
Partitioning and Placement of Deep Neural
Networks on Distributed Edge Devices to Maximize

Inference Throughput
Arjun Parthasarathy

Crystal Springs Uplands School
Email: aparthasarathy23@csus.org

Bhaskar Krishnamachari
University of Southern California

Email: bkrishna@usc.edu

Abstract—Edge inference has become more widespread, as its
diverse applications range from retail to wearable technology.
Clusters of networked resource-constrained edge devices are
becoming common, yet no system exists to split a DNN across
these clusters while maximizing the inference throughput of the
system. We present an algorithm which partitions DNNs and
distributes them across a set of edge devices with the goal of
minimizing the bottleneck latency and therefore maximizing
inference throughput. The system scales well to systems of
different node memory capacities and numbers of nodes. We find
that we can reduce the bottleneck latency by 10x over a random
algorithm and 35% over a greedy joint partitioning-placement
algorithm. Furthermore we find empirically that for the set of
representative models we tested, the algorithm produces results
within 9.2% of the optimal bottleneck latency.

I. INTRODUCTION

Deep Neural Networks (DNNs) have greatly accelerated
machine learning across different disciplines, such as Com-
puter Vision [5] and Natural Language Processing [21]. Edge
Inference is becoming an increasingly popular field with mul-
tiple facets [33], as sensor-driven computation in IoT systems
necessitates DNN inference in the field. IoT applications for
edge inference range from retail to wearable technology [4],
[6].

The edge can come in multiple configurations [19], [28],
and there are multiple approaches to facilitate edge infer-
ence. For cloud-edge hybrid inference, one such approach
is model compression [11], which deals exclusively with
DNN optimization but does not address the system’s runtime
configuration. In this paper, we focus on clusters of resource-
constrained edge devices. These edge clusters are becoming
increasingly common due to their low-cost and scalability at
the edge [24]. Unlike a cloud data center, the edge brings
system resource limitations and communication bottlenecks
between devices.

With this in mind, we address the following problem: How
can we take advantage of multi-device edge clusters to
enable high-performance DNN inference while respecting
computational resource constraints and taking into ac-
count the heterogeneity of communication links?

To partition a deep learning model, we first split the
model into components that are executed sequentially. Each
partition is assigned to a different edge device, and once each

Fig. 1: Partitioning and Distributing a Model Across Edge
Devices to Create an Inference Pipeline

node performs inference with its piece of the model, that
intermediate inference result is sent to the next node with
the corresponding partition in the sequence. This inference
pipeline is shown in Figure 1.

In an edge cluster, although we have a lower computational
power in each node, we can take advantage of this inference
pipelining to increase system throughput. Since each node can
perform inference with its partition individually, prior nodes
in the pipeline can send their finished inference results to the
subsequent nodes in the pipeline and accept new batches.

We define the throughput metric of a system as the number
of inference cycles it can perform per unit time. As we
showed in our previous work DEFER [23], we can achieve
higher throughput with distributed edge inference as opposed
to inference on a single device because of pipelining. The
throughput is defined as the reciprocal of the bottleneck
latency. For nodes [k] = {1, 2, . . . , k}, the bottleneck latency
β is defined as

S = {k ∈ [k] | ck, γk}
β = maxs∈S s

(1)

where ck is the compute time of the operations on node k,
and γk is the communication time between node k − 1 and
k. We use ResNet50 [12], which is a representative model
for our use case. On a Raspberry Pi 4, the inference speed
was found to be 225 ms [25]. Next, we found the amount

ar
X

iv
:2

21
0.

12
21

9v
1

 [
cs

.N
I]

 2
1

O
ct

 2
02

2

of data transferred between each layer of the model. On
average, 10.2 Mbits of data was transferred between layers.
Given an average WiFi bandwidth of 6 Mbps for a low-end
edge network, this gives us a communication time of 1.7s.
This is 7.5x slower than the compute time. In reality, many
models are larger than ResNet50 and will therefore be split
across devices, so each device will have less operations to
execute. This means that communication time will outweigh
compute time as the bottleneck. Therefore, we can simplify
the expression for bottleneck latency to the following:

β = max
k∈[k]

γk (2)

Since throughput is defined as 1
β , by minimizing the bottle-

neck latency we maximize inference throughput. Additionally,
we assume that all nodes are homogeneous in RAM. If the
devices are not the same capacity, then the algorithm will
take the smallest memory capacity across all nodes in the
cluster, and take that as the capacity of each node. In this
paper, we primarily analyze image and text models due to
their prevalence on the edge for visual analytics applications
[22], [34].

Our main contribution in this paper is a novel partitioning
and placement algorithm for DNNs across a cluster of edge
devices distributed spatially within the same WiFi network.
The algorithm finds the candidate partition points, finds the
optimal partition sizes to transfer the least amount of data, and
finds the arrangement of nodes with the highest bandwidth.
Together, these aim to minimize the resulting bottleneck
latency according to the throughput metric. We found that
our algorithm results in a 10x improvement over a random
partitioning/placement algorithm, and a 35% reduction in
bottleneck latency for systems with 50 compute nodes. We
empirically observe an average approximation ratio of 1.092
for the bottleneck latency (i.e. it is 9.2% more than the optimal
bottleneck latency, on average).

II. RELATED WORK

Early works on the topic of partitioning DNN models di-
vided them into head and tail models with the former distilled
to enable running on a resource-constrained device and reduce
data transfer [20]. Some prior works on DNN edge inference
mathematically perform DNN model slicing by layer [35],
[36], after calculating layer impact during the training stage;
these do not account for communication demands on the
edge. Others abstract model layers into certain “execution
units,” [7], [17] which they then choose to slice based on
certain resource requirements. Li et al. [16] regressively
predict a layer’s latency demand and optimize communication
bandwidth accordingly. DeeperThings [29] performs layer
fusion on CNNs to optimize data transfer. These works are
optimized for a hybrid edge-cloud pipeline and do not address
the demands of a cluster of edge devices. Couper [13] uses
a similar partitioning scheme to minimize inter-partition data
transfer, but does not address the communication bottleneck

associated with an edge cluster. Hu et. al [14] optimize
the partitioning of a CNN onto a set of devices by taking
compute time as a bottleneck, while employing compression
to deal with communication constraints, and do not consider
placement. Our paper builds on and differentiates itself from
these works by addressing the bandwidth limitation of an edge
cluster, and aims to maximize inter-node bandwidth during
the placement stage to minimize bottleneck latency.

III. PARTITIONING AND PLACEMENT ALGORITHM

We are given two graphs:
1) An unweighted DAG Gm representing the computation

graph of a DNN, where each vertex represents a layer in
the model. This DAG can be found using common ML
libraries such as Tensorflow [1] and Keras [8].

2) A weighted complete graph Gc representing the com-
munication graph of a cluster of homogeneous physical
compute nodes, where each vertex represents a physical
compute node and each edge represents the bandwidth
between those nodes. The graph is complete because we
assume that these edge devices will communicate over
the same WiFi network.

Our goal is to optimally partition the model and place these
partitions on a set of edge devices. We do so as follows.

A. Converting a Complex DAG to a Linear DAG

First, we need to distill Gm into a linear DAG. The
vertices where it is possible to partition the model are called
“candidate partition points.” We illustrate this in Figure 2.

For v ∈ V , edges e ∈ E and source vertex s of Gm, find the
longest path from s to v. This can be done by topologically
sorting the DAG and for each vertex in the resulting list,
relaxing each neighbor of that vertex. We call the length of
this longest path the topological depth of that vertex in the
graph. Let LP (v) denote the length of longest path from s
to v.

To verify that all paths from vertex vprev go through
vertex v, use a modified DFS by recursing on the incident
edges of each vertex. If we encounter a vertex with a greater
topological depth than v, return false. If we reach vertex
v, return true. Let AP (vprev, v) denote the result of this
algorithm.

Given the previously found candidate partition point pk−1
and the current vertex u, the next candidate partition point
pk = u iff:

1) LP (u) 6= LP (v)∀v ∈ {V − u}
2) AP (pk−1, u) = true
with p0 = s.
The time complexity of LP is O(V + E). AP runs in

polynomial time by returning upon reaching a vertex with
a greater topological depth. Therefore, this algorithm runs in
polynomial time.

Figure 2 shows the candidate partition points at certain sec-
tions of the DAG of ResNet50 [12] and InceptionResNetV2
[30]. Each rectangle represents a model layer in the DAG.

Fig. 2: Partition points for ResNet50 and InceptionResNetV2
models

Fig. 3: Histogram of Number of Candidate Partition Points

We then calculated the number of partition points for the set
of Keras pretrained models. As shown in Figure 3, almost all
the models have at least 25 candidate partition points. There
are some model architectures, like NASNet [37], which do
not allow partitioning under our scheme.

As shown in Figure 4, NASNet cannot be partitioned
because there is no single point that splits the model into a
distinct execution unit that does not have any dependencies to
a previous or subsequent layer. If we run our LP algorithm, we

Fig. 4: Portion of NASNet’s layer DAG

find that there is no single layer that has distinct topological
depth from other layers. We found that 64 of the 66 (97 %)
pretrained Keras models [15] could be partitioned under our
scheme, and only the NASNet variants could not.

B. Optimal model partitioning and placement

Our goal is to maximize throughput of the system. As
previously discussed, this means we need to minimize the
bottleneck latency. Latency is defined as data

bandwidth . Given a
tuple of partition points Popt, their transfer sizes T , and a set
of bandwidths B between compute nodes, the latency between
each set of compute node is defined as

γk =
Topt,k
Bk
∀0 ≤ k < |Popt| (3)

The bottleneck latency for the system is then given by
Equation 2. For the purposes of explanation, we separate
the problems of optimizing the partitions (thereby optimizing
transfer size) and optimizing placement (thereby optimizing
bandwidth between nodes). We show empirically that this
results in the the smallest bottleneck latency. In Section V, we
compare this formulation to an algorithm that tries to jointly
optimize transfer size and bandwidth.

1) Finding optimal partitions: Our heuristic for finding
optimal partitions is the “transfer size” of the partition; i.e
how much data will be transferred from that partition to
the next. Given the tuple of candidate partition points P =
(p0, p1, . . . , pk), we now need to find a set of model partitions
which minimizes the sum of transfer sizes. Assuming a batch
size of 1, the transfer size tk of candidate partition point pk
is defined as

tk =
η

λ
(4)

Given a floating point array representing the output of the
model layer lk (which is the same layer given by the candidate
partition point pk), η represents the size of that array.
λ ≈ 1.44 ∗ 2.1 represents the total compression ratio given

by multiplying the average ZFP compression ratio [18] by the
average LZ4 compression ratio [9].

To better illustrate our algorithm, we classify the transfer
size tk into 3 transfer size classes (“low”, “medium”, or
“high”) based on the distribution of the transfer sizes.

C = {L,M,H} tk ⊆ C (5)

The optimal set of partitions is the scheme which mini-
mizes the sum of the transfer sizes of said partitions.
Let Gp represent a DAG, where each vertex is represented
by a possible partition. The vertices are defined as follows:

pi, pi+1, . . . , pj}) < κ | {pi, pi+1, . . . , pj}}
∀0 ≤ i < |Popt|, 0 ≤ j < |Popt| − i

(6)

The set of vertices represents every possible contiguous
subarray of candidate partition points, where ω(P) finds
whether the memory use of partition P is within the memory

Fig. 5: Example partition graph, where the partition points
are P = {1, 2, 3, 4, 5}

capacity κ of the compute node. We quantize the models
using TFLite [32] quantization to reduce their memory foot-
print. However, when calculating the memory footprint of a
partition, we do not consider this quantization. This means
that we are conservative on partition size and in turn provide
extra space on each device for the memory overhead from
containerization. Each partition is a set of layers that fall
between the partition points pi and pj .

The set of edges is defined as follows:

E = {(u, v) ∈ V, ρ(u|u|−1) = ρ(v0 − 1) | (u, v)} (7)

The function ρ(υ) finds the index of element υ in Popt.
There is an edge between vertices if the last partition point
of u’s partition is adjacent in P to the first partition point
of v’s partition. For example, if u = [1, 2], v = [3, 4], and
P = (1, 2, 3, 4), then (u, v) is an edge. Each edge has a
weight w(u, v) which corresponds to its transfer size class.

Figure 5 shows an example partition graph, where edges
that are the same color will have the same weight. In the
figure, “root” vertices have in-degree 0, “leaf” vertices have
out-degree 0, and “intermediate” vertices have neither.

Algorithm 1 finds the shortest path in the graph from a
root to a leaf. Since edges which bridge the same candidate
partition points (and have the same color as shown in Figure
5) will have the same subsequent paths, we can memoize the
shortest path. On line 2, we store a map on which tells us for
each candidate partition point what the shortest path is from
that point. Using memoization, Algorithm 1 takes O(N) to
find the shortest path, but O(N2) to construct the partition

Algorithm 1 Optimal Partitioning

// Map to store memoized paths
pathFrom← NEW-MAP()
procedure MIN-COST-PATH(G, v)

if v.children = ∅ then
return v, 0

end if
partitionLastLayer ← v[v.length− 1]
if partitionLastLayer /∈ pathFrom then

paths← []
for c ∈ v.children do

path, cost← MIN-COST-PATH(G, c)
paths← APPEND(paths, (path, cost))

end for
pathFrom[partitionLastLayer] = MIN(paths)

end if

best← pathFrom[partitionLastLayer]
minPath,minCost← best
chosenNode← minPath[0]
// Path starting at v and going to a leaf
newPath← APPEND([v], ...minPath)
newCost← minCost+ w(v, chosenNode)
return newPath, newCost

end procedure

procedure PARTITION(G)
roots← GET-ROOT-VERTICES(G)
for r ∈ roots do

path, cost← MIN-COST-PATH(G, r)
paths← APPEND(paths, (path, cost))

end for
minPath,minCost← MIN(paths)
return minPath

end procedure

Θ← PARTITION(Gp)

graph. Therefore the runtime of Algorithm 1 is O(N2), where
N is the number of nodes.

Let Θ represent the set of chosen partitions. For each
subarray in Θ, we take the last element of the subarray, add
that to the list of partition points Q, and add its corresponding
transfer size to the list S. The resulting list is then sorted
based on the topological depth of each partition point, so that
the partitions are executed in the order they appear in the
model.

2) Finding optimal model placement: With the set of
optimal partitions Q and their corresponding transfer sizes S,
we now need to “match” them to the vertices of Gc. We know
from Equation 5 that S ⊆ C. Let c(e) return the bandwidth
class of a given edge of Gc. We use the following threshold
function to classify each edge:

Fig. 6: Example communication graph with different band-
width classes

τ(X, t) =

{
c(e) = CargX−1, if e < t
c(e) = X, if e ≥ t

}
∀e ∈ Ec (8)

If the edge is greater than or equal to the threshold, it will
be classified as class X , otherwise it will be classified as the
class in C right below X . In order for our algorithm to work,
we set the number of transfer size classes equal to the number
of bandwidth classes.

Figure 6 shows an example communication graph, where
the nodes are colored black and different bandwidth classes
of edges are shown.

Given the array of transfer sizes S and array of communi-
cation graph edges Ec, the lower bound on bottleneck latency
we can achieve is given by Theorem 1.

Theorem 1: The lowest bottleneck latency we can achieve
is:

min(β) =
maxS

maxEc
(9)

Therefore, if we achieve min(β), then we have found the
optimal minimum bottleneck latency.

We prove Theorem 1 as follows:
Given the highest transfer size (maxS), then it must be

matched with the highest bandwidth (maxEc) to have the
lowest bottleneck latency. There are two cases in which the
system would have another bottleneck latency:

1)

β =
maxS

e
∀e ∈ Ec −max(Ec) (10)

2)
β = s

e
∀{s ∈ S −max(S),
e ∈ Ec −max(Ec) | β ≥ maxS

maxEc
}

(11)

In Equation 10, the latency of the system would be higher
than 9, since the transfer size is being matched with a lower
bandwidth edge. In Equation 11, some other transfer size s
and bandwidth e may result in a higher bottleneck latency,
in which case Equation 9 still holds. Therefore, Theorem 1
holds.

We run tests in Section V to see how often we get this
optimal solution. Algorithm 2 performs the matching between

S and Gc to try to reach the optimal latency as outlined above.
Let N represent the array of nodes that we choose from Gc,
with length |S|.

Algorithm 2 Finding K-Paths

procedure SUBGRAPH-K-PATH(X , k, s, u)
// Sort by weight in descending order
edgeList← SORT(Gc, {e ∈ Ec | w(e)}, reverse)
low ← 0
high← edgeList.length
bestPath← []
while low < high do

median← (low+high)
2

τ(X, edgeList[median])
τ(X, threshold)
// Induced subgraph of Gc w/ class X edges
GXc ← {EXc = {e ∈ Ec ∧ c(e) = X | e} |

V Xc , EXc }
result← K-PATH(GXc , k, s, u)
if result = FALSE then

low ← median+ 1
else

high← median
bestPath← result

end if
end while
for N ∈ bestPath do

DEL(Gc, N)
end for

end procedure

In algorithm 2, we use the color-coding k-path algorithm
[2], which finds a path of length k (where k is the number of
vertices) in GXc if a k-path exists and does so in polynomial
time if k < log(|V X |). As we show in Section V, this is
possible using node memory capacities which reflect real-
world devices. We use a binary search to find the maximum
threshold for which a k-path exists. On line 3, we sort in
descending order so that we can find the maximum viable
edge-weight threshold with a binary search. As N starts to
be filled in, the k-paths have to be found between certain
nodes in order for N to be a contiguous path of nodes. We
modify the k-path algorithm to start at s and stop once it
reaches u. We make the algorithm more efficient by stopping
a particular iteration if we reach u before we have a path of
length k. If s is null, find any find any k-path that ends at
u. Similarly, if u is null, find any k-path that starts at s.

Algorithm 3 performs the k-path matching of partitions
onto vertices of Gc.

FIND-SUBARRAYS() on line3 returns a list of subarrays
of a certain class, by iterating over the list of transfer sizes
S.

Lines 2-13 match paths for all bandwidth classes, starting
with class H . On line 8, startV represents the vertex before

Algorithm 3 K-Path Matching

1: procedure K-PATH-MATCHING(S, C)
2: for X ∈ C do
3: x paths← FIND-SUBARRAYS(S,X)
4: x paths ← SORT(x paths, {p ∈ x paths |
p.length})

5: for i← 0 to x paths.length do
6: startIdx← INDEX-OF(x paths[i][0], S)
7: x len← x paths.length
8: startV ← N [startIdx]
9: endV ← N [startIdx+ x paths[i].length+

1]
10: path ← SUBGRAPH-K-PATH(X,x len +

1, startV, endV)
11: N [startIdx : startIdx + path.length] ←

path
12: end for
13: end for
14: end procedure

the current k path. If this is equal to null, meaning that the
algorithm hasn’t reached the iteration of finding the previous
k-path, then SUBGRAPH-K-PATH will find a path that starts
at any vertex. Similarly, on line 9 endV represents the vertex
of the current k-path. If this is equal to null, meaning that
the algorithm hasn’t reached the iteration of finding that
subsequent k-path, then SUBGRAPH-K-PATH will find a
path that ends at any vertex.

By starting with the longest H-subarrays and working to
the shortest L subarrays, we are greedily finding the best
bandwidth paths to match with the highest transfer size terms
of S. We continue this process until we have found k-path
matchings for all subarrays of S. In some cases, a high
number of bandwidth classes will prevent the algorithm from
returning a result, because it has very few edges to choose
from during each iteration of the matching. In this case, we
can re-run the algorithm with fewer bandwidth classes.

IV. EVALUATION METHODOLOGY

We simulated a set of randomly placed edge devices
using a random complete graph. For each evaluation, we
created a random complete graph by drawing the positions
of the nodes from a uniform distribution with the range
x, y ∈ (−150,−1) ∪ (1, 150) to simulate a WiFi router with
a range of 150m. Between each set of nodes, we calculated
the edge weight using Shannon’s capacity equation, assuming
that the SNR decreases proportionally to the inverse square
of the device’s distance from the router.

r(x, y) = log2

(
1 + a

(
√
x2+y2)2

)
= log2

(
1 + a

x2+y2

)
x, y ∈ (−B,−1) ∪ (1, B)

(12)
In Equation 12, we found a = 283230 by assuming that

the bandwidth at 80 m from the router was 5.5 Mbps, which

matches the characteristics of a low-power edge network. We
exclude x, y ∈ (−1, 1) to satisfy the domain of Equation 12,
and to simplify the creation of our geometric graphs for our
simulations. From a practical standpoint, this means that we
assume that no devices will be within 1m of the router.

We used the following configuration to test the algorithm:
1) Model: MobileNetV2 [27], EfficientNetB1 [31],

ResNet50, or InceptionResNetV2, chosen for their
diversity in model topologies and memory sizes. Due
to space constraints, we only show ResNet50 and
InceptionResNetV2 in some results figures.

2) Number of Nodes: 5, 10, 15, 20, or 50 randomly placed
edge devices.

3) Number of Bandwidth Classes: 2, 5, 8, 11, 14, 17, or
20 bandwidth classes, which provide granularity in how
to classify the transfer sizes and edge bandwidths.

4) Node Memory Capacity: 64, 128, 256, or 512 MB of
RAM for a compute node.

For each test, we used a different random communica-
tion graph generated using the procedure above. With each
algorithm result, we then calculated the bottleneck latency
according to Equation 3. The resulting bottleneck latency
from each configuration of model, node capacity, number of
nodes, and number of bandwidth classes was run 50 times
and averaged.

We compare the resulting bottleneck latency of our algo-
rithm to that of the following two algorithms:

1) Random Algorithm: Select a random node and a ran-
dom partition that can be accommodated on that node.

2) Joint-Optimization Algorithm: Let Q and N represent
the optimal set of partitions and optimal arrangement of
nodes, respectively, chosen under this algorithm For each
node n, do the following:

a) At each step choose the partition with the smallest
transfer size that will fit within the node. Add this
partition to the set of chosen partitions p.

b) Starting at n, find the neighbor in the communication
graph whose edge e has the highest bandwidth, and
add that to the path of chosen nodes c. Then, find the
highest bandwidth edge from e, and so on.

c) Compare the bottleneck latency found with p and c
to the smallest bottleneck found with all nodes n thus
far, and update Q and N with p and c if the current
bottleneck is smaller.

For each of these algorithms, we used the same configura-
tion and methodology as above to find the bottleneck latency.
These algorithms don’t use bandwidth classes, so we didn’t
need to include that as part of the configuration.

V. RESULTS

Figure 7 shows a color map of the resulting bottleneck
latency based on the factors described in Section IV. In Figure
7, the color map was only generated for the node capacities
which were too small for the models to fit on a single device
of that capacity. All models were able to fit on a single

Fig. 7: Color Map of Bottleneck Latency (s) based on Model,
Node Capacity, Number of Nodes, and Number of Bandwidth
Classes - Optimal Partitioning/Placement

Fig. 8: Comparison of Algorithm 3 with Random Algorithm
- based on Model, Node Capacity, Number of Nodes

512 MB device. The lack of bottleneck latency values for
InceptionResNetV2 with 5 nodes and 64MB node capacity
indicates that the model could not be partitioned with these
physical constraints. For each model, the lowest bottleneck
latency for a given node capacity comes from the combination
of the most number of bandwidth classes and number of
nodes. The lowest bottleneck latency comes with the highest
node capacity. These results follow from the fact that a larger
node and number of nodes allows the partitioning algorithm
to have greater choice in selecting the smallest transfer sizes.
Similarly, a high number of bandwidth classes allows the
placement algorithm to better perform the k-path matching.

In Figure 8, the optimal algorithm reduces bottleneck
latency by ≈ 10x on average for this selection of models.
The difference is the smallest for ResNet50, with the optimal
algorithm producing a ≈ 2x lower bottleneck latency. The
models with the greatest variance in transfer size will result
in the largest difference in bottleneck latency between the
optimal random algorithms. Overall, we see that the optimal
algorithm produces a significant reduction in bottleneck la-
tency compared to the random algorithm.

In Figure 9, the joint optimization algorithm tends to

Fig. 9: Comparison of Algorithm 3 with Joint Optimization
- based on Model, Node Capacity, Number of Nodes

Fig. 10: Histogram of Average Approximation Ratio for Keras
Pretrained Models

perform better for a smaller number of nodes. Since each
of these algorithms use the same optimal partitioning logic,
we can only compare the models based on their differing
placement logic. As the number of nodes increases, our k-
path algorithm performs better. This makes sense, because
the difference in the greedy strategy of the joint optimization
algorithm and the matching strategy of our algorithm only
becomes more apparent as the communication graph grows
bigger and there are more options for node paths. In particular,
for 50 nodes, our algorithm outperforms the joint optimization
algorithm by 35%. We hypothesize that this trend would
continue for more complex models which have a greater
number of candidate partition points and a greater variance
in transfer size, necessitating the k-path matching strategy to
minimize bottleneck latency.

We then ran our algorithm 1000 times for the set of Keras
pretrained models. We used a configuration of 50 nodes and
64 MB node memory capacity. For each trial, we then divided
the resulting bottleneck latency by the optimal bottleneck
latency as given by Theorem 1. We took the average of
this ratio across all trials for each model. The results are
presented in Figure 10. We see that the bottleneck latencies
for 75% of these models are within 9% of the optimal

solution. The average approximation ratio across all these
models is ≈ 1.092 or within 9.2% of the optimal bottleneck
latency.

VI. CONCLUSION

We have presented a framework to partition and place a
model across a set of resource-constrained edge devices, with
the goal of maximizing inference throughput. Additionally,
we show that for different models and node configurations,
we can outperform a greedy joint-optimization algorithm. We
further show empirically that our algorithm is within 9.2% of
the optimal bottleneck latency for the models we tested.

A. Future Work

With minor edits, we could extend our framework to
work with geographically-distributed edge devices for a truly
scalable edge inference solution.

With software changes, we could potentially run the av-
erage image model on a cluster of micro-controllers. We
could use RiotOS [26] without any containerization and
perform optimizations to run with limited device memory.
Some devices we could potentially take advantage of are the
Raspberry Pi Pico [10] and Arduino Uno [3].

VII. ACKNOWLEDGEMENTS

We would like to acknowledge the helpful input and
pointers provided by Prof. Anil Vullikanti from the University
of Virginia, particularly in directing us to the color-coding k-
path algorithm.

REFERENCES

[1] ABADI, M., ET AL. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] ALON, N., YUSTER, R., AND ZWICK, U. Color-coding. Journal of
the ACM (JACM) 42, 4 (1995), 844–856.

[3] ARDUINO. Arduino uno. https://store-usa.arduino.cc/products/
arduino-uno-rev3, 2003.

[4] BISWAS, A., JAIN, A., ET AL. Survey on edge computing–key
technology in retail industry. In Computer Networks and Inventive
Communication Technologies. Springer, 2021, pp. 97–106.

[5] CHAI, J., ZENG, H., LI, A., AND NGAI, E. W. Deep learning
in computer vision: A critical review of emerging techniques and
application scenarios. Machine Learning with Applications 6 (2021),
100134.

[6] CHEN, J., AND RAN, X. Deep learning with edge computing: A review.
Proceedings of the IEEE 107, 8 (2019), 1655–1674.

[7] CHO, E., YOON, J., BAEK, D., LEE, D., AND BAE, D.-H. Dnn model
deployment on distributed edges. In International Conference on Web
Engineering (2021), Springer, pp. 15–26.

[8] CHOLLET, F., ET AL. Keras. https://keras.io, 2015.
[9] COLLET, Y. Lz4. https://github.com/lz4/lz4, 2011.

[10] FOUNDATION, R. P. Raspberry pi pico. https://www.raspberrypi.com/
products/raspberry-pi-pico/, 2021.

[11] GHOLAMI, A., KIM, S., DONG, Z., YAO, Z., MAHONEY, M. W., AND
KEUTZER, K. A survey of quantization methods for efficient neural
network inference. arXiv preprint arXiv:2103.13630 (2021).

[12] HE, K., ET AL. Deep residual learning for image recognition.
[13] HSU, K.-J., BHARDWAJ, K., AND GAVRILOVSKA, A. Couper: Dnn

model slicing for visual analytics containers at the edge. In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing (2019), pp. 179–
194.

[14] HU, D., AND KRISHNAMACHARI, B. Fast and accurate streaming
cnn inference via communication compression on the edge. In 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design
and Implementation (IoTDI) (2020), IEEE, pp. 157–163.

[15] KERAS. Keras applications. https://keras.io/api/applications/, 2021.
[16] LI, E., ZHOU, Z., AND CHEN, X. Edge intelligence: On-demand deep

learning model co-inference with device-edge synergy. In Proceedings
of the 2018 Workshop on Mobile Edge Communications (2018), pp. 31–
36.

[17] LI, M., GAO, J., ZHOU, C., ZHUANG, W., ET AL. Slicing-based ai
service provisioning on network edge. arXiv preprint arXiv:2105.07052
(2021).

[18] LINDSTROM, P. Fixed-rate compressed floating-point arrays. IEEE
Transactions on Visualization and Computer Graphics 20 (08 2014).

[19] LUO, Q., HU, S., LI, C., LI, G., AND SHI, W. Resource scheduling in
edge computing: A survey. IEEE Communications Surveys & Tutorials
23, 4 (2021), 2131–2165.

[20] MATSUBARA, Y., BAIDYA, S., CALLEGARO, D., LEVORATO, M.,
AND SINGH, S. Distilled split deep neural networks for edge-assisted
real-time systems. In Proceedings of the 2019 Workshop on Hot Topics
in Video Analytics and Intelligent Edges (2019), pp. 21–26.

[21] MIN, B., ROSS, H., SULEM, E., VEYSEH, A. P. B., NGUYEN, T. H.,
SAINZ, O., AGIRRE, E., HEINZ, I., AND ROTH, D. Recent advances
in natural language processing via large pre-trained language models:
A survey. arXiv preprint arXiv:2111.01243 (2021).

[22] NAYAK, S., PATGIRI, R., WAIKHOM, L., AND AHMED, A. A review
on edge analytics: Issues, challenges, opportunities, promises, future
directions, and applications. arXiv preprint arXiv:2107.06835 (2021).

[23] PARTHASARATHY, A., AND KRISHNAMACHARI, B. Defer: Distributed
edge inference for deep neural networks. In 2022 14th International
Conference on COMmunication Systems & NETworkS (COMSNETS)
(2022), IEEE, pp. 749–753.

[24] PREMKUMAR, S., AND SIGAPPI, A. A survey of architecture, frame-
work and algorithms for resource management in edge computing. EAI
Endorsed Transactions on Energy Web 8, 33 (2021), e15–e15.

[25] PYTORCH. Real time inference on raspberry pi 4. https://pytorch.org/
tutorials/intermediate/realtime rpi.html, 2021.

[26] RIOT. Riotos. https://www.riot-os.org/, 2013.
[27] SANDLER, M., HOWARD, A., ZHU, M., ZHMOGINOV, A., AND CHEN,

L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (2018), pp. 4510–4520.

[28] SONKOLY, B., CZENTYE, J., SZALAY, M., NÉMETH, B., AND TOKA,
L. Survey on placement methods in the edge and beyond. IEEE
Communications Surveys & Tutorials 23, 4 (2021), 2590–2629.

[29] STAHL, R., HOFFMAN, A., MUELLER-GRITSCHNEDER, D., GERST-
LAUER, A., AND SCHLICHTMANN, U. Deeperthings: Fully distributed
cnn inference on resource-constrained edge devices. International
Journal of Parallel Programming 49, 4 (2021), 600–624.

[30] SZEGEDY, C., IOFFE, S., VANHOUCKE, V., AND ALEMI, A. A.
Inception-v4, inception-resnet and the impact of residual connections
on learning. In Thirty-first AAAI conference on artificial intelligence
(2017).

[31] TAN, M., AND LE, Q. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine
learning (2019), PMLR, pp. 6105–6114.

[32] TENSORFLOW. Tensorflow lite. https://www.tensorflow.org/lite, 2019.
[33] WU, R., GUO, X., DU, J., AND LI, J. Accelerating neural network

inference on fpga-based platforms—a survey. Electronics 10, 9 (2021),
1025.

[34] ZHANG, Q., SUN, H., WU, X., AND ZHONG, H. Edge video analytics
for public safety: A review. Proceedings of the IEEE 107, 8 (2019),
1675–1696.

[35] ZHANG, Z., LI, Y., GUO, Y., CHEN, X., AND LIU, Y. Dynamic slicing
for deep neural networks. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (2020), pp. 838–850.

[36] ZHANG, Z., NG, L. K., LIU, B., CAI, Y., LI, D., GUO, Y., AND CHEN,
X. Teeslice: slicing dnn models for secure and efficient deployment.
In Proceedings of the 2nd ACM International Workshop on AI and
Software Testing/Analysis (2022), pp. 1–8.

[37] ZOPH, B., VASUDEVAN, V., SHLENS, J., AND LE, Q. V. Learning
transferable architectures for scalable image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(2018), pp. 8697–8710.

https://store-usa.arduino.cc/products/arduino-uno-rev3
https://store-usa.arduino.cc/products/arduino-uno-rev3
https://keras.io
https://github.com/lz4/lz4
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://keras.io/api/applications/
https://pytorch.org/tutorials/intermediate/realtime_rpi.html
https://pytorch.org/tutorials/intermediate/realtime_rpi.html
https://www.riot-os.org/
https://www.tensorflow.org/lite

	I Introduction
	II Related Work
	III Partitioning and Placement Algorithm
	III-A Converting a Complex DAG to a Linear DAG
	III-B Optimal model partitioning and placement
	III-B1 Finding optimal partitions
	III-B2 Finding optimal model placement

	IV Evaluation Methodology
	V Results
	VI Conclusion
	VI-A Future Work

	VII Acknowledgements
	References

