
A Decentralized Network Coordinate System for Robust Internet Distance
Prediction∗

Li-wei Lehman and Steven Lerman
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

Network distance, measured as round-trip latency be-
tween hosts, is important for the performance of many In-
ternet applications. For example, nearest server selection
and proximity routing in peer-to-peer networks rely on the
ability to select nodes based on inter-host latencies. This
paper presents PCoord, a decentralized network coordi-
nate system for Internet distance prediction. In PCoord, the
network is modeled as a D-dimensional geometric space;
each host computes its coordinates in this geometric space
to characterize its network location based on a small num-
ber of peer-to-peer network measurements. The goal is to
embed hosts in the geometric space so that the Euclidean
distance between two hosts’ coordinates accurately predicts
their actual inter-host network latency. PCoord constructs
network coordinates in a fully decentralized fashion. We
present several mechanisms in PCoord to stabilize the sys-
tem convergence. Our simulation results using real Internet
measurements suggest that, even under an extremely chal-
lenging flash-crowd scenario where 1740 hosts simultane-
ously join the system, PCoord with a 5-dimensional Eu-
clidean model is able to converge to 11% median prediction
error in 10 coordinate updates per host on average.

1 Introduction

Network distance, measured as round-trip latency be-
tween hosts, is important for the performance of many In-
ternet applications. For example, nearest server selection
and proximity routing in peer-to-peer networks rely on the
ability to select nodes based on inter-host latencies. Net-
work coordinate systems have recently been developed as a
scalable mechanism to predict latencies among arbitrary In-
ternet hosts [13, 11, 16, 22, 10, 20, 21, 4, 2, 8, 9]. The idea
of a network coordinate system, first proposed by the GNP
system [13], is for each host to derive a mapping of itself in

∗This research was supported in part by the Singapore-MIT Alliance.

some D-dimensional geometric space using a small set of
sampled distances so that the actual inter-host network la-
tencies can be estimated as a function of the nodes’ geomet-
ric distances. GNP relies on a fixed set of landmark nodes in
the Internet to provide reference coordinates. Hosts position
themselves in the geometric space using measured distances
to these landmark nodes. Using a fixed set of landmarks
presents a potential performance bottleneck. Additionally,
the accuracy of the GNP scheme is sensitive to the landmark
placement.

This paper presents a fully decentralized network coordi-
nate system, PCoord, for robust Internet distance prediction.
PCoord does not rely on a fixed set of landmark nodes to
construct coordinates. Instead, hosts compute their coordi-
nates based on sampled distances and reference coordinates
gathered from other participating peer hosts. PCoord dif-
fers from other decentralized coordinate systems, such as
Vivaldi and PIC [4, 2], in that it introduces the following
stability mechanisms to facilitate convergence to low sys-
tem prediction errors:

• A sample weighting scheme that gives more weight to
samples with higher prediction accuracy.

• A “friction” mechanism that helps to stabilize conver-
gence.

• A “damping” mechanism to avoid instability and os-
cillation caused by noisy or faulty samples.

One major difference between PCoord and Vivaldi [3, 4]
is that in PCoord a node computes its coordinates by opti-
mizing a loss function over a batch of samples, whereas in
Vivaldi a node adjusts its coordinates to minimize the pre-
diction error one sample at a time by simulating movement
in a physical spring system. Another important difference
between the two schemes is that Vivaldi adjusts the amount
of its coordinate movement based on an adaptive timestep
defined in terms of local and remote errors. In contrast, a
host in PCoord stabilizes convergence by introducing some
amount of friction proportional to a node’s confidence in its

own coordinates, and fine tunes its coordinate movement by
an additional integrity check based on the goodness-of-fit of
the entire batch of sampled distances and coordinates.

Through simulations using real network measurements,
we examine the convergence behavior and prediction accu-
racy of PCoord, and compare its performance with existing
network coordinate systems. Our results suggest that, under
an extremely challenging flash-crowd scenario where 1740
nodes join simultaneously, PCoord can converge to predic-
tion error as low as GNP within 10 seconds without any
fixed landmarks, by using half as many samples as Vivaldi.

The rest of the paper is organized as follows. Sec-
tion 2 describes the PCoord algorithm. In section 3, we
present our simulation results and compare the performance
of PCoord with existing schemes. In section 4, we describe
related work. Finally, we present our conclusions and ideas
for future work in Section 5.

2 The Algorithm

PCoord is a fully decentralized network coordinate sys-
tem with each host updating its coordinates iteratively using
a set of peer-to-peer latency measurements. Each host up-
dates its coordinates to minimize a loss function that mea-
sures the difference between the actual and the geometric
distances between itself and a small set of other hosts.

We previously introduced PCoord in [9] to refer to a
general framework of peer-to-peer based decentralized net-
work coordinates construction. Under the PCoord frame-
work in [9], we evaluated several proof-of-concept coor-
dinate mapping strategies and explored their performance
characteristics under different peer sampling strategies. Our
prior work in [9] did not provide any mechanisms to stabi-
lize system convergence, nor did it address issues in dy-
namic join/leave. In this paper, we present the PCoord al-
gorithm which introduces the following mechanisms.

• A weighted loss function that allows sampled coordi-
nates with higher prediction accuracy to have a higher
weight in the loss function.

• A friction mechanism with a weighted “resistance”
factor in the loss function that helps to stabilize the
convergence process.

• A damping mechanism that dampens the amount a
node moves toward new coordinates by a factor that
is inversely proportional to the fit error of the cur-
rent batch of sampled peer nodes’ coordinates and dis-
tances.

We present the PCoord algorithm in two steps. We first
present a Simple algorithm, which describes the general
PCoord framework without any of the stability mechanisms.

We then present the actual PCoord algorithm, and describe
the stability mechanisms in details.

2.1 A Simple Algorithm

In Simple PCoord, each node performs continuous up-
date on its coordinates; each coordinate update consists of
two phases: (1) the sampling and information exchange
phase in which a node selects M reference points, gath-
ers distance measurements and coordinates, and (2) the co-
ordinate update phase, in which new coordinates are com-
puted to minimize a loss function defined in terms of those
M reference points. In this paper, we focus on phase two
only, which is the coordinate update step. A variation of the
Simple algorithm was previously presented in [9], which
describes the peer sampling and probing strategies. In the
Simple algorithm below, ci is the coordinates of host i, dij

is the measured RTT between i and j, and corigin is the
coordinates at the origin of the geometric space.

//i is the node that is running the procedure
SimplePCoord() {

ci = corigin

while (in the system) {
Samples = SamplePeers()
cnew
i = MinimizeError(Samples, ci)

ci = cnew
i

} //end while
}

//Samples consist of M sampled peer nodes
//cguess is the initial guess for the coordinates
MinimizeError (Samples, cguess) {

find cnew
i that minimizes E using

cguess as an initial guess, where
E =

∑
j∈Samples(dij − ‖cnew

i − cj‖)2
return cnew

i

}

At each update iteration, each host i measures its round
trip latencies to M other peer nodes, and obtains those M
nodes’ current coordinates. Host i then updates its coordi-
nates to minimize the sum of squared differences between
the measured and computed distances with those M peer
nodes.

There are several potential problems with the above Sim-
ple algorithm. One problem is that it does not distinguish
between nodes with coordinates that have different predic-
tion accuracies. Another problem is that the algorithm de-
termines the new coordinates entirely based on measure-
ments from the current batch of reference points. The Sim-
ple scheme thus tends to react too quickly based on the mea-
surements of the current batch of reference points.

2.2 The PCoord Algorithm

Constructing network coordinates in a fully decentral-
ized manner is difficult, because hosts are making parallel
and independent updates of their network coordinates based
on a small number of samples which potentially contain
noisy and faulty information. From an individual node’s
perspective, the key question is whether and by how much
it should react and move its own coordinates based on sam-
pled information, and whether such incremental local op-
timization steps will ultimately lead to a low-error global
configuration. The PCoord algorithm introduces the follow-
ing three stability mechanisms to facilitate convergence to a
low error configuration.

2.2.1 Weighted Loss Function

To avoid reacting too quickly to bad reference points, we
propose a weighted loss function, in which the loss each
reference point contributes is weighted by the confidence
index of each reference point’s coordinates so that nodes
with more accurate coordinates are given more weight. In
order to associate a confidence index with a node’s coordi-
nates, each node i maintains a weighted moving average of
its past relative prediction error, ep

i , where 0 < ep
i < 1.

Node i computes the relative prediction error defined as
MIN(1,

|‖ci−cj‖−dij |
dij

), where j is another node sampled
by i in the past. The confidence index of node i, denoted
ai, is defined as 1 − ep

i . Each node continuously updates
the confidence index of its own coordinates as a function
of the weighted moving average of its past prediction er-
ror. The weight is assigned to each sample j as follows:

wj = a2
j∑

k∈Samples
a2

k

.

2.2.2 The Friction Mechanism

In order to reduce oscillation, we introduce an additional
friction mechanism into the loss function so that a node
with accurate coordinates will not overly react to reference
points with less accurate coordinates. When computing
cnew
i , node i adds itself as the (M + 1)th node in its refer-

ence points set, and thus introduces ci into the loss function
as a resistance factor that penalizes movement of cnew

i to a
new location. This term is weighted by the relative predic-
tion accuracy (relative to other reference points of i) of node
i’s coordinates, so that the more confident a node is about
the accuracy of its own coordinates, the more resistance the
term introduces. For a newly joined node, the weight to this
friction term is initialized to zero. Let wi be the weight of
node i. The coordinate update procedure now becomes a
problem of finding cnew

i that minimizes the weighted loss
E , where E is defined as follows.

E = wi(dii −‖cnew
i − ci‖)2 +

M∑

j=1

wj(dij −‖cnew
i − cj‖)2

where dii = 0 , 0 ≤ wi ≤ 1, 0 ≤ wj ≤ 1, and wi +∑M
j=1 wj = 1.

2.2.3 The Damping Mechanism

In this section, we introduce a mechanism that allows a node
to adjust how much it moves its coordinates in response to a
particular batch of samples based on the goodness-of-fit in-
dex of the current batch of samples. The goodness-of-fit is
a confidence measurement associated with an entire batch
of samples for one coordinate update iteration. While the
weighted loss function relies on the other nodes to supply
their confidence indexes, the damping mechanism provides
an additional “sanity” check on the integrity of the sam-
ples. The idea is that if the batch of samples contain any
“inconsistent” or “mis-behaving” distances or coordinates,
it will likely yield higher residual error than good batches
of samples. To avoid reacting to a batch of samples with
bad fit, each PCoord node maintains a weighted moving av-
erage of the fit error over time. A node decides how much
it should react to the current batch of samples based on the
the goodness-of-fit of current batch of samples relative to
the past batches of samples. More precisely, if the fit er-
ror of the current batch of samples exceeds the average fit
error, then the node dampens the amount it moves toward
the new coordinates by a factor ρ which is the ratio between
the average and current fit error. The PCoord pseudocode is
summarized as follows.

PCoord() {
ci = corigin

while (in the system) {
Samples = SamplePeers()
//add node i’s own coordinates to the samples
Samples = Samples.add(i)
cnew
i = MinimizeWeightedError(Samples, ci)

ci = cnew
i

}
}

MinimizeWeightedError (Samples, cguess) {
for each node k in Samples {

//assign weight to each node in Samples

wk = a2
k∑

j∈Samples
a2

j

} //end for

find cnew
i that minimizes∑
k∈Samples wk(dik − ‖cnew

i − ck‖)2

//ef
i is the weighted moving average of i’s fit error

//enewf
i is the residual error after minimization

enewf
i =

∑
k∈Samples wk(dik − ‖cnew

i − ck‖)2
ρ = MIN(ef

i

enewf
i

, 1)

//move ρ fraction of the way toward the new solution
cnew
i = ci + (ρ ∗ (cnew

i − ci))
return (cnew

i)
} //end MinimizeWeightedError

3 Evaluation of PCoord

3.1 Evaluation Methodology

We evaluate PCoord through simulations using real net-
work measurements. We compare the performance of PCo-
ord with Vivaldi, and the original GNP scheme in terms of
pairwise distance prediction accuracy.

3.1.1 Performance Metrics

We define the prediction error (PE), or simply error, of
a link as the absolute difference between the predicted
RTT and the actual RTT. Following the conventions in Vi-
valdi [4], we define the error of a node as the median of
the link errors for links involving that node. The error of
the system is defined as the median of the node errors for
all nodes in the system. We compare PCoord, Vivaldi, and
the GNP scheme using the relative error (RE) metric. For
each pair of nodes,i and j, their relative error is defined as
|‖ci−cj‖−dij|

dij
.

3.1.2 Data Collection

We evaluate our scheme using the following network mea-
surements.

• The King data set from Vivaldi [4], which involves the
round-trip latencies among 1740 Internet DNS servers.
The median RTT of the King data set is 159 ms.

• The PlanetLab [17] all-pairs-ping data set among 127
nodes collected on May 10, 2004.

• The AMP [6] data set from January 30, 2003 which
measures the round-trip ping time among 104 nodes.

• The RON2 data set [18, 1], which measures the RTTs
among 15 Internet hosts.

We only present the King results here due to space con-
straints. The results from other data sets are qualitatively
similar and can be found in [7].

3.1.3 Simulation Setup

We have simulated the execution of PCoord using
p2psim [14], an event-driven, packet-level network simu-
lator. We use the Simplex Downhill algorithm to minimize
the loss function at each coordinate update. We measure
the processing cost of the Simplex Downhill operation on a
Sun UltraSparc with 150 MHz CPU, and use the measured
median processing time in our PCoord simulation. The me-
dian processing time is 10 ms per coordinate update when
10 reference points are used.

Each node proceeds in its coordinate update independent
of other nodes’ update progress. Asynchronous communi-
cation is used when gathering samples from M peer nodes
in each coordinate update step. Both PCoord and Vivaldi
randomly sample peers from the global population.

We ran the PCoord simulations with various sample
batch sizes M to explore their effects on convergence and
prediction accuracy. Our results suggest that using 10 ref-
erence points at each update step (M = 10) yields quick
convergence to low error and achieves a good tradeoff be-
tween communication and computation overhead.

All Vivaldi simulations presented in this work use the
adaptive time step mechanism described in [4] and im-
plemented in the p2psim [14]. In Vivaldi, a constant Cc

(0 ≤ Cc ≤ 1) is used to control how much a node reacts to
each new sample. We set Cc to 0.25, which is reported to
yield both quick error reduction and low oscillation [4].

3.2 Convergence Behavior of PCoord and
Vivaldi

In this section, we compare PCoord and Vivaldi in terms
of the number of samples required for convergence using
the King data set under a flash-crowd scenario when all
1740 hosts join simultaneously. Figure 1 plots the median,
95th and 5th percentile error of PCoord and Vivaldi as a
function of average number of samples used per host. PCo-
ord converges to 14 to 13 ms median prediction error with
approximately 100 samples per host, and to 12 ms error
range with more samples; the convergence time is less than
10 seconds, with each host performing approximately 10
coordinate updates using 10 reference points per update. Vi-
valdi requires over twice the number of samples per host as
PCoord to reach the same error range. We have also simu-
lated Vivaldi with Cc = 1, in which case, Vivaldi converges
faster but to a higher error range.

Next, we compare PCoord and Vivaldi in terms of rel-
ative error distribution using GNP as the benchmark. The
GNP results were generated using the GNP software [12]
with 10 fixed landmarks randomly drawn from the King
data set. Twenty different randomly-generated landmark
configurations were used, and the GNP result with the best
performance (with 10% median error) is reported.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350

M
ed

ia
n

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Number of Samples

Vivaldi
PCoord

(a) Median error

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

M
ed

ia
n

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Number of Samples

Vivaldi
PCoord

(b) 95th Percentile Error

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350

M
ed

ia
n

P
re

di
ct

io
n

E
rr

or
 (

m
s)

Number of Samples

Vivaldi
PCoord

(c) 5th Percentile Error

Figure 1. Convergence of PCoord (M=10) and
Vivaldi (Cc=0.25). King data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Relative Error

GNP
PCoord
Vivaldi

Figure 2. Comparing PCoord, Vivaldi and
GNP in terms of relative error after PCoord
and Vivaldi used 100 samples per host on av-
erage. King, D = 5, Vivaldi Cc = 0.25.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Relative Error

GNP
PCoord
Vivaldi

Figure 3. Comparing PCoord, Vivaldi and
GNP in terms of relative error after PCoord
and Vivaldi used 200 samples per host on av-
erage. King, D = 5, Vivaldi Cc = 0.25.

Figures 2 and 3 show the cumulative distribution of rela-
tive error after PCoord and Vivaldi hosts have updated their
coordinates using on average 100 and 200 samples per host.
We note that PCoord’s median relative error is 11% af-
ter 100 samples, which is comparable to that of the GNP
scheme. After 100 samples, Vivaldi’s median relative error
is about 18%. After 200 samples, PCoord’s and Vivaldi’s
median relative errors are 10% and 12% respectively.

In comparing Vivaldi and PCoord, we note that one ad-
vantage of Vivaldi is that each coordinate update is light-
weight in terms of the computation cost. PCoord computes
coordinates by minimizing a loss function numerically over
a batch of samples, and thus incurs more computation over-
head. However, we believe that such local computation
overhead, at 10 ms per coordinate update on a 150 MHz
CPU, is rather modest. For systems with large numbers of

participating hosts, we believe that the number of samples
required for the system to converge to low-error coordinates
is a more important performance metric.

We have compared PCoord’s and Vivaldi’s convergence
behavior using other data sets. Our results suggest that
when the number of hosts in the system is small, it takes
PCoord and Vivaldi approximately the same number of
samples to converge to low-error coordinates. However, as
the number of hosts in the system increases, it takes Vivaldi
more number of samples to converge to low-error coordi-
nates in comparison to PCoord. For example, using the
RON data set, with 15 hosts in the system, it takes both
schemes approximately the same number of samples to con-
verge to a low median error range. Using the PlanetLab data
with 127 hosts, PCoord requires 30% less samples to con-
verge than Vivaldi. Using the King data set with 1740 hosts,
it takes PCoord half the number of samples required by Vi-
valdi to reach low-error coordinates.

We have also simulated PCoord in an incremental join
scenario, where a node joins after the rest of the system has
converged. On average, the median prediction error of a
newly joined node can decrease to the 12 ms range within
two coordinate updates using 10 reference points per update
(i.e., within 20 samples).

3.3 Performance under High Churn

In this section, we examine PCoord’s performance under
churn, i.e., when the system experiences continuous mem-
bership changes as a result of nodes joining and leaving.
We examine the following questions. How robust is PCo-
ord under high churn? At what point do we begin to ob-
serve significant performance degradation as the join/leave
rate increases?

Under the dynamic join and leave mode, each node al-
ternately leaves and re-joins the system throughout the en-
tire simulation period. The time interval a node stays in
and out of the system is exponentially distributed with a
mean t. Recent studies suggest that the median session du-
ration of hosts in peer-to-peer systems is approximately one
hour [19]. We have chosen to use shorter time intervals, and
thus higher churn rates, in our simulations in order to exam-
ine PCoord’s performance under extreme conditions. We
have experimented with t equal to 2, 5, 10, 20, 30 and 40
seconds, with a total simulated time of 300 seconds. When
a node re-joins the system, its coordinates are re-initialized
to the origin.

Figure 4 plots the average prediction accuracy (averaged
over time) as a function of the mean host session life time, t.
The average prediction accuracy represents the steady-state
median prediction error of the system averaged over time
using statistics gathered after 60 seconds of simulated time.
Figure 4 shows that when join/leave interval t is 10 seconds

 12

 13

 14

 15

 16

 17

 18

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 P
re

di
ct

io
n

E
rr

or
 (

m
s)

Mean Join/Leave Interval (seconds)

PCoord

Figure 4. PCoord prediction accuracy as a
function of mean join/leave intervals. King,
N = 1740, M = 10, and D = 5.

or greater, the prediction error stays in the range of 12 ms,
indicating that the churn has very little effect on the pre-
diction accuracy of PCoord. This suggests that PCoord is
likely to do well under the dynamic membership changes of
existing peer-to-peer systems, which were reported to have
a median session duration on the order of sixty minutes [19].

4 Related Work

The IDMaps [5], GNP [13], NPS [11], and King [15]
are all architectures for a global distance estimation service.
In contrast, PCoord’s goal is for peer nodes in an overlay
network to estimate their locations relative to other nodes in
the same overlay using purely peer-to-peer measurements.

Several schemes [16, 22, 10] allow hosts to use differ-
ent subsets of landmarks to construct the coordinate system.
Other works focus on the geometric models and coordinates
computation using global distance measurements [20, 21].
These schemes did not address issues in decentralized co-
ordinates constructions. In [23], an approach that builds
network distance maps based on hierarchical clustering is
proposed. The Mithos [24] system embeds the network into
a multi-dimensional space. The focus of their work is on
overlay construction and efficient lookup forwarding.

One of the main differences between PIC [2] and PCoord
is that in PIC, coordinate update at a node is completely
determined by current batch of sampled distances; PIC does
not provide mechanisms to retain information learned from
previous iterations. This results in a system that reacts too
quickly to current measurements.

5 Conclusions

In this paper, we have designed and evaluated a fully-
decentralized coordinate system called PCoord. Our sim-

ulation results suggest that, in a 1740 nodes peer-to-peer
system, PCoord can converge to a low error configuration
within 10 seconds, with each node performing on average
10 coordinate updates using 10 reference points per up-
date. When the system has already converged, a newly
joined node can compute low-error coordinates using ap-
proximately 20 samples. PCoord is robust under high churn.
Our results indicate that, when the host’s mean session life
time is 10 seconds or longer, dynamic join and leave have
limited effect on PCoord’s prediction accuracy.

Fast convergence to low-error coordinates is an impor-
tant property of a large-scale decentralized network coordi-
nate system on the Internet, where flash-crowd appears and
demands for services can arise instantaneously. Our results
suggest that when the system size is large, PCoord requires
less number of samples to converge to low-error coordinates
than Vivaldi. Under a simultaneous join scenario with 1740
hosts, PCoord can converge to a 11% median prediction er-
ror using half the number of samples required by Vivaldi.
As part of our future work, we plan to investigate mech-
anisms to detect and cope with corrupted and faulty mea-
surements, including those introduced by network routes
anomalies and malicious peer nodes.

References

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Mor-
ris. Resilient overlay networks. In Proceedings of the
18th ACM Symp. on Operating Systems Principles (SOSP),
Banff, Canada, October 2001.

[2] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC:
Practical Internet coordinates for distance estimation. In
Proceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS’04), Tokyo, Japan,
March 2004.

[3] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris. Prac-
tical, distributed network coordinates. In Proceedings of
HotNets-II, November 2003.

[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. In Proceedings of
SIGCOMM’04, August 2004.

[5] P. Francis, S. Jamin, C. Jin, Y. Jin, V. Paxson, D. Raz,
Y. Shavitt, and L. Zhang. IDMaps: A global Internet host
distance estimation service. In Proceedings of IEEE INFO-
COM’99, New York, NY, March 1999.

[6] T. Hansen, J. Otero, T. Mcgregor, and H.-W. Braun. Active
measurement data analysis techniques. http://amp.nlanr.net/,
2002.

[7] L. Lehman. PCoord: A Decentralized Network Coordinate
System for Internet Distance Prediction. PhD thesis, Mas-
sachusetts Institute of Technology, 2005.

[8] L. Lehman and S. Lerman. PALM: Predicting Internet net-
work distances using peer-to-peer measurements. Technical
report, appeared in Annual Singapore-MIT Alliance Sym-
posium, January 2004.

[9] L. Lehman and S. Lerman. PCoord: Network position esti-
mation using peer-to-peer measurements. In Proceedings of
IEEE International Symposium on Network Computing and
Applications (NCA’04), pages 15–24, Boston, MA, August
2004.

[10] H. Lim, J. Hou, and C.-H. Choi. Constructing Internet co-
ordinate system based on delay measurement. In Proceed-
ings of Internet Measurement Conference(IMC’03), October
2003.

[11] T. Ng and H. Zhang. A network positioning system for the
Internet. In Proceedings of USENIX 2004 Annual Technical
Conference, pages 141–154, Boston, MA, June 2004.

[12] T. E. Ng. Global Network Positioning (GNP) software.
http://www.cs.cmu.edu/∼eugeneng/research/gnp/, 2003.

[13] T. E. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. In Proceedings of IN-
FOCOM, 2002.

[14] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.
[15] K. P.Gummadi, S. Saroiu, and S. D. Gribble. King: Esti-

mating latency between arbitrary Internet end hosts. In Pro-
ceedings of ACM SIGCOMM Internet Measurement Work-
shop(IMW’02), November 2002.

[16] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for scalable distributed location. In Proceed-
ings of the 2nd International Workshop on Peer-to-Peer Sys-
tems (IPTPS’03), Berkeley, CA, February 2003.

[17] PlanetLab. http://www.planet-lab.org.
[18] Resilient overlay networks. http://nms.lcs.mit.edu/ron/.
[19] S. Saroiu, K. P. Gummadi, and S. Gribble. Measuring and

analyzing the characteristics of Napster and Gnutella hosts.
Multimedia Systems Journal, 9(2):170–184, August 2003.

[20] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in Euclidean space. In Proceedings of
IEEE INFOCOM’03, April 2003.

[21] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
Proceedings of IEEE INFOCOM’04, April 2004.

[22] L. Tang and M. Crovella. Virtual landmarks for the In-
ternet. In Proceedings of Internet Measurement Confer-
ence(IMC’03), October 2003.

[23] W. Theilmann and K. Rothermel. Dynamic distance maps
of the Internet. In Proceedings of IEEE INFOCOM’00, New
York, June 2000.

[24] M. Waldvogel and R. Rinaldi. Efficient topology-aware
overlay network. In Proceedings of the First Workshop on
Hot Topics in Networks (Hotnets-I), Princeton, NJ, October
2002.

