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Abstract—Internet of Things (IoT) devices are progressively
being utilised in a variety of edge applications to monitor and
control home and industry infrastructure. Due to the limited
compute and energy resources, active security protections are
usually minimal in many IoT devices. This has created a critical
security challenge that has attracted researchers’ attention in the
field of network security. Despite a large number of proposed
Network Intrusion Detection Systems (NIDSs), there is limited
research into practical IoT implementations, and to the best of
our knowledge, no edge-based NIDS has been demonstrated to
operate on common low-power chipsets found in the majority
of IoT devices, such as the ESP8266. This research aims to
address this gap by pushing the boundaries on low-power
Machine Learning (ML) based NIDSs. We propose and develop
an efficient and low-power ML-based NIDS, and demonstrate
its applicability for IoT edge applications by running it on a
typical smart light bulb. We also evaluate our system against
other proposed edge-based NIDSs and show that our model has
a higher detection performance, and is significantly faster and
smaller, and therefore more applicable to a wider range of IoT
edge devices.

Index Terms—Network Intrusion Detection System (NIDS),
Machine Learning (ML), Internet of Things (IoT), Edge Com-
puting, ESP32 WROOM

I. INTRODUCTION

Internet of Things (IoT) edge devices are finding increasing
use and prevalence in powerful device ecosystems, ranging
from smart homes to remote sensor networks. There are also
industrial scale IoT systems (IIoT) which have significantly
higher levels of complexity than ordinary IoT Networks. It is
estimated that there are over 14 billion IoT endpoints in 2022
[1]. Because of their widespread usage, and their applications
in commercial industrial infrastructure, they have become the
target of various cyberattacks.

Despite the fact that IoT devices are used to monitor
and control ‘things’ from home security systems, through to
medical monitoring devices and industrial infrastructure, they
often do not have the same level of protection that can be
achieved on servers and workstations. This is to a large extent
due to their limited compute and energy resources, and their
application in a diverse range of networks that make it more
difficult to implement cybersecurity controls.

While there are many documented cases of compromise
of IoT edge devices, including the incredibly damaging Mirai
botnet in 2016 that compromised over 600K edge and embed-
ded devices [2], the average consumer does not have access
to high grade network intrusion detection systems (NIDSs)

Figure 1. A photo of a typical consumer grade ‘Tuya’ compatible smart light
bulb that we use for our NIDS light bulb demonstration2

that could be used to detect and protect against these types
of attacks. An edge-based NIDS can enable a fast reaction
to attacks against IoT devices and networks, without needing
to centrally process data. This decentralised processing also
improves privacy, by allowing data to be kept local, at the
edge of the network.

This security risk has not gone unnoticed in the research
community, and there are works proposing several IoT com-
patible NIDSs, which we discuss in this paper. However, many
of these proposals are theoretical and do not evaluate their
models on actual edge hardware. Some works were also tested
on relatively high-power edge devices, such as Google’s Edge
TPU or Raspberry Pi [3], which are unlikely to be widely
deployed in typical IoT devices and smart home networks. A
number of frameworks exist with the aim of bringing machine
learning to the edge, such as TensorFlow Lite [4]. However,
NIDS models built using these frameworks are often still
inaccessible to low-power microcontrollers [5]. The models
in the literature we surveyed, based on TensorFlow Lite,
have a large memory footprint, leaving little room for other
functionality on typical low-end IoT devices.

To address this gap, this research aims to push the bounds
on what is possible in a low compute power environment, and
to demonstrate that high accuracy network intrusion detection
can be brought to the wider IoT domain. We propose, develop
and evaluate a high performance NIDS capable of running

2This is a picture of a newer model that uses the Tuya WB2L SoC, we
use an earlier version with the ESP8266 microcontroller
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Lightbulb during normal traffic After detecting an attack

Figure 2. An example of our light bulb NIDS running on an ESP8266
microcontroller on a modified consumer smart light bulb. Green indicates
normal traffic, whereas red indicates an attack has been detected.

on the lowest power conventional edge microprocessors. We
show that the performance of this NIDS is comparable to the
existing approaches proposed in the literature, while being
significantly faster and more lightweight. To further demon-
strate the applicability of the proposed NIDS at the IoT edge,
we deploy it on a typical smart light bulb, and demonstrate
the world’s first NIDS in a light bulb. A similar smart
light bulb is shown in Figure 1. To do this, we replace the
ESP8266 microcontroller on a consumer smart light bulb, with
a transplant ESP8266 microcontroller featuring our modified
NIDS firmware. Then as a fun way to demonstrate our NIDS
running on the smart bulb, we control the colour of the light
emitted by the bulb, i.e. green during normal operation, and
red when an attack is detected, shown in Figure 2.

The key contribution of this paper is the proposal, imple-
mentation, and evaluation of an extremely lightweight NIDS,
capable of functioning on the lowest-power IoT devices. We
have made the code publicly available here 3. Based on our
experimental evaluation, our system outperforms the state-of-
the-art IoT NIDS proposals on IoT hardware both in terms of
detection accuracy, detection speed and resource requirements.

II. RELATED WORKS

There have been several efforts to develop lightweight and
scalable machine learning systems for use in IoT devices
and networks. There are many previous works that adopt a
signature-based approach for intrusion detection. However,
signature based detection suffers from the limitation that
signatures must be manually updated. Since this paper focuses
on ML-based NIDSs, these works have not been included in
our discussion.

In terms of machine learning based NIDS, these can be
grouped into shallow learning and deep learning. The authors
in [6] and [7] surveyed several approaches to NIDSs in IoT
devices, and found a variety of works that used shallow learn-
ing to great success. For example, [8] evaluated five classifiers
following feature selection, PCA based anomaly detection, a
local deep SVM, a logistic regression and a boosted decision
tree. Across three benchmark datasets, the authors showed
100% accuracy for all approaches other than PCA. There are
also several proposed approaches in the literature that utilise

3Code available at https://rft.io/lightbulb

deep learning models. For instance, [9] uses a multi-layer
perceptron (MLP) model, which is a fully connected dense
artificial neural network, to achieve 99.4% accuracy. There
are also several deep unsupervised approaches, such as [10],
which showed that using an autoencoder, a sufficiently low
reconstruction loss could be achieved for networking data, to
facilitate an IoT compatible anomaly detection system. More
advanced forms of neural networks, such as graph neural
networks, have also been proposed for IoT devices [11], and
these have achieved F1 scores of 0.81 on two IoT benchmark
datasets. However, these systems discussed here that have
achieved 99%+ accuracy were not tested on real IoT hardware.

There has been a limited number of works that have tested
proposed NIDSs on real IoT hardware. The use of Google’s
Edge TPU platform has been explored for use with NIDS
models [3]. Here, the authors compared the performance of
a convolutional neural network (CNN) running on a Google
Edge TPU with that of a Raspberry Pi (Cortex-A53), and
demonstrated fast performance as well as 0.98+ F1 scores.
However, both Edge TPU and Raspberry Pi have significantly
more processing power than the average IoT smart device.
[5] is the most relevant to our work, since it implements a
deep learning based NIDS on several lower power hardware
platforms [5], including ESP32-WROOM-32, ESP8266 and
ATmega328p. The authors used TensorFlow Lite for their
approach, which allowed them to bring a pre-trained neural
network model to various microcontrollers [4]. They were able
to achieve 96.7% detection accuracy on the ESP32-WROOM-
32. However, the proposed model was too large to be deployed
on low-end devices such as ATMega328p. Furthermore, the
authors’ ESP8266 implementation used nearly 100% of the
device’s memory, making it impractical for parallel deploy-
ment to an existing low-end IoT device, where a significant
amount of memory is likely required for the code and data of
the devices’ core functionality.

There exist several solutions, outside of TensorFlow Lite,
that allow machine learning models to be brought to mi-
crocontrollers. Of particular interest here are solutions that
can convert models developed in scikit-learn [12], another
widely used machine learning framework, to microcontroller
compatible code. These tools, which include sklearn-porter,
and EmbML [13], are capable of porting pre-trained scikit-
learn models to microcontrollers. However, unlike Tensorflow
Lite which is primarily focused on deep learning models,
scikit-learn features many shallow learning approaches. To
the best of our knowledge, no previous work has used these
techniques to take pre-trained NIDS models and run them on
IoT hardware.

In summary, although there are many works that demon-
strate high accuracy for IoT NIDSs when tested on benchmark
data, there has been relatively limited experimental research
into the practical implementation and deployment of NIDSs
on IoT edge hardware. The research that has been conducted
to date delivers NIDSs that either require too much processing
power to operate, or would utilise too much of device re-
sources to be applicable as part of a smart device with inbuilt



intrusion detection functionality. Our work presented in this
paper aims to address this gap by proposing, implementing
and evaluating a high-performance ML-based NIDS, capable
of running on resource-constrained edge IoT devices.

III. LIGHTBULB NIDS
A. Datasets

For training and evaluating the performance of ML-based
NIDSs, data is required. For this, there are publicly available
and highly cited benchmark datasets. These datasets are usu-
ally captures of network data generated synthetically or on test
beds, designed for NIDS research. Since the main approaches
to obtain network traffic include packet-capture (pcap) and
flow-based traffic collection, publicly available NIDS datasets
are often represented in one or both of these formats. In the
packet-based approach, the full packet headers and payloads
are captured as they are sent across the network. In the flow-
based approach, only aggregate information about the network
traffic is collected, based on the sequence of packets between
two endpoints. There are many formats of flow based data.

As a first step in the design of our proposed NIDS for
edge IoT, it is important to decide on the format of the
input data. Continuous packet-based network monitoring is
very resource intensive, and is typically not feasible for large
scale networks, particularly large-scale IoT networks, where
thousands of devices may communicate their status in a short
time period. Flow-based network traffic monitoring, on the
other hand, is more scalable and includes less information
and thus has fewer security and privacy issues. Accordingly,
we chose the NetFlow as the data format in this study, which
is also consistent with prior works in this space [5] [3].

This paper considers five different widely used and highly
cited NIDS datasets.

1) Ton-IoT, an IoT and industrial IoT dataset featuring
‘various attacking techniques, such as DoS, DDoS and ran-
somware, against web applications, IoT gateways and com-
puter systems across the IoT/IIoT network’ [14]

2) BoT-IoT, an IoT dataset featuring various botnet traffic,
including ‘DDoS, DoS, OS and Service Scan, Keylogging and
Data exfiltration attacks’ [15]

3) MQTT-IoT-IDS2020 (MQTT), an IoT dataset where ‘five
scenarios are recorded: normal operation, aggressive scan,
UDP scan, Sparta, SSH brute-force, and MQTT brute-force
attack.’ [16].

4) UNSW-NB15, an NIDS dataset for traditional networks
featuring ‘a hybrid of real modern normal activities and
synthetic contemporary attack behaviours’ with ‘nine types of
attacks, namely, Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode and Worms’ [17]

5) CSE-CIC-IDS2018, an NIDS dataset for traditional net-
works including ‘seven different attack scenarios: Brute-force,
Heartbleed, Botnet, DoS, DDoS, Web attacks, and infiltration
of the network from inside’ [18]
These datasets which form the basis of our evaluation,
represent a range of several classes of network traffic and
attack types. These datasets are available in different feature

sets. For the BoT-IoT, ToN-IoT, UNSW-NB15 and CSE-CIC-
IDS2018 datasets, we used the version of these converted
to a standardised flow format which was proposed by [19].
Works using these derivative datasets have shown comparable
performance to works using the datasets in their original
packet capture format. For the MQTT dataset, we use the
published bidirectional flow format data released with the
original capture.

B. Model Choice

Finding a suitable machine learning model, which can
satisfy the requirements of an efficient and lightweight NIDS
at the IoT edge, is critical. While Deep Learning (DL) models
have been shown to be very successful in the implementation
of ML-based NIDSs in general networks [5], they usually need
a large amount of memory and compute resources. As such,
we considered several Shallow Learning approaches that are
known to be less resource intensive, and we decided to use
a decision tree model based on its generally low complexity
and high classification performance.

This model choice is supported by the literature, several
related works demonstrate that tree-based models can be
effectively used for NIDSs, including [20], [8] and [21].
In [20] a 95.25% detection accuracy with a random forest
on the Kyoto 2016 dataset is achieved. In [8] an accuracy
of 100% with three benchmark datasets is achieved using a
boosted tree. Finally, in [21] a decision tree with sensitive
pruning is applied to the GureKDDCup dataset to achieve
99%+ accuracy. In addition to these previous works, three
other factors motivated our use of decision trees:

1) The results of our early experimentation showed compa-
rable accuracy of tree based models to that of larger machine
learning models, such as random forests [20] and even neural
networks [5].

2) It can be expected that the number of instructions re-
quired to implement a decision tree would be far fewer than
other types of shallow machine learning models such as
random forests, while also balancing predictive power versus
‘too simple’ models such as linear support vector classifiers.

3) Decision trees have decision paths that can be easily anal-
ysed for model interpretability. They also translate logically to
code that can be easily read and interpreted by programmers.
This property was noted in [21] as an advantage.

Despite the use of tree based models in previous works,
we were unable to find an implementation of these models
on actual IoT hardware. We therefore aimed to investigate the
implementation of decision trees, with the goal of balancing
low complexity and resource requirements with high detection
performance, both in terms of accuracy and speed.

C. Pre-processing

Figure 3 shows the basic stages of our approach. This
involves training a machine learning model using benchmark
datasets offline, and then testing this pre-trained model on
real IoT edge hardware. As can be seen, the first stage in this
pipeline is pre-processing, which involves transforming data
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Figure 3. Our approach begins with the offline pre-processing of data and
training the machine learning model, followed by the deployment of this
pre-trained model to an IoT device which can ingest flow data in real-time.

into a format that is suitable for machine learning models.
Decisions regarding pre-processing must take into account the
data format, as well as the type of model being used.

As previously discussed, for the purposes of this work,
we ingest data in flow-based format. Despite this format
being a very common and useful representation for network
administrators, it typically requires some processing to make
it suitable for use in a machine learning model. Network
data in flow format has several fields that are categorical.
For example, TCP and UDP port numbers. Although ports 22
(SSH) and 25 (SMTP) are close numerically, they represent
vastly different protocols. Whereas port 8080 and port 443 are
both commonly used for HTTPS despite the larger numerical
difference. Certain machine learning models, such as neural
networks, typically function best when the distances between
values represent some contextual distance. There are several
standard approaches to pre-processing that can be applied
to categorical data to solve these issues, such as ordinal,
frequency, or target encoding. In addition to the categorical
fields, there are several numerical fields in flow based data,
such as the number of bytes or packets. Numerical data is
often standardised prior to use in machine learning, to ensures
that the inter-feature variance is equal. This can help in the
training of certain classes of machine learning models.

However, as discussed, pre-processing must also be done
with consideration of the model being trained. Because tree
based models work by splitting data and since this can
be done at an arbitrary point, regardless of scale, they are
somewhat robust to data that has not been pre-processed
both in terms of categorical data or unscaled numerical data.
This is in contrast to neural networks that typically require
significant pre-processing. We tested tree based models with
and without pre-processing and found that the performance
was comparable, these results are shown in Table I. In later
investigations, we found that pre-processing also increased the

Table I
PERFORMANCE OF A LOW MAX-DEPTH DECISION TREE MODEL, WITH

AND WITHOUT PRE-PROCESSING

Dataset
(Balanced Accuracy)

With
Pre-processing

No
Pre-processing

ToN-IoT 98.75% 98.70%
BoT-IoT 98.70% 98.70%

Table II
HYPERPARAMETERS CHOSEN FOR OUR DECISION TREE MODEL

Hyperparameter Value
Max Depth 6-10

Max Features Uncapped
Criterion Gini
Splitter Best

CCP Alpha 0.0001

inference time. Because of this, we opted to not perform pre-
processing. As the flow format data we are using expresses all
features as numeric data types, these can be directly handled
by decision tree models.

In order to ensure stable model training offline, we did
ensure that training data had a balanced representation of the
benign and attack class. Training on imbalanced data is a
significant challenge for many models, and we solve this by
using random under sampling to collect a balanced training
dataset that is smaller than the overall dataset. However, we
perform a separate cross validated evaluation step to ensure
that all samples are considered when performing evaluation,
using metrics that are resistant to imbalance such as balanced
accuracy or F1 score.

2 4 6 8 10
Max Depth

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Ba
la

nc
ed

 A
cc

ur
ac

y 
(%

)

Figure 4. Averaged performance of various decision tree depths when trained
on the BoT-IoT training split, versus their balanced accuracy on the holdout
data split. We can see that models with a depth greater than 6 all converge to
an accuracy of near 100% performance. The line at 98.5% shows our initial
acceptance criteria, so we can rule out depths below 4.



D. Training and Model Hyperparameters

To train the models, we used the Python language and the
scikit-learn library for machine learning models. Scikit-learn
is a commonly used machine learning library in scientific
research, and is an open source tool accessible to machine
learning researchers [12].

Within scikit-learn, we used the Decision Tree Classifier.
The hyperparameters of our decision tree are shown in Ta-
ble II; they represent the default values used in the used
library, except for the ones specifically discussed below. There
are several parameters that can be varied when using decision
trees, but the most important one is the max depth of the tree.
We performed an initial systematic search of the max-depth
parameter space between a max-depth of 2 and 12, on the
BoT IoT dataset, to determine which candidate depths had
an acceptable balanced accuracy. Here we used traditional
holdout evaluation rather than cross validation. The results
of this are shown in Figure 4. This allowed us to pick 6 and
10 as max-depth targets for investigation, 6 being the lowest
depth with a reasonable accuracy of >98.5% and 10 at the
point of diminishing return where all later depths were near
100% accuracy. We also tested depth 5 and depth 12 which
lie slightly outside this range.

Our second non-standard parameter choice is the Cost
Complexity Pruning (CCP) Alpha, which is only relevant if
cost complexity pruning is used. Cost Complexity Pruning is
a common method used to address overfitting, and has also
been shown experimentally to produce significantly smaller
decision trees with similar detection accuracy [22]. This was
confirmed during our initial investigation, in which we found
that using a CCP Alpha value of 0.0001 reduced the number
of features and model size, without diminishing the accuracy
significantly.

One of the other common parameter choices is the Max
Features parameter, which is used during the initial tree fitting
to limit the number of features to split on. However, our tests
indicated that leaving this uncapped yielded the best results.
We also used the Gini index, with a splitting strategy of best,
which is the default for the scikit-learn library. The Gini index
can be thought of as the purity of a given set of observations,
with 0 indicating all observations belong to a single class,
and 1 indicating a random distribution between all classes.
This is used to determine how to split a tree as part of the
classification and regression trees algorithm (CART), which
chooses the feature to split on at each node to achieve the best
or highest purity. This was achieved in earlier decision tree
algorithms such as ID3 or C4.5 by maximising the information
gain at each node. Scikit-learn [12] utilises an optimised
version of the CART algorithm.

E. Transferring a Trained Model to a Microcontroller

To convert our models to C-code for use by a microcon-
troller, we developed a source-to-source converter in Python
that accepts a scikit-learn tree model, and converts the tree
into C code. This C code is then injected into a template that
can be complied for a target microcontroller. This template

Converted

scikit-learn export_text
AVR Compatible C Code

Figure 5. Our source-to-source translator accepts a scikit-learn decision tree,
and uses the output from the scikit-learn export text function to convert this
into a C decision tree.

includes the functionality to read the flow data from the serial
port, as well as the ability to time the model. An example
of this conversion is shown in Figure 5. Our approach is
different to those used in other scikit-learn frameworks, as
we utilise nested if statements to express decision trees. Other
approaches utilise recursion for each depth as well as a global
array of thresholds, but we expect that our approach utilising
nesting will compile to a smaller number of instructions, when
used for smaller decision trees such as those in our proposed
NIDS.

IV. EXPERIMENTAL METHODOLOGY

In this section, we discuss how we evaluate our proposed
approach.

A. Microcontroller

We evaluate our work against three low-power microcon-
trollers, shown in Table III. We refer to the ESP32 Node MCU
as ESP32, the NodeMCU Lua Lolin V3 as ESP8266, and the
Arduino Uno as ATMega328p, based on their chipset. These
represent three of the lowest-power IoT devices in widespread
use, with the ESP8266 having found widespread applications
in all manners of smart devices, from smart light bulbs to
entry control systems. The ESP32 is a slightly more powerful
device, but still finds use in higher-end IoT devices. The
ATMega328p on the other hand is the chip powering several
Arduino products. Arduino has found widespread use in the
hobbyist space. Despite its low power, there exists several
shields that can enable the Arduino Uno to connect to the
internet via Ethernet or Wi-Fi. We chose these devices because
they allow us to compare our system’s performance in the case
of typical IoT devices.

Table III
CHARACTERISTICS OF THE THREE DEVICES USED IN THIS WORK.

IoT Device Chipset Processor SRAM
ESP32 NodeMCU ESP32-WROOM-32 240MHz 520KB

NodeMCU Lua Lolin V3 ESP8266MOD 12-F 80MHz 64KB
Arduino Uno ATmega328P 16MHz 2KB



Read next record from serial

Start timer

Call model predict method on
loaded record

Repeat 100,000x

Stop timer

Write timing data to serial

Serial

Serial

Desktop

Serial

Microcontroller
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Figure 6. Our setup uses the onboard device clock to measure the inference
time. To do this, we send flow records via serial and convert this into
numerical features on the device. We then call the predict method on these
features 100,000 times, timing how long this takes, before sending this timing
data to the computer and proceeding to the next record.

B. Measuring inference time

To measure inference time was relatively challenging, given
that the onboard timer cannot necessarily be expected to have
a reliable microsecond resolution. In addition, the ‘micros()’
clock returns an integer, which does not allow us to measure
fractions of microseconds. To adjust for this inaccuracy, as can
be seen in Figure 6, we repeated calls to the predict function
100,000 times for each flow record, and then divided the total
time taken for this to get the average inference time per record.
Here, caution needs to be taken to ensure that the inference
method is not optimised out during compilation, and that the
results from repeated function calls are not cached at the CPU
level during execution.

In our experiment, we send flow records to the device via
the serial port for convenience. In order to not distort the
inference time measurement, we do not consider the transfer
time.

In a practical deployment of our NIDS in an IoT device,
flow records would be generated in real-time from the network
traffic observed on the Wi-Fi interface, and exported locally
on the IoT device before being considered by the ML-based
traffic classifier. However, because we are using benchmark
datasets for testing, we instead send these records directly to
the device.

C. Measuring Accuracy

For accuracy measurement, we used the same model pa-
rameters as when testing inference time, however, we apply
repeated stratified cross validation with 5 splits and 5 repeats,
measuring the balanced accuracy and F1 score of each of
these splits. This splits the dataset into 5 different balanced
groups, and computes the validation accuracy holding out each
of these groups in turn, averaging this, and then averaging this

Table IV
OUR SOLUTION WHEN COMPARED TO SKLEARN-PORTER FOR

TRANSLATING THE SAME DEPTH 12 DECISION TREE TO C CODE

Approach Inference 
Time / Flow

Size 
-O0 (-O3)

BSS 
-O0 (-O3)

Our System 1.53µs 4174B (3414B) 96B (96B)
sklearn-porter 3.40µs 8902B (8670B) 8B (4B)

Size is measured with the Linux tool ‘size’ given after compilation with
GCC at optimisation level 0 (-O0) and 3 (-O3) respectively. Here, BSS (block
starting symbol) size can be considered the size of global variables.

Table V
THE AVERAGE INFERENCE TIME PER FLOW FOR VARYING MODEL DEPTHS

MQTT BoT-IoT ToN-IoT
5 0.54μs 0.75μs 0.91μs
6 0.62μs 0.76μs 0.99μs

10 0.64μs 0.76μs 1.27μs
12 0.64μs 0.76μs 1.33μs
5 0.99μs 1.32μs 1.48μs
6 1.14μs 1.33μs 1.47μs

10 1.13μs 1.34μs 2.02μs
12 1.13μs 1.37μs 2.77μs
5 8.76μs 12.40μs 15.89μs
6 12.19μs 12.33μs 17.71μs

10 12.22μs 12.30μs 22.87μs
12 12.22μs 12.26μs 24.40μs

IoT Device Depth Inference Time / Flow

ESP32

ESP8266

ATMega328p

across 5 repeats of other random groupings. This provides the
most robust and reliable accuracy data, which is more likely
to detect model overfitting. Because cross validation does not
by default yield a single trained model that can be deployed,
for timing results, we instead split data into a training and
testing dataset, using standard holdout evaluation for accuracy.
However, these scores are all in the 99.5%+ range even for
model depths of 5, as can be seen with the performances found
in our initial investigation in Figure 4.

V. RESULTS

A. Comparison to other Source-to-source Converters

We begin by evaluating our choice to write a custom source-
to-source converter for transforming the scikit-learn decision
tree to a format that can be used on a microcontroller. As
discussed in the literature review, other tools do exist for
the conversion of scikit-learn machine learning models to C-
code. However, we hypothesised that a lean small decision tree
focused approach could yield more optimised code compared
to a general library. To test this, we compared our code
transformer to that of sklearn-porter in terms of program size
as well as inference time. The results are shown in Table IV.

Here we compared the same depth 12 decision tree model,
with the same bare-bones boilerplate code, substituting only
the predict method with either the predict method generated by



Table VI
THE BALANCED ACCURACY (BACC.) AND F1 SCORES (F1 IS EXPRESSED AS A PERCENT FOR CONVENIENCE) OF THE CROSS VALIDATED RESULTS ON

BOTH TRADITIONAL AND IOT DATASETS FOR VARIOUS MODEL MAX DEPTHS. BEST RESULT IS HIGHLIGHTED IN BOLD.

BAcc. F1 BAcc. F1 BAcc. F1 BAcc. F1 BAcc. F1
5 97.07% 96.98% 99.76% 99.76% 95.73% 95.77% 99.90% 99.90% 99.74% 99.74%
6 97.78% 97.73% 99.76% 99.76% 96.30% 96.40% 99.94% 99.94% 99.75% 9.75%

10 98.09% 98.05% 99.76% 99.76% 98.79% 98.80% 99.96% 99.96% 99.93% 99.93%
12 98.13% 98.09% 99.76% 99.76% 99.03% 99.04% 99.36% 99.36% 99.92% 99.92%

Best Acc.

Model 
Depth

MQTT-IoT-IDS2020

99.92%

IoT IDS DatasetsTraditional IDS Datasets

98.13% 99.03% 99.96%99.76%

CSE-CIC-IDS2018 ToN-IoT BoT-IoTUNSW-NB15

sklearn-porter or by our converter. We used the GCC compiler
with the ‘-O0‘ option to compare un-optimised program sizes,
as well as ‘-O3‘ to compare sizes after optimisation. Timing
data is from the deployment of this version of the model to
the ESP32 with the ToN-IoT dataset at depth 12, although
Table IV shows a different trained model than in Table V. We
can see from Table IV that our program has a significantly
smaller memory footprint than sklearn-porter, as well as a
lower inference time. We believe this is due to the logic
used for the source-to-source conversion. For our solution
with a relatively low decision tree depth, our nested ‘if-then’
logic produces relatively simple and inexpensive chains of
comparison instructions. In contrast, sklearn-porter uses four
integer arrays to store child nodes, as well as a large double
array for thresholds. This contributes to a larger memory
footprint. In addition, it uses recursive iteration for each layer
of the tree, and at each layer of the tree iterates over the entire
class array. This produces more condensed code in terms of
number of lines, but may require additional operations for
smaller trees compared to our approach.

However, our approach did have a higher Block Starting
Symbol (BSS) which indicates we have more global variables.
This is because we initialise a set of global variables for

each feature in a flow record, and process the incoming flows
directly into these variables to remove the need for parameter
passing. This is still however well under 10% of the dynamic
memory of the ATMega328p, which is one of the lowest-
power practical microcontrollers, so this is not a significant
factor.

B. Detection Accuracy and Performance

Table V shows the inference time per flow for our model,
for each of the three considered benchmark datasets. We can
see that CPU speed is reflected in inference time, as is the
depth, although the impact of depth is minor. Finally, the
results are roughly consistent between datasets, with ToN-IoT
having the longest inference times. Table VI shows the cross
validated detection accuracy in terms of balanced accuracy
and model scores for our model, for each of the five datasets.
We can see that for most datasets the accuracy improves with
model depth, but this is only a small improvement, and that for
a depth 12 model, 99%+ accuracy is achieved for all three IoT
datasets, and 98%+ for the traditional network NIDS datasets.
Based on the accuracy and inference time results, we decided
to compare our model at depth twelve, to models in the related
works.

Table VII
THE INFERENCE TIME AND PERFORMANCE OF OUR DEPTH 12 MODEL VERSUS OTHER MODELS IN THE LITERATURE

Device Clock Speed Model Inference
Time Accuracy Datasets

ATMega328p 16MHz Decision Tree 15.80μs
ESP8266 80MHz Decision Tree 1.50μs

ESP32-WROOM-32 240MHz Decision Tree 0.89μs
ATMega328p 16MHz Neural Net. MQTT

ESP8266 80MHz Neural Net. ~2μs 96.69% MQTT
ESP32-WROOM-32 240MHz Neural Net. ~2μs 97.21% MQTT

Cortex-A53 2C@2.30GHz Neural Net. ~1μs 99.74% MQTT
Cortex-A53 2C@2.30GHz CNN (6000kb) 25-200ms 98.4% ToN-IoT
Edge TPU ASIC 4T op/sec CNN (6000kb) 1-10ms 98.4% ToN-IoT

Solution

Exploring Edge TPU 
for ... [3]

Lightbulb NIDS
99.36% (BoT)
99.03% (ToN)

99.92% (MQTT)

BoT-IoT
ToN-IoT
MQTT

A Lightweight 
Optimized Deep 
Learning … [5]

Did not fit on device



Table VII shows these key metrics compared with two
related works. We give the average inference time of our depth
12 model across all three IoT datasets as per Table V. We also
use accuracy results from our depth 12 model as per Table VI.
We only consider the IoT specific datasets for comparison.
Our model achieved a higher accuracy than other approaches,
even than those on more powerful hardware. Additionally,
the results of our experiments show that our decision tree
was able to function at a significantly faster speed than the
related works. For example, our model on the ESP32 had an
inference time of 0.89 microseconds, whereas [5] took almost
twice as long. Also, the accuracy of our model was 99.92%
on the MQTT dataset, compared to 97.21% of [5] on the same
dataset. Our solution on the ESP32 is even faster than models
from [5] and [3] which ran on the significantly more powerful
Raspberry Pi. In addition, [5] was unable to fit a machine
learning model on the Atmega328p, and the ESP8266 model
had a lower accuracy due to the significant model compression
used. Our uncompressed model was able to fit on both these
devices with 99%+ accuracy, and a sub-millisecond inference
time on the ATMega328p.

VI. CONCLUSION

In this paper, we present a highly efficient machine learning
based NIDS that is deployable on extremely resource con-
strained IoT devices, such as a typical smart light bulb. Our
experimental evaluation shows that our system outperforms
the relevant state-of-the-art IoT NIDS solutions both in terms
of detection accuracy and speed. Another key benefit of our
solution is its extremely low memory footprint. For example,
the size of our model at export only occupies around 10% of
the program space of the highly popular ESP8266 microcon-
troller, compared to the near 90% utilisation of a comparable
TensorFlow Lite model [5]. This means that our model can be
deployed on low-end IoT devices as an add-on service via a
software upgrade. This opens up new possibilities to provide
enhanced low-cost security services for IoT networks, which
are under increasing threats of cyberattacks.
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