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Abstract—Aiming at solving the problem in target recognition 
of synthetic aperture radar (SAR) images, this paper proposes a 
novel method based on the combination of Deep Convolutional 
Neural Network (DCNN) and Support Vector Machine (SVM). 
The class separation information, which explicitly facilitates 
intra-class compactness and inter-class separability in the process 
of learning features, is added to cross-entropy cost function as a 
regularization term to enhance the feature extraction ability of 
DCNN. Then the improved DCNN is applied to learn the features 
of SAR image. Finally, SVM is utilized to map the features into 
output labels. Experiments are performed on SAR image data in 
Moving and Stationary Target Acquisition and Recognition 
(MSTAR) database. The experiment results prove the 
effectiveness of our method, achieving an average accuracy of 
99.15% on ten types of targets. 
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I.  INTRODUCTION  
With an increasing amount of data acquired by the SAR 

imaging system, how to automatically and quickly realize the 
target recognition of SAR image has become one of the 
research hotspots. 

At present, common methods of Automatic Target 
Recognition technology of SAR images (SAR-ATR) include 
template matching [1], Support Vector Machine (SVM) [2], 
Linear interpolation [3], Principal Component Analysis [4], etc. 
These methods have been successful in some way, but they 
rely heavily on experience of experts [5]. Therefore, these 

methods have a certain blindness and unpredictability when 
applied to SAR images.  

Recently, Deep Learning has been an increasingly hot topic 
in pattern recognition, and related theories and models have 
emerged, such as the Deep Restricted Boltzmann [6], Stacked 
Autoencoders [7] and Deep Convolutional Neural Network 
(DCNN) [8]. Among them, DCNN has made breakthroughs 
endlessly in both theory and practice of image target 
recognition. It can not only automatically extract target features 
without too much experience of experts, but also deal with the 
two-dimensional image data directly. These characteristics of 
DCNN provide a new idea to solve the problems of the 
automatic feature extraction of SAR targets.  

Nowadays, the DCNN-based SAR-ATR system is being 
gradually proposed. To auto-learn features of SAR images 
rapidly, general methods start with the framework of AlexNet 
model. The promotion of training efficiency and recognition 
accuracy are achieved by optimizing a certain module. For 
instance, Chen et al. initializes the hyper-parameters of DCNN 
with an unsupervised sparse autoencoder machine rather than 
the Backpropagation algorithm used in AlexNet model [9].  
The unsupervised sparse autoencoder machine possesses the 
auto-learning capacity, which accelerates the feature learning 
of DCNN [10]. The experiment of this method on MSTAR 
database obtains a target recognition accuracy of 90.1% for 3 
classes and 84.7% for 10 classes. Similarly, Li et al. uses the 
autoencoder machine to initialize the DCNN [11]. The 
difference is that fully connected layers are used as SNN to 
work as a final classifier in [11], which greatly reduces training 



time of DCNN on the premise of ensuring accuracy. Although 
the accuracy of two methods is not very high, there is less 
dependence on experience of experts in the process of feature 
learning. Some scholars  apply DCNN to automatic feature 
learning as well, whereas the final output layer becomes a 
SVM classifier rather than a fully connected layer compared 
with the AlexNet model, constituting DCNN+SVM model [12]. 
The model makes full use of the DCNN’s superiorities in auto-
learning of various features and the advantages of the strong 
generalization ability of SVM [13], avoiding weak 
representation ability of SVM on high-dimensional samples  
and poor stability of DCNN. With this framework, the 
classification accuracy of the method reaches 98.6% [12]. 
Because of these advantages of DCNN+SVM, such methods 
have been rapidly developed. Based on the work in [12], 
Wangner et al. introduce Morphological Component Analysis 
to preprocess SAR image [14]. It rejects some abnormal testing 
samples so that the accuracy reaches 99% and the recall comes 
up to 97.3%. 

In summary, the SAR ATR system based on DCNN has 
achieved varying degrees of success, but it is still in its infancy. 
The research is generally conducted from the perspectives of 
the exostructure architecture of DCNN or the Data 
Augmentation, yet little focus on the optimization of internal 
functions in DCNN. The CNN+SVM model proposed in [12], 
for instance, uses the quadratic function as error cost function. 
Although the classification accuracy is satisfactory, it would be 
time-consuming if the neurons make an obvious mistake during 
the training of DCNN. Compared with error cost function, the 
Cross-Entropy is applied as the quadratic function in [9], [11], 
[14], while there is a lack of in-depth optimization. To improve 
the classification ability of CNN, we attempt to add class 
separability information to cross-entropy cost function as a 
regularization term in DCNN+SVM model. 

The remainder of this paper is organized as follows: 
Section II describes our DCNN+SVM in detail. Experimental 
results on the MSTAR database are presented in Section III. 
Section IV concludes our work. 

II. IMPROVEMENT OF DCNN  

A. The Introduction of Class Separability Information 
To enhance the class separability of the features extracted 

by DCNN model, the class separability information is added to 
cross-entropy cost function as a regularization term to train the 
DCNN. The class separability information consists of intra-
class compactness and inter-class separability, which are 
expressed as !" and !# respectively: 
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where %&'  denotes the actual output value of the ,-.  training 
sample which belongs to the /-.  class. )&  and )&+  are the 
output average values of the training samples in /-. and /0 -. 
classes. 	!" and !# respectively denote the intra-class distance 
and the inter-class distance of the output features. Shortening 
the intra-class distance and increasing the inter-class distance 
in every iteration are necessary to enhance the separability of 

the output features. However, the class separability information 
can’t be introduced to the cost function directly, so it must be 
converted to a regularization term. Thus, the modified cost 
function is as follows: 

! = !2 + 4!" − 5!#        ( 3 ) 

where α and β are both weight parameters. 

The purpose of modifying the cost function is to adjust 
convolution kernel and bias matrix to make the network 
develop in favor of classification, where the error vector is 
essential. 

The error vector of 	!" in the output layer 8 is: 
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where ,& is the number of samples that belong to the class /, A 
is nonlinear activation function, <: is weighted input of L layer, 
and the symbolic ∘  is Hadamard product (or Schur product) 
which denotes the elementwise product of the two vectors. 

The error vector of !# in the output layer 8 is: 

																9#: =
;!#
;<:

	

=
;

2;<:
)& − )&+ #

#										

																						=
1
,&
A0 <: ∘ )/ − )/′

/′
																									(	5	) 

According to (3), (4), and (5), the new error vector of ! in 
the output layer 8 is: 
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where F' is the targeted value corresponding to the ,-. neuron 
of output layer L. 

After getting the error vector in the output layer 8, we can 
calculate the error vector in each layer iteratively by using the 
Backpropagation algorithm. And the updated parameters of 
convolution kernel and bias matrix for each layer can be 
derived by using Gradient Descent algorithm afterwards. 

B. Modified Model 
A novel DCNN+SVM model of SAR image target 

recognition is proposed based on above analysis. Firstly, 
DCNN is trained combining with the Softmax classifier, where 
the Cross-Entropy added with the class separability 
information is used as the cost function. When the training of 
DCNN is complete, Softmax is removed and the top features of 
DCNN are utilized to train SVM. Finally, the proposed 
framework DCNN+SVM is constructed, where DCNN is used 



to extract sample features and SVM is used as the classifier, as 
is shown in Fig. 1.  

 
Fig. 1. The proposed DCNN+SVM model 

III. EXPERIMENT 

A. Experiment Data 
To verify the validity of the proposed method, this paper 

uses the data from the MSTAR database, co-funded by 
National Defense Research Planning Bureau (DARPA) and the 
U.S. Air Force Research Laboratory (AFRL).  

The MSTAR database includes different types of targets 
and other related targets under various conditions. This paper 
applies ten types of targets: 2S1, ZSU234, BMP2, BRDM2, 
BTR60, BTR70, D7, ZIL131, T62, and T72. As for their high-
level classifications, 2S1 and ZSU234 are artilleries; BMP2, 
BRDM2, BTR60, BTR70, D7, and ZIL131 are assigned to 
trucks; T62 and T72 belong to tanks. Their SAR images and 
corresponding optical images are shown in Fig. 2.  

 
Fig. 2. SAR images and corresponding optical images of ten types of targets 
in the MSTAR database 

The experiment is performed on the above ten types of 
targets, where the targets under 170 depression are taken as the 
training samples while the ones under 150 depression are used 
as testing samples. The detailed information of type, size, and 
amount is shown in Table 1. To reduce the input dimension, 64 
* 64 pixels in the central part of the patch is intercepted as the 
input sample under the premise that the complete target still 
locates at the central position. Then, by shifting and rotating 
which belong to Data Augmentation technique, each type of 
training samples is extended to 3000. The Correct Class 
Probability (H&& ) is applied as the evaluation index of our 
experiment. 

TABLE 1 THE TRAINING AND TESTING SET OF OUR EXPERIMENT 
  Training Set Testing Set 

Type Tops Depression No. Depression No. 
2S1 artillery 17° 3000 15° 274 

ZSU234 17° 3000 15° 274 
BRDM2 

truck 

17° 3000 15° 274 
BTR60 17° 3000 15° 195 
BMP2 17° 3000 15° 195 
BTR70 17° 3000 15° 196 

D7 17° 3000 15° 274 
ZIL131 17° 3000 15° 274 

T62 tank 17° 3000 15° 273 
T72 17° 3000 15° 274 

  sum�30000 sum�2503 

B. Our Model Initializes 
The parameters of our model are set as shown in Fig. 1. 

This model includes the input layer, the output layer, 4 
convolutional layers and 2 max-pooling layers. Generally, a 
convolutional layer and a pooling layer are together regarded as 
a convolutional layer, so there are 6 layers in total. The first 
convolutional layer C1 (other layers follow the labeling rule) 
contains 18 feature maps, and the size of convolution kernel 
and max-pooling are set to 9 * 9 and 7 * 7 respectively. After 
processing by convolution and max-pooling, the 8 * 8 feature 
map is outputted. For C2, the size of its convolution kernel is 5 
* 5 and the number of feature maps is 120, and a 2 * 2 feature 
map is outputted after processing by the 2 * 2 max-pooling 
layer. Therefore, the size of the final feature map is 1 * 1. 
Besides, ReLu is used as the activation function, and the initial 
bias and the learning rate are set to 0 and 1 respectively. 

C. Experiment Result 
The experimental results of the proposed method are shown 

in Table 2. Table 3 gives the results of contrast method, which 
applies the standardized quadratic cost function in the training 
process combining with Softmax and uses Softmax as a final 
classifier [9]. The average accuracy of our method is 99.15%, 
14.45% higher than that of DCNN+Softamx. As for inter-class 
error, we find no any errors between high-level classes from 
Table 2. The intra-class confusion in Table 2 is overall 
satisfactory, with no confusions in tanks and artilleries, only 
one in trucks. The confusions of BTR70 and BTR60 are 
relatively more, which may be because BTR70 is an upgraded 
version of BTR60. For DCNN+Softmax model, however, there 
are serious confusions in both inter and intra classifications. It 
proves that adding the class separability information to Cross 
Entropy error cost function is conducive for distinguishing the 
high-level classes. 

C1 

C2 

C3 

C4 



TABLE 2 THE EXPERIMENTAL RESULT OF OUR METHOD 
 Artillery Truck Tank  

Type 2S1 ZSU234 BRDM2 BTR60 BTR70 BMP2 D7 ZIL131 T62 T72 Pcc(%) 
2S1 274 0 0 0 0 0 0 0 0 0 100 

ZSU234 0 274 0 0 0 0 0 0 0 0 100 
BRDM2 0 0 269 0 0 5 0 0 0 0 98.18 
BTR60 0 0 5 188 2 0 0 0 0 0 96.42 
BTR70 0 0 1 1 193 1 0 0 0 0 98.47 
BMP2 0 0 0 1 2 192 0 0 0 0 98.46 

D7 0 0 0 0 0 0 274 0 0 0 100 
ZIL131 0 0 0 0 0 0 0 274 0 0 100 

T62 0 0 0 0 0 0 0 0 273 0 100 
T72 0 0 0 0 0 0 0 0 0 274 100 
Total           99.15 

TABLE 3 THE EXPERIMENTAL RESULTS WITH THE METHOD IN LITERATURE [9] 
 Artillery Truck Tank  

Type 2S1 ZSU234 BRDM2 BTR60 BTR70 BMP2 D7 ZIL131 T62 T72 Pcc(%) 
2S1 190 1 9 5 5 14 0 21 7 22 69.3 

ZSU234 1 249 1 3 0 1 4 6 2 7 90.8 
BRDM2 3 0 220 6 18 9 0 15 1 2 80.2 
BTR60 4 0 11 168 4 0 4 1 1 2 86.1 
BTR70 4 0 4 3 181 3 0 1 0 0 92.3 
BMP2 4 4 9 2 9 157 0 6 0 4 80.5 

D7 0 7 0 0 0 0 252 5 8 2 91.9 
ZIL131 12 0 6 5 7 5 1 226 3 9 82.4 

T62 7 2 1 5 0 2 4 7 242 3 88.6 
T72 8 1 3 1 1 3 0 9 2 168 85.7 
Total           84.7 

IV. CONCLUSION 
This paper presents a novel method of SAR image target 

recognition based on CNN. The CNN is improved by adding 
the class separability information into Cross Entropy cost 
function and applying Support Vector Machine (SVM) instead 
of Softmax classifier. The experimental results show that the 
proposed method achieves a recognition accuracy of 99.15% 
for ten types of targets with extended training data. Therefore, 
it proves that our method is effective. 
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