,2, Linfeng Wen1,2, Minxian Xu1, Kejiang Ye1
1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

2. University of Chinese Academy of Sciences, China
{xiang.li1, lf.wen, mx.xu, kj.ye}@siat.ac.cn

Abstract—Container orchestration technologies are widely em-
ployed in cloud computing, facilitating the co-location of online
and offline services on the same infrastructure. Online services
demand rapid responsiveness and high availability, whereas of-
fline services require extensive computational resources. However,
this mixed deployment can lead to resource contention, adversely
affecting the performance of online services, yet the metrics
used by existing methods cannot accurately reflect the extent
of interference.

In this paper, we introduce scheduling latency as a novel
metric for quantifying interference and compare it with existing
metrics. Empirical evidence demonstrates that scheduling latency
more accurately reflects the performance degradation of online
services. We also utilize various machine learning techniques to
predict potential interference on specific hosts for online services,
providing reference information for subsequent scheduling deci-
sions. Simultaneously, we propose a method for quantifying node
interference based on scheduling latency. To enhance resource
utilization, we train a model for online services that predicts
CPU and MEM (memory) resource allocation based on workload
type and QPS. Finally, we present a scheduling algorithm based
on predictive modeling, aiming to reduce interference in online
services while balancing node resource utilization. Through ex-
periments and comparisons with three other baseline methods, we
demonstrate the effectiveness of our approach. Compared with
three baselines, our approach can reduce the average response
time, 90th percentile response time, and 99th percentile response
time of online services by 29.4%, 31.4%, and 14.5%, respectively.

Index Terms—container, interference detection, container or-
chestration, scheduler

I. INTRODUCTION

Linux container is a form of operating system-level virtual-
ization used to run multiple isolated user space environments
on a single Linux host [1]. They enable packaging applications
and all their dependencies into a self-contained runtime en-
vironment, thus achieving more efficient resource utilization,
faster deployment speeds, and enhanced portability. Among
the most prominent container technologies is Docker [2], but
other implementations such as Podman, LXC, and rkt also
exist [3]–[5].

Container orchestration refers to the process of managing,
orchestrating, and automating the deployment of large-scale

This work is supported by National Key R&D Program of China
(No.2021YFB3300200), the National Natural Science Foundation of China
(No. 62072451, 62102408), Shenzhen Industrial Application Projects
of undertaking the National key R & D Program of China (No.
CJGJZD20210408091600002), and Shenzhen Science and Technology Pro-
gram (No. RCBS20210609104609044). Minxian Xu is the corresponding
author.

containerized applications across one or more hosts [6]. On-
line and offline workloads container orchestration involves
managing and deploying online (real-time) and offline (batch
processing) workloads that serve different purposes within
the same container orchestration platform. Online workloads
encompasses applications with real-time requirements, such as
web applications, real-time analytics, and real-time communi-
cation, necessitating rapid responsiveness and high availability.
Offline workloads typically comprises batch processing jobs
like data processing, report generation, and large-scale data
analysis, which do not demand real-time responses but may
require substantial computing resources [7]. This co-location
strategy enhances resource utilization, simplifies management,
reduces costs, and ensures both high availability and flexibility.

While co-deploying online and offline workloads on the
same container orchestration platform can share resources [8],
it may also introduce challenges and issues. Importantly, in co-
location scenarios, online and offline workloads may compete
for computational resources, especially in resource-constrained
environments. Offline jobs may consume a significant portion
of computational resources, thereby impacting the perfor-
mance and response times of online workloads. In other words,
online workloads are susceptible to interference from offline
workloads during co-location. One current challenge is the
absence of a general method for quantifying the degree of such
interference. Therefore, to guarantee the performance of online
workloads, we can minimize interference among containers
through container orchestration. For the realization of this
approach, detecting interference becomes critically important
[9].

In existing methods [10], resource utilization metrics such
as CPU usage, memory usage, disk I/O, and network I/O are
typically collected. However, due to granularity limitations,
these data provide limited information and do not effectively
reflect the interference experienced by online workloads. In
addition to these metrics, we incorporate hardware-level data,
such as branch prediction failures and cache misses. Excessive
branch prediction failures or cache misses can introduce time
overhead to some extent. Furthermore, we place special em-
phasis on the metric of ”scheduling latency”, which refers to
the interval between a process entering the scheduling queue
after exhausting its CPU time slice and regaining CPU control.
We believe this metric can also partially reflect changes in
online workloads response times and offer valuable insights.

ar
X

iv
:2

40
2.

08
91

7v
1 

 [
cs

.D
C

] 
 1

4 
Fe

b 
20

24



To address these challenges, this paper introduces a metric
that effectively reflects interference and proposes a quantifi-
cation method for interference. We also train a prediction
model to forecast this interference value. Finally, we design a
scheduling algorithm and implement a corresponding sched-
uler to minimize interference during co-location. Through
experiments, we validate the effectiveness of our approach.
The contributions of this paper can be summarized as follows:

1) We introduce a novel metric, scheduling latency, that
effectively captures interference.

2) We propose a quantification method for interference that
accurately reflects the interference experienced by online
workloads.

3) We trained a random forest model for predicting the
interference online workloads will encounter when de-
ployed on a host.

4) Building upon the interference quantification method
and prediction model, we design a scheduling algorithm
and implement a corresponding scheduler to minimize
the interference experienced by online workloads during
deployment.

The rest of the paper is organized as follows: Section II
presents the motivation to use the novel metric to evalu-
ate the performance, Section III discusses the related work
contributing to the relevant areas, Section IV presents the
system framework that the applications can be co-located
and analyzed with interference, Section V demonstrates the
experimental results, and finally the Section VI concludes the
whole paper and highlights some future research directions.

II. MOTIVATION

In the aforementioned sections, we have mentioned schedul-
ing latency, which refers to the time interval between a process
entering the scheduling queue due to the exhaustion of its CPU
time slice and regaining CPU control. We hypothesize that a
larger scheduling latency for online workloads will result in
increased response time. This implies that even though the
average CPU utilization may be similar, varying scheduling
latency may lead to different performance in terms of response
time.

To verify whether there is a correlation between the re-
sponse time of online workloads and both CPU utilization
and scheduling latency or not, and if such a correlation exists,
which factor is more significant, we conducted two sets of
experiments using Web Search1 and In-Memory Analytics2.

Details of our experimental environment are as follows: all
experiments were conducted on machines with 32 cores and
64GB of RAM, running the Ubuntu 22.04.1 LTS operating
system. The selected benchmarks included Web Search as
an online workload and In-Memory Analytics as an offline
workload.

1https://github.com/parsa-epfl/cloudsuite/blob/main/docs/benchmarks/web-
search.md

2https://github.com/parsa-epfl/cloudsuite/blob/main/docs/benchmarks/in-
memory-analytics.md

The first set of experiments involved keeping the QPS
of Web Search constant (300 requests per second) while
varying the CPU utilization of In-Memory Analytics. Initially,
we allocated 2 CPU cores for In-Memory Analytics, and
after each set of experiments, we incrementally increased the
available CPU cores by two, totaling 10 sets of experiments.

And the second set of experiments involved maintaining
the number of CPU cores available for In-Memory Analytics
constant (8 cores) and modifying the request frequency of Web
Search. Initially, the request frequency for Web Search was set
at 200 requests per second. After each set of experiments, we
increased the request frequency by 200, resulting in 10 sets of
experiments.

Fig. 1. Experiment 1: correlation
between average response time and
scheduling latency

Fig. 2. Experiment 1: correlation
between average response time and
CPU Utilization

Fig. 3. Experiment 2: correlation
between average response time and
scheduling latency

Fig. 4. Experiment 2: correlation
between average response time and
CPU Utilization

In both sets of experiments, we recorded the relationships
between CPU utilization and average response latency, as well
as between average scheduling latency and average response
latency. As depicted in Figure 1 and Figure 2, the horizontal
axis represents the CPU utilization of online workloads, while
the vertical axis represents the response time. In Figure 3 and
Figure 4, the horizontal axis represents the average scheduling
latency within a minute for online workloads, and the vertical
axis represents the response time.

For each graph, we attempted to fit a curve to these
data points and assessed the quality of the fitness. Data
presented in Table I indicate that the correlation between
average scheduling latency and response time is noticeably
superior to that between CPU utilization and response time.
This suggests that scheduling latency has more impacts on
response time. In general, an increase in the number of
processes in the scheduling queue results in a corresponding
increase in scheduling latency. If the scheduling latency for



TABLE I
CURVE FITTING PERFORMANCE

Experiments MAPE R²

Exp1. runqlat-resp 0.46 0.88

Exp1. cpu-resp 0.77 0.68

Exp2. runqlat-resp 0.60 0.88

Exp2. cpu-resp 1.31 0.42

online workloads remains consistently high, it typically leads
to longer response times.

III. RELATED WORK

Currently, experts and scholars both domestically and in-
ternationally are conducting extensive research in the fields of
interference detection and container orchestration within cloud
computing environments. These studies aim to address various
challenges in cloud computing, including performance opti-
mization, resource allocation, scalability, and security. They
actively explore new methods and tools, continuously improv-
ing interference detection efficiency, and utilizing container
orchestration technology to meet various scope requirements.

A. Interference Detection

David et al. proposed a system named Heracles [11]. They
began by analyzing that different types of online workloads
exhibit varying degrees of sensitivity to different types of
interference. And then they designed and implemented a
heuristic feedback-based system resource controller, ensuring
that latency-critical online workloads can coexist with batch
processing tasks on the same host without violating SLOs.
However, this approach is only applicable when deploying a
single online workload alongside multiple offline workloads
on a host.

Qiu et al. introduced FIRM [12], an intelligent fine-grained
resource management framework. It addresses challenges in
sharing computational resources across microservices, as con-
tention can lead to delays and breach user request SLOs.
FIRM aims to improve overall resource utilization through
predictable resource sharing among microservices. However,
integrating a reinforcement learning model into FIRM presents
challenges, including high training costs and model conver-
gence difficulties.

Chen et al. observed changes in hardware-level metrics
when several typical combinations of online and offline work-
loads were co-located and subsequently recommended cer-
tain co-location combinations while discouraging others [13].
However, Chen did not propose a quantification method for
interference, limiting the generalizability of their approach.

Xu et al. investigated the trade-offs between the dominant
scaling techniques, including horizontal scaling, vertical scal-
ing, and brownout in terms of execution cost and response
time [14]. Their goal is to ensure that microservices systems
maintain Quality of Service (QoS) under various workloads
through efficient scaling methods. They propose a prediction

algorithm based on gradient recurrent units, which helps to
accurately predict workload and facilitate efficient scaling, and
a multi-faced scaling method using reinforcement learning,
which makes scaling decisions.

Luo et al. proposed an efficient resource management sys-
tem, namely Erms [15]. They established response models
for each task and calculated the available resources for each
container during deployment based on the required SLA. How-
ever, Luo’s modeling only accounted for potential interference
from CPU and memory utilization, and creating separate mod-
els for each task incurred excessive computational overhead.

Xu et al. presented the architecture of Alibaba’s microser-
vice cluster designed to handle large-scale microservice man-
agement, along with comprehensive statistical analysis of
the microservices in its production environmentl [16]. They
propose enhanced resource allocation methods that build upon
Alibaba’s current practices to efficiently and elastically support
services through various means such as workload estimation,
capability modeling, and resource allocation policies.

B. Container Orchestration

Rodriguez et al. conducted research on container orches-
tration management systems and proposed a classification
framework to identify various mechanisms that can address
the challenges in this domain [17]. They then applied this
proposed classification to various state-of-the-art systems to
identify research gaps and open challenges in the literature,
serving as future directions for researchers. Their work pri-
marily focuses on system modeling and design rather than
delving into the details of orchestration strategies.

Casalicchio et al. surveyed advanced container technologies
[18]. They introduced fundamental container concepts like im-
ages and Docker, discussed how to containerize applications,
and explored container orchestration with tools like Kuber-
netes and Docker Swarm. The paper also covered container
security, addressing challenges in isolation, access control,
image security, and vulnerability management. It concluded
by suggesting future research directions.

Rodriguez et al. proposed a comprehensive container re-
source management approach [19] with three key objectives:
optimizing initial container placement, dynamically adjusting
resource allocation based on cluster workload, and improv-
ing resource efficiency through rescheduling when possible.
However, the heuristic resource scheduling method employed
in this study may struggle to adapt to dynamic environments,
resulting in a decrease in performance.

Struhár et al. proposed a container orchestration method
for real-time systems [20], aiming to prevent excessive CPU
resource allocation during container scheduling. They also
addressed weak isolation issues in container-based virtual-
ization. They proposed performance metrics for both con-
tainer and node levels, useful for admission control and real-
time behavior adjustments in container deployment. They
implemented these ideas on Kubernetes, but their approach
primarily focuses on real-time systems without considering
future changes.



Compared to existing work, our paper conducts a more
comprehensive study on service interference. Specifically,
we no longer rely solely on heuristic methods; instead, we
train a model to predict interference values. Additionally,
we introduce an effective interference metric and propose a
quantification method for interference in an innovative manner.
Finally, we have designed and implemented a novel scheduling
algorithm that better aligns with our objectives.

IV. SYSTEM FRAMEWORK

In this section, we will introduce the system framework that
we have implemented. As depicted in Figure 5, the workflow
of this system is as follows: For each pod submitted by a
user, it first undergoes resource allocation, including CPU
and memory resources, determined by the Resource Prediction
Module. Subsequently, within the Interference Quantification
Module, two primary tasks are accomplished. The first task
involves predicting the scheduling latency for deploying the
pod on each node, based on performance data collected by the
Data Collection Module and the user-specified QPS (Queries
Per Second), using the Scheduling Latency Prediction Module.
The interference level of the pod is calculated based on
the prediction results. The second task is to compute the
interference level for each node. Finally, in the Scheduling
Module, the node allocation for the pods is determined based
on the results from the Interference Quantification Module,
completing the deployment process.

The system framework comprises five primary modules,
each responsible for a specific task, which will be elaborated
on in the following sub sections.

Fig. 5. System Framework

A. Data Collection Module

On each node of the cluster, a data collection program
is running, primarily tasked with real-time collection of
application-layer data, hardware-layer data, and scheduling
latency data from the host. Additionally, this program listens
on a port, and upon receiving a request from the Data Tracer
through this port, promptly provides the current host’s data in
response.

B. Resource Prediction Module

The responsibility of the Resource Prediction Module is to
forecast resources for submitted pods. Specifically, based on
the provided request frequency and task type, it is primarily
tasked with predicting CPU usage and memory usage.

We conducted a statistical analysis of CPU utilization and
memory consumption under different request frequencies, and
the relevant data is presented in Figure 6 and Figure 7.
These data exhibit a clear linear relationship. Therefore, we
employed a linear regression model to predict CPU utilization
and memory usage for applications.

Fig. 6. Correlation between QPS
and CPU Utilization

Fig. 7. Correlation between QPS
and Memory Usage

C. Scheduling Latency Prediction Module

Our aim is to develop a model that can predict online work-
loads scheduling latency based on the following factors: the
type of online workloads, request volume, host resource uti-
lization (such as CPU utilization, memory utilization, network
I/O, disk I/O, etc.), host hardware data, and the distribution
of scheduling latency for various processes within the host.
Simultaneously, our goal is to ensure that the model is light-
weight enough to be encapsulated as a single component for
use by other applications, such as integration into schedulers.

To achieve these objectives, we conducted a series of
experiments employing common machine learning methods,
including Linear Regression [21], Support Vector Machine
[22], Multilayer Perceptron [23], Random Forest [24], and
XGBRegressor [25]. The experimental results are shown in
Figures 8, 9, 10, 11, 12 and Table II. The model’s specific
input data is as Table III.

Fig. 8. Comparison of Linear Regression Model Predictions



Fig. 9. Comparison of Support Vector Machine Model Predictions

Fig. 10. Comparison of Multilayer Perceptron Model Predictions

D. Interference Quantification Module

Our quantification of interference consists of two parts. The
first part assesses the degree of interference on the target host,
which we calculate as Equation (1).

intfh = wa

n∑
i=1

avg(runqlati) + wb

m∑
j=1

avg(runqlatj) (1)

In this context, intfh represents the interference value of
node h, n denotes the number of online services within node
h, runqlati signifies the scheduling latency array of online
service i, m signifies the number of offline services within
the node, runqlatj denotes the scheduling latency array of
offline service j, and wa and wb are two weighting factors
greater than 1. The avg() function is employed to compute
the average scheduling latency, and its calculation method is
outlined in (2).

avg(runqlat) = (

199∑
k=0

runqlatk ∗ k ∗ 5)/(
199∑
k=0

runqlatk) (2)

In this context, runqlat represents the data collected for
scheduling latency, which is an array with a size of 200.
runqlatk represents the number of occurrences of scheduling
latency within the time interval [k ∗ 5, k ∗ 5 + 5) (unit: ns).

Fig. 11. Comparison of Random Forest Model Predictions

Fig. 12. Comparison of XGBRegressor Model Predictions

Specifically, runqlat199 indicates the count of occurrences
where scheduling latency exceeds or equals 995 ns.

For a submitted pod, we employ a model to predict its
potential average scheduling latency when deployed on a node.
The description of this model is provided in section IV-C. That
is, the quantification of interference for this pod is as Equation
(3):

intfp = wc ∗model(qpspod, datan) (3)

In this context, intfp signifies the interference value of the
pod, wc represents a weight greater than zero, model() denotes
the prediction model, with its output being the predicted
average scheduling latency for the pod. qpspod corresponds to
the user-specified potential QPS (Queries Per Second) for this
pod. Additionally, datan refers to performance data pertaining
to node n, with detailed information available in Table III.

E. Scheduling Module

For an online workload about to be deployed, in order to
minimize the interference it may experience post-deployment,
we have formulated the following scoring strategy, building
upon section IV-D, as illustrated in Equation (4).

scoreh = (1−utilizcpuh )∗(1−utilizmem
h )−intfh−intfp (4)



TABLE II
MODEL PERFORMANCE EVALUATION

Model Names MAPE MSE MAPE R2

Linear Regression 0.0185 0.1010 0.4820 0.5966

Support Vector Machine 0.0048 0.0575 0.1727 0.7062

Multilayer Perceptron 0.1757 0.3407 6.5909 -2.3469

Random Forest 0.0019 0.0256 0.0713 0.9199

XGBRegressor 0.0021 0.0282 0.0775 0.9038

TABLE III
MODEL INPUT

Data Type Description
QPS queries per second (QPS) of the pod

Performance Metrics cpu utilization,
memory usage
mem cache
mem pgfault
mem pgmajfault
working set
memory rss
net recv avg
net recv packets avg
net send avg
net send packets avg
fs read avg
fs write avg

Hardware Events branch-instructions, ref-cycles,
branch-misses, bus-cycles,
cache-misses, cache-references,
cpu-cycles, instructions,
alignment-faults, bpf-output,
cpu-migration, emulation-faults,
major-faults, minor-faults,
page-faults, dummy,
L1-dcache-load-misses, L1-dcache-loads,
L1-dcache-stores, LLC-load-misses,
LLC-loads, LLC-store-misses,
LLC-stores, branch-load-misses,
branch-loads, dTLB-load-misses,
dTLB-loads, dTLB-store-misses,
dTLB-stores, iTLB-load-misses,
iTLB-loads, node-load-misses

Scheduling Latency runqlat[200]
runqlat[k](0 ≤ k ≤ 199) represents the
number of occurrences of scheduling latency
within the time interval [k∗5, k∗5+5) (unit: ns).
Specifically, runqlat[199] indicates the count
of occurrences where scheduling latency exceeds
or equals 995 ns.

The scoreh represents the score of candidate node h, and
the meanings of utilizcpuh and utilizmem

h are as Equation (5)
and Equation (6).

utilizcpuh =
cpucur

h + wd ∗ cpupod

cpusum
h

(5)

utilizmem
h =

memcur
h + we ∗mempod

memsum
h

(6)

The cpucur
h and memcur

h represent the current CPU and
memory utilization of the host, while cpusum

h and memsum
h

denote the total CPU and memory resources of the host.

Additionally, cpupod and mempod represent the predicted CPU
and memory utilization of the pod based on the resource
prediction model. wd and we are weight values greater than
1.0.

After receiving the pod submitted by the user and the results
from the resource prediction model, the Scheduling Module
will execute Algorithm 1. The process of Algorithm 1 is as
follows. Firstly, it initializes the current best score (scorebest)
as negative infinity and the best node number (nodeselected)
as -1 (lines 1-2). It also obtains performance data for each
node (nodesdata) through the Data Collection Module (line 3).
Next, it iterates through each node, extracting cpucur

h , cpusum
h ,

memcur
h and memsum

h from the performance data (lines 4-
6). Subsequently, it computes utilizcpuh and utilizmem

h for
each node according to Equation (5) and Equation (6) (line
7). While the goal is to enhance the resource utilization level
of nodes, there exists an upper limit. Therefore, it assesses
whether utilizcpuh and utilizmem

h exceed their respective
thresholds. If they exceed the thresholds, the node is not
considered a candidate, and the current iteration proceeds to
the next node (lines 8-9). Otherwise, it invokes the Interference
Quantification Module to obtain intfh and intfp for the node
and calculates the current node’s score using Equation (4)
(lines 10-11). If the score of the current node surpasses the
current best score, the Scheduling Module updates the current
best score and best node number (lines 12-14). Finally, it
returns the computed best node number (line 15).

Algorithm 1: Selection of the best node

Data: pod (user’s submission), cpupod (Resource
Prediction Module’s output), mempod (Resource
Prediction Module’s output)

Result: node (selected node)

1 scorebest = −∞;
2 nodeselected = -1;
3 Invoke the Data Collection Module and store the

results in nodes data (an array with data for n
nodes);

4 for each element i from 1 to n do
5 Fetching cpucur

h , cpusum
h from nodes data[i];

6 Fetching memcur
h , memsum

h from nodes data[i];
7 Calculate nodei’s utilizcpuh and utilizmem

h ;
8 if (utilizcpuh > 0.70) or (utilizmem

h > 0.80) then
9 Continue with the next iteration;

10 Invoke the Interference Quantification Module to
retrieve intfh and intfp of nodei;

11 Calculate nodei’s scoreh;
12 if scoreh > scorebest then
13 scorebest = scoreh;
14 nodeselected = i;

15 return nodeselected;



V. EXPERIMENTAL RESULTS

To assess the effectiveness of our approach, we conducted
experiments and documented the experimental results. In this
section, we will provide an overview of the experimental
procedure and present the obtained results.

A. Benchmark Selection

In cloud environments, there are several typical application
types for both online and offline workloads. Typical online
workload types include Web Serving, Web Search, Media
Streaming3, and Data Caching4. Typical offline workload types
include Graph Analysis5 and In-Memory Analytics.

B. Metric Collection

We utilize Prometheus to collect runtime resource utilization
data for each application and node. Prometheus is an open-
source monitoring solution used for collecting and aggregating
metrics as time-series data.

We employ Perf to collect hardware-level metrics from the
host. Perf is a performance profiling tool that is built into
the Linux kernel source tree. It operates on the principle of
event sampling and is based on performance events, supporting
performance profiling for both processor-related and operating
system-related performance metrics.

We utilize eBPF to collect scheduling latency data. It’s
worth noting that eBPF comes with a tool for collecting
scheduling latency data, which aggregates data in exponen-
tially growing intervals, such as [0,2), [2, 4), . . . , [64, 128).
However, this non-linear approach lacks intuitiveness and
cannot accurately calculate the average scheduling latency,
resulting in certain limitations. To address this, we have made
improvements by collecting data in intervals of 5 nanoseconds
each, totaling 200 intervals. The last interval is used to store
the count of scheduling latencies equal to or exceeding 995
nanoseconds.

C. Application Performance Testing

In order to closely approximate real-world scenarios when
sending query requests for performance testing, we referenced
the open-source dataset (Cluster-trace-v20186) provided by
Alibaba. The Cluster-trace-v2018 dataset encompasses the
changes in the status data of approximately 4,000 machines
over an 8-day period. During the testing phase, we generated
requests with dynamically changing QPS over time. The
variation in QPS mimicked the resource utilization trends
observed in the dataset for applications as time progressed. For
example, if we aimed for an average QPS of approximately
300, the actual QPS fluctuated dynamically around this target
value.

3https://github.com/parsa-epfl/cloudsuite/blob/main/docs/benchmarks/media-
streaming.md

4https://github.com/parsa-epfl/cloudsuite/blob/main/docs/benchmarks/data-
caching.md

5https://github.com/parsa-epfl/cloudsuite/blob/main/docs/benchmarks/graph-
analytics.md

6https://github.com/alibaba/clusterdata/blob/master/cluster-trace-
v2018/trace 2018.md

D. Experimental Result

We have developed a program for testing the scheduler,
which can submit a pod after a random time interval. In
addition to the scheduler implemented according to our pro-
posed interference-aware container orchestration (ICO), we
also tested Round Robin Scheduling (RR), High Utilization
Priority Scheduling (HUP) and Low QPS Priority Scheduling
(LQP).

The RR is a straightforward and equitable scheduling ap-
proach. It cyclically assigns pending pods to various nodes,
ensuring that each node has an opportunity to execute tasks.

The HUP is an effective method for enhancing node re-
source utilization derived from [26]. We have made certain
modifications to this method. The scoring mechanism for this
algorithm is shown as Equation (7).

HUPscoreh = utilizcpuh ∗ utilizmem
h − intfh − intfp (7)

In this context, the meanings of utilizcpuh , utilizmem
h , intfh

and intfp are consistent with those defined in Equation (1),
(3), (5) and (6).

The LQP refers to the approach in which, when a pod needs
to be scheduled, the total sum of online workloads QPS on
each node is calculated. The node with the lowest QPS sum
is selected as the target node.

After the experiments concluded, we computed the average
response time, 90th percentile response time, and 99th per-
centile response time for all pods under various scheduling
algorithms. The results are illustrated in Figure 13 below.

Fig. 13. Comparison of results from different schedulers

Additionally, we collected data on CPU utilization and
memory utilization for each node during the experimental
process. We aimed to achieve a balanced resource utilization
across all nodes; therefore, we further calculated the variance
in CPU utilization and memory utilization among the nodes.
The results are presented in Figure 14 and Figure 15.

In terms of average response time, 90th percentile response
time, and 99th percentile response time for online workloads,
our method reduces these metrics by 29.4%, 31.4%, and



Fig. 14. Cluster nodes’ CPU utiliza-
tion standard deviation

Fig. 15. Cluster nodes’ MEM uti-
lization standard deviation

14.5%, respectively, compared to HUP. In comparison to the
RR, our method reduces them by 20.1%, 27.2%, and 5.1%,
respectively. When compared to LQP, our method reduces
these metrics by 16.7%, 15.4%, and 10.3%, respectively.

Regarding cluster utilization, the standard deviation of CPU
utilization among nodes was 6.63 (in contrast, the results for
RR, HUP and LQP were 9.40, 8.84 and 7.81, respectively),
while the standard deviation of MEM (memory) utilization
was 6.53 (compared to 18.24, 12.76 and 18.93 for RR, HUP
and LQP, respectively). This study provides novel insights and
methodologies for optimizing the joint deployment of online
and offline workloads, facilitating their hybrid deployment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce the concept of scheduling
latency and propose a method for quantifying interference and
scheduling algorithms based on this metric. Through experi-
mental validation, our approach has demonstrated promising
results.

In our future work, we plan to further optimize the schedul-
ing latency metric with a focus on several key aspects. First,
in this study, we confirmed a strong correlation between
scheduling latency and application response times. Therefore,
we intend to explore adjustments in process priorities and other
relevant factors to ensure that the scheduling latency of critical
processes remains within acceptable bounds, thus guaranteeing
the desired application response times. Second, our current
efforts have primarily concentrated on the initial scheduling
phase. In the upcoming phases, we will dedicate our efforts to
refining the design of secondary scheduling processes. Last,
in our current approach, resource allocation is fixed after the
initial scheduling phase. In the future, we will integrate the
scheduling latency metric into the development of a dynamic
scaling and resource allocation mechanism to adaptively adjust
resource allocation based on changing workload conditions.

REFERENCES

[1] M. Chae, H. Lee, and K. Lee, “A performance comparison of linux con-
tainers and virtual machines using docker and kvm,” Cluster Computing,
vol. 22, no. Suppl 1, pp. 1765–1775, 2019.

[2] Develop faster & run anywhere: Docker. [Online]. Available:
https://www.docker.com/

[3] Podman: A tool for managing oci containers and pods. [Online].
Available: https://github.com/containers/podman

[4] Lxc - linux containers. [Online]. Available: https://github.com/lxc/lxc
[5] rkt is a pod-native container engine for linux. it is composable, secure,

and built on standards. [Online]. Available: https://github.com/rkt/rkt

[6] E. Casalicchio, Container Orchestration: A Survey. Cham: Springer
International Publishing, 2019, pp. 221–235.

[7] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud: An
analysis on alibaba cluster trace,” in 2017 IEEE International Conference
on Big Data (Big Data), 2017, pp. 2884–2892.

[8] S. R. Alam, M. Gila, M. Klein, M. Martinasso, and T. C. Schulthess,
“Versatile software-defined hpc and cloud clusters on alps supercom-
puter for diverse workflows,” The International Journal of High Perfor-
mance Computing Applications, vol. 37, no. 3-4, pp. 288–305, 2023.

[9] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS), 2020, pp. 1–10.

[10] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“Prepare: Predictive performance anomaly prevention for virtualized
cloud systems,” in 2012 IEEE 32nd International Conference on Dis-
tributed Computing Systems, 2012, pp. 285–294.

[11] C. Lo, David and et al, “Heracles: Improving resource efficiency at
scale,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), 2015, pp. 450–462.

[12] H. Qiu, S. S. Banerjee, and et al, “FIRM: An intelligent fine-grained
resource management framework for SLO-Oriented microservices,” in
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association, Nov. 2020, pp. 805–825.

[13] W. Chen, K. Ye, and C.-Z. Xu, “Co-locating online workload and
offline workload in the cloud: An interference analysis,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2019, pp. 2278–2283.

[14] M. Xu, C. Song, S. Ilager, S. S. Gill, J. Zhao, K. Ye, and C. Xu, “Coscal:
Multifaceted scaling of microservices with reinforcement learning,”
IEEE Transactions on Network and Service Management, vol. 19, no. 4,
pp. 3995–4009, 2022.

[15] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, J. He, G. Yang, and C. Xu,
“Erms: Efficient resource management for shared microservices with sla
guarantees,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2022, p. 62–77.

[16] M. Xu, L. Yang, Wang, and et al, “Practice of alibaba cloud on elastic
resource provisioning for large-scale microservices cluster,” Software:
Practice and Experience, 2023.

[17] M. A. Rodriguez and R. Buyya, “Container-based cluster orchestration
systems: A taxonomy and future directions,” Software: Practice and
Experience, vol. 49, no. 5, pp. 698–719, 2019.

[18] E. Casalicchio and S. Iannucci, “The state-of-the-art in container tech-
nologies: Application, orchestration and security,” Concurrency and
Computation: Practice and Experience, vol. 32, no. 17, p. e5668, 2020,
e5668 cpe.5668.

[19] M. Rodriguez and R. Buyya, “Container orchestration with cost-efficient
autoscaling in cloud computing environments,” in Handbook of research
on multimedia cyber security. IGI global, 2020, pp. 190–213.

[20] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.
Papadopoulos, “React: Enabling real-time container orchestration,” in
2021 26th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA ), 2021, pp. 1–8.

[21] X. Su, X. Yan, and C.-L. Tsai, “Linear regression,” Wiley Interdisci-
plinary Reviews: Computational Statistics, vol. 4, no. 3, pp. 275–294,
2012.

[22] S. Suthaharan, “Machine learning models and algorithms for big data
classification,” Integr. Ser. Inf. Syst, vol. 36, pp. 1–12, 2016.

[23] H. Ramchoun, Y. Ghanou, M. Ettaouil, and M. A. Janati Idrissi,
“Multilayer perceptron: Architecture optimization and training,” 2016.

[24] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25,
pp. 197–227, 2016.

[25] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[26] C. Lu, H. Xu, K. Ye, G. Xu, L. Zhang, G. Yang, and C. Xu, “Un-
derstanding and optimizing workloads for unified resource management
in large cloud platforms,” in Proceedings of the Eighteenth European
Conference on Computer Systems, ser. EuroSys ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 416–432.

https://www.docker.com/
https://github.com/containers/podman
https://github.com/lxc/lxc
https://github.com/rkt/rkt

	Introduction
	Motivation
	Related Work
	Interference Detection
	Container Orchestration

	System Framework
	Data Collection Module
	Resource Prediction Module
	Scheduling Latency Prediction Module
	Interference Quantification Module
	Scheduling Module

	Experimental Results
	Benchmark Selection
	Metric Collection
	Application Performance Testing
	Experimental Result

	Conclusions and Future Work
	References

