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Abstract—In the future, the next generation cellular networks
like fifth generation (5G) will comprise of billions of devices
with various applications running on the devices. These
applications are computer intensive and drain a lot of battery
when executed in the mobile device itself. Mobile Edge
Computing (MEC) has been proposed to solve these problems
by offloading computation tasks of an application to the edge
server in the radio access network (RAN). The conventional
MEC framework suffer greater delays which is not suitable
for 5G. In this paper, a new MEC framework in heterogeneous
networks (HetNet) called MECH is proposed where a mobile
device with limited resources has an option of offloading
some of its tasks to a group of nearby mobile devices while
considering the transmission power, quality of service (QoS)
and state of charge (SoC) of the mobile battery. The simulation
results demonstrates that the proposed framework extend
battery life and reduces delays compared to the traditional
MEC paradigm.

Index Terms—Cloud Computing, Mobile Edge Computing,
Energy-efficiency, 5G, Computation Offloading.

1. Introduction

In 2020, billions of devices like smart phones, tablets
and Internet of Things (IoT) will be connected to the
fifth generation (5G) cellular networks. These devices will
comprise of a plethora of applications like mobile gaming,
health monitoring and augmented reality. These applications
are computer intensive and drains a lot of battery in the
mobile devices. The mobile devices can hardly cope due
to limitations in terms of battery life, storage, memory
and processing power [1]. Extended battery life is one of
the key requirements by mobile phone users as compared
to memory, storage and display size, as such there is
a need for improvement of energy efficiency (EE) in
mobile devices. One possible approach is to offload the
application computation to the remote public clouds such
as Amazon EC2 and Windows Azure using mobile cloud
computing (MCC) which will save some amount of energy
in the mobile device. These cloud centers provide virtually
unlimited computation capacity to augment the processors
in mobile devices. However, the communication between
mobile users and remote cloud centers is often over a long
distance, adding to the latency in cloud computation. To
overcome this limitation, mobile edge computing (MEC)
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Figure 1. An illustration of MEC architecture.

[2], also termed FOG computing [3] was proposed as
shown in Fig. 1. In the MEC framework, cloud computing
capabilities are provided within the radio access network
(RAN) in close proximity to the mobile devices. In other
words, with the aid of MEC, mobile devices are enabled to
offload their application tasks to the MEC servers on the
edge of the network, rather than utilizing the servers in the
core network in the cloud datacenters. This MEC paradigm
can provide low latency, high bandwidth, high computing
agility and improve the energy performance of the mobile
devices [2].

The drawbacks of the current MEC system in offloading
mobile device tasks to the MEC server is that there are still
delays incurred between the mobile device and the MEC
server caused by data transmission. Also, more energy is
consumed in the mobile device during transmission of tasks
to the MEC server. On the other hand, heterogeneous radio
access networks (HetNets) have been recently proposed as
a paradigm shift for 5G networks and a promising solution
for increasing capacity in cellular networks. In HetNets,
macro base stations (BSs) are overlaid by small cell BSs
(micro, pico, relay, femto) where the macro BS provides
coverage while the small cells are to increase capacity in
hotspot areas. In this paper, MEC is incorporated within
HetNets (Herein termed MECH) to minimized the energy
consumption in the mobile device. In the proposed MECH
framework, the mobile device with limited resources has
the option of offloading its tasks to nearby mobile devices
called a cloudlet [2]. The contributions of this paper are as
follows:

i) An energy efficient MEC offloading scheme in HetNet
called MECH is proposed to save energy in the
mobile device. The mobile application is broken
into modules/tasks by the developer which are then
offloaded to the nearby mobile devices not far away in
the MEC server. The transmission cost and delay are
taken into consideration to improve quality of service



(QoS). As such, energy consumption and delays will
be reduced.

ii) An architecture for MECH is proposed where the
mobile devices also act as servers for processing tasks
from the client mobile device with limited resources.

iii) A rigorous simulation study is conducted for validating
the proposed scheme, which shows a significant
performance improvement.

The rest of the paper is organised as follows:
Section II discusses the related works in EE in mobile
devices using MEC paradigm. Section III present the
proposed MECH framework and problem formulation.
The proposed architecture for MECH and the offloading
scheme are presented in this section. The simulation results
and discussion are provided in Section IV. Finally, the
concluding remarks are presented in Section V.

2. Related Work

The reader is directed to a comprehensive survey on
MEC in [4] [5]. The related work is divided into two
categories, EE using MEC server as the resource provider
and also mobile devices as resource providers. .

2.1. Offloading to MEC Server

The author in [6] investigates a green MEC system and
develop an effective computation offloading strategy. The
execution cost, which addresses both the execution latency
and task failure, is adopted as the performance metric.
Nevertheless, the author assumes that the battery capacity
is sufficiently large which is impractical, also the author
ignores the execution delay caused by the MEC server. Chen
L. et al. in [7] addresses the challenge of incorporating
MEC into dense cellular networks, and propose an efficient
online algorithm, called ENGINE (ENergy constrained
offloadINg and slEeping) which makes joint computation
offloading in order to keep the energy consumption low.
However, the author assumes that traffic among BSs is
equally distributed while traffic is randomly distributed in
reality as with our proposed framework. Zhang K. et al.
in [2] proposed an energy efficient computation offloading
(EECO) mechanisms to minimize the energy consumption
of the offloading system, where the energy cost of both task
computing and file transmission are taken into consideration.
However, the author does not show the impact on the
response time of an application offloaded to the MEC
server which is clearly shown in this paper. The author in
[8] proposed a distributed computation offloading decision
making problem in MEC among mobile device users as
a multi-user computation offloading game. However, the
application to be offloaded is assumed to be atomic (the
application can not be divided into modules) as such, the
whole application is either executed locally or the whole
code is send to the MEC server which can incur more
transmission costs whereas in our proposed framework, an
application can be divided into smaller tasks called classes.

For all the above offloading schemes, offloading application
tasks to the MEC server will incur delays and increase
energy consumption during transmission.

2.2. Offloading to Mobile Devices

One way of solving the delays of offloading tasks
to the MEC is to offload tasks to the nearby mobile
devices acting as resource providers. G. Huerta-Canepa et
al. in [9] proposed a framework to create Ad Hoc cloud
computing providers. This framework takes advantage of the
pervasiveness of mobile devices, creating a cloud among
the devices in the vicinity, allowing them to execute jobs
between the devices. However, the author assumes that
the saving in processing time implies a saving in energy
which have not been validated and this is being validated
in our proposed scheme. The authors in [10] proposed
a framework called DroidCloudlet as a new cloudlet
architecture using commodity mobile devices, which can
cooperate to support resource-poor devices with abundant
resources in the other devices. DroidCloudlet enables
application developer to define resource-hungry classes that
might need to be offloaded. The authors in [11] proposed
CANDIS, a framework that can distribute computing tasks
to a computing cloud consisting of mobile devices running
Android. It can partition tasks based on the computation
power of the participating clients. However, CANDIS only
cater for Android mobile devices while our proposed scheme
cater for all the devices. In Hyrax [12], Marinelli et al.
developed a platform derived from Hadoop that supports
offloading tasks to Android smartphones and stationary
servers. By scaling with the number of devices and
tolerating node departure, Hyrax allows applications to use
distributed resources abstractly; regardless of the physical
nature of those devices. Nevertheless, Hyrax only applies
to Android devices while our proposed scheme applies to
all devices. Busching et al. in [13] proposed DroidCluster
framework which implemented a small feasibility study
using Android phones that are connected using either Wi-Fi
or virtual Ethernet (via USB) and showed that Android
systems are PC-like enough so that it is easily possible to
deploy standard tools and mechanisms from the stationary
computing world to successfully distribute computational
tasks among them. All the above schemes does not involve
parallel processing of tasks while in the proposed scheme,
there is parallel processing of tasks within other mobile
devices.

3. Proposed MECH Framework

3.1. System Architecture

The proposed system architecture is shown in Fig. 2.
Consider a set of mobile users denoted as IC = {k : k =
1,2,...,Nyg}. We consider that each mobile device user
runs an application which can be split into several tasks
by the developer. Each task T} of user device k£ can be
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Figure 2. Proposed MECH architecture.

executed either locally on the mobile device or remotely
on nearby recipient mobile devices which forms a cloudlet.
The mobile device k£ has many interfaces and can connect
to many devices simultaneously. Denote ax ., = {0,1} as
the offloading decision profile of user k. When ay, ,, = 1 it
means device k uses mode m to execute task T}, or ay ., =
0, meaning there in no execution. The variable m = {1, 2} is
the user device chosen modes which are computing locally
when m = 1 or offloading to the mobile device cloudlet,
otherwise.

3.2. MECH Offloading Framework

This section will describe the MECH offloading
framework in detail. The framework is shown in Fig. 3.
The framework comprise of the client mobile device which
have tasks to be offloaded and recipient devices forming
a cloudlet where the tasks of the client device will be
executed. The tasks from the client mobile device are
executed in parallel fashion in the recepient mobile device
cloudlet. The system components are as follows:

i) Mobile application: This is an elastic application
(divided into tasks called classes by the developer and
the classes are offloadadble).

ii) Device profiler: Collects mobile device hardware
context at runtime and pass the information to the
offloading agent for decision making of whether to
execute locally or offload. The profile context include
the battery state of charge (SoC), average central
processing unit (CPU) utilization and memory usage.
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Figure 3. Proposed MECH framework.

The device profiler in the recipient devices collects
the hardware context (server name, server computation
speed, server SoC sate) of the remote device and
register them in the directory services in the client
device.

Resource monitor: Resides in both the recipient and
the client devices. It collects network related context
at runtime and pass the information to the decision
engine. The context include network connection state,
bandwidth, and signal strength.

Program profiler: The program profiler tracks the
execution of the program and collects program
context information such as total instructions executed,
execution time, memory allocated. The profile is
updated at every invocation and it is stored in the
mobile device database.

Communication manager: It creates and maintains
connection between the client and the server side. It
serializes the code on the client side and deserializes
the request from the client at the cloud side. It also
keep the client and the server in sync.

Offloading agent: This is the main module of the
MECH framework. The Offloading agent consists of
a set of cost estimation models like the delay or
execution time and the energy models. Based on the
received context information and the energy model, the
offloading manager decides on when, where and how
to offload the task/class. When a new task arrives, the
offloading agent intercept it before it can be executed
in the client operating system (OS). A check is then
made to see if the task can be offloaded or executed
locally. If there are devices in the cloudlet (a check
is made to see if there are devices registered in the
directory services) which are registered in the directory
service with enough resources to execute the task, the
offloadable class codes is then uploaded to the class
loader of the recipient device which then execute the
class code in the recipient OS, and after execution, the
results are loaded back to the offloading agent in the
client device.

Class loader: This is located in all recipient devices. It
receives the class codes from the offloading agent and
then execute them in the recipient OS and send back




the results to the offloading agent.

viii) Profile: Stores the device context information including
the battery SoC, average CPU utilization, memory
usage and computation speed.

ix) Energy measures: Contains the energy cost models
calculated in (2) and in (8) required for the offloading
decision.

x) Directory service: This stores a list of active recipient
mobile devices with their specifications like name, SoC
level and memory status. A device in close proximity
to the client device will advertise itself as a server and
will be stored in the directory service.

3.3. Computation Model

Each task of mobile user k is denoted as T, =
(Bk,Dk,tZ‘”). Here By, denotes the size of computation
input data in bytes (e.g., the program codes and input
parameters) involved in the computation task 7} and Dy
denotes the processing requirement in million instructions
required to accomplish the computation task 7j. The
variable t'*® denotes the maximum latency required by
the computation task 7} or the execution deadline in
milliseconds (ms).

3.3.1. Local Computation. Local computation is when the
mobile device k executes its computation task 7}, locally on
the mobile device. Denote F,ﬁ as the computation capability
of the mobile device user k£ in million instructions per
second (MIPS). It is assumed that mobile devices can
have various computation capability. The execution time for
executing task T}, for user k£ can be expressed as

Dy,
tlocal — —k 1
The energy expended by the mobile device user £ for local
computation can be expressed as

el = tioeal p, 2)

where P, is the power consumed by the device when active.
It is assumed that the only one application is running in the
mobile device and other application are deactivated in order
to get accurate energy models.

3.3.2. Mobile Device Cloudlet Computation. When a
mobile device chooses computing its task to the mobile
device cloudlet, the input data can be transmitted directly to
the nearby mobile devices which have sufficient resources
(memory, battery level, processing power). The mobile
device user would incur the extra overhead in terms of
time and energy for transmitting the computation input data
to the mobile device cloudlet. With respect to minimizing
execution time, offloading becomes worthy if the local
execution time (£:°°%!) exceeds the offloading execution
offleady which is the sum of remote execution

times (t,
time (£7¢"°*¢) plus uploading data time (tzpload) plus

downloading data time (t{°™). Also, th fload should be
less than the task delay deadline ¢7%®.

tiocal > tszload. (3)
tszload _ tzemute + tzpload + t(’iown )
Dy,
tzemote — (5)
Foerver
load _ Dsend

tzp oad _ sen (6)
Tupload

tdownload _ Drecei,ve (7)
¥ Tdown

where Fierer 1S the compute speed of the mobile device
in the cloudlet hosting the task 73 in MIPS. The variables
Dgeng and D,.cceive denotes the sent and received data
size in bytes respectively. The variables ryp10aqd and Tqouwn
denotes the upload and download data rates in bits per
second. The total offloading time to the cloudlet where
Fyerver 1s the computation ability of the devices in the
cloudlet. The total energy consumed by the mobile device
via offloading to the cloudlet can then be calculated as

eszload _ Dy, Pigio+ Dena P]z/,pload_F Dieceive Pgmnn
®)
where, Pige, PP, pdown denotes, the idle power
consumed by mobile device k during remote execution, the
power consumed during uploading Dg.,q and the power
consumped by k£ during downloading of D,cceive-

server Tupload Tupload

3.4. Problem formulation

The aim is to minimize energy consumption in the
mobile device by offloading some application tasks to the
mobile device cloudlet. The optimization problem can be
formulated as

NUE NUE

. Dy,
min (a1 Z téfc“lPa + ak’g(z Piae
ak,m server
k=1 k=1 )
+ Dsend P’fbpload + D’receive P]goum))
Tupload Tupload
such that, 077100 < ymaz e 1 (10)

where contraint (10) ensures that the delay constraint of
task T}, are met.

3.5. MECH Framework Flowchart

The flow chart in Fig. 4 shows operation of the
offloading manager which start with the arrival of a task,
Ty, If local execution time is less than the maximum delay
tolerable and the battery SoC > 20%, the task is executed
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Figure 4. The MECH framework flow chart.

locally. Else if the offloading delay deadlines are met and
energy is saved using offloading, the task is offloaded to the
cloudlet in case there are active recipients in the directory
service. The next task 7} then follows the same order in
the flow chart.

4. Simulation and Results

4.1. Simulation Settings

The proposed MECH framework is compared with
the energy efficient computation offloading (EECO)
mechanisms for MEC in [2] and the CANDIS framework
in [11]. The application to be considered is the
electroencephalogram (EEG) tractor game in [14] that
involves augmented brain-computer interaction. The game
is played between four mobile devices which act as clients
and these devices do not act as servers/recipients and only
one device among the four is considered for results analysis.
Fig. 5 shows the application model of the EEG tractor game
from a graph, G = {V, E}, where V is a set of vertices
denoting the application task modules/classes and E is the
edges which denotes data dependencies. EEG module is the
sensor that send EEG signals to the client. The client is the
mobile device, the display is also in the mobile device. The
concentration calculator determines the brain state of the
user from the sensed EEG signal values and calculates the
concentration level. This module informs the client module
about the measured concentration level so that the game state
of the player on the display can be updated. Coordinator

Concentration
calculator

‘—\\ Sensg

Congétration
Self_stateAlpdate
Global spéte update Coordlnator
Global_state_game

Figure 5. Application model for EEG game [14].

TABLE 1. DESCRIPTION OF INTER-MODULE SETTINGS [14].

Task type CPU length(MIPS) Size(bytes)
EEG 2000 500

sensor 3500 500
player_game_state 1000 1000
concentration 14 500
Global_state_game 1000 1000
Global_state_update 1000 500
Self_state_update 1000 500

works at the global level and coordinates the game between
multiple players that may be present at geographically
distributed locations. The coordinator continuously sends
the current state of the game to the client module of all
connected users.

The simulation was performed using iFogSim simulation
tool [14] which is an extension of cloudsim simulator.
The iFogSim is a toolkit for modelling and simulation of
resource management techniques in the internet of things
and MEC. Table 1 shows the settings used for the mobile
application considered.

4.2. Results Evaluation

Fig. 6 shows how the increase in the number of users
within the network varies with the energy consumed in
the client mobile device. The figure shows that the energy
consumption of local computation is constant since local
computation is not affected by the number of users in the
system. For the EECO scheme, as the number of users
increases, the energy consumption also increases because,
the EECO scheme offload tasks to a remote MEC server in
the BS location, where mobile devices share the bandwidth
and the higher the number of users, the less the bandwidth
allocated to each user causing poor transmission rate. The
poor or limited transmission rate results in high energy
consumption in the client mobile device. For the CANDIS
and the MECH schemes, as the number of users increases
in the system, the energy consumption in the client device
decreases because, more devices means the cloudlet is much
larger with more active users being able to act as recipient
and execute the tasks from the client in a parallel fashion.
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Figure 6. Number of users versus total power consumption on the mobile
device.

On average, the proposed scheme out perfoms the scheme
without offloading, the EECO and the CANDIS by 58%,
61% and 21% respectively.

Fig. 7 shows average total execution time (tzf fload
tﬁc"cal) for all the schemes which was calculated using (3)
and (4). On average, the scheme without offloading, the
EECO, CANDIS and the proposed MECH takes 9.5ms,
5.6ms, 4.1ms and 3.6ms to execute tasks respectively. The
MECH outperforms the scheme without offloading, the
EECO and CANDIS by 62%, 37% and 12% respectively.
The scheme without offloading performs poorly with high
execution time of 9.5ms because there are no remote servers
to execute tasks for the mobile device hence local execution
is chosen which takes a lot of time to finish execution. The
EECO scheme also has high execution time compared to
the proposed MECH scheme because in EECO, more delays
are inured when offloading the tasks far away at the MEC
server in the BS. The CANDIS scheme has slighlty higher
execution time of 4.1ms compared to 3.6ms for the proposed
MECH scheme because, in MECH, tasks are computed in
parallel in the cloudlet.

5. Conclusion

In this paper, a framework called MECH was proposed
for saving energy and improving execution time in the
mobile devices. In MECH, an application from the mobile
device is partitioned into modules/tasks which are offloaded
and executed in a mobile device cloudlet while taking into
consideration the transmission cost and delay. Simulation
results show that the proposed scheme is energy efficient
and reduce task execution time. For future considerations,
mobility of users will be considered and also the framework
will be extended for health and emergency situations.
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