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ABSTRACT
The automation of contract negotiation requires intelligent
agents that can assimilate and use real-time information
flows wisely. Electronic markets are information-rich with
access to the Internet and the World Wide Web. A new
breed of “information-based” agents are founded on con-
cepts from information theory, and are designed to oper-
ate with information flows of varying and questionable in-
tegrity. These agents are part of a larger project that aims
to make informed automated trading in applications such
as eProcurement a reality.
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1 Introduction

Electronic trading environments are awash with informa-
tion, including information drawn from general resources
such as the World Wide Web using smart retrieval tech-
nology [1]. Despite the substantial advances in multiagent
systems and automated negotiation [2], it is perhaps sur-
prising that negotiation in electronic business [3] remains
a substantially manual procedure. We propose that rather
than strive to make strategic, economically rational deci-
sions, intelligent agents in electronic markets should capi-
talise on the real-time information flows and should aim to
make ‘informed decisions’ that take account of the integrity
of all relevant information. Traditional agent architectures,
such as BDI, do not address directly the management of dy-
namic information flows of questionable integrity. This pa-
per describes an agent architecture that has been designed
specifically to operate in tandem with information discov-
ery systems. This is part of our e-Market Framework that is
available on the World Wide Web1. This framework aims
to make informed automated trading a reality, and aims to
address the realities of electronic business — “its what you
know that matters”. This work does not address all of the
issues in automated trading [3]. For example, the work re-
lies on developments in: XML and semantic web, secure
data exchange, value chain management and financial ser-
vices. Further the design of electronic marketplaces is not
described here.

1http://e-markets.org.au

Intelligent agents that are built on an architecture de-
signed specifically to handle real-time information flows
are described in Sec. 2. The way in which these agents
manage dynamic information flows is described in Sec. 3.
The interaction of more than one of these agents engaging
in competitive negotiation is described in Sec. 4. Sec. 5
concludes.

2 Information-Based Agents

We have designed a new agent architecture founded on in-
formation theory. These “information-based” agents oper-
ate in real-time in response to market information flows.
The central issues of trust in the execution of contracts is
discussed in [4] [5]. The “information-based” agent’s rea-
soning is based on a first-order logic world model that man-
ages multi-issue negotiation as easily as single-issue.

2.1 The foundation of information-based agency

This section provides the rationale for the formal work that
follows.

Percepts, the content of messages, are all that an agent
has to inform it about the world and other agents. The va-
lidity of percepts will always be uncertain due to the re-
liability of the sender of the message, and to the period
that has elapsed since the message arrived. Further, the be-
lief that an agent has in the validity of a percept will be
determined by the agent’s level of individual caution. The
information-based agent’s world model is deduced from the
percepts using inference rules that transform percepts into
statements in probabilistic logic.

The integrity of percepts decreases in time. The way
in which it decreases will be determined by the type of the
percept, as well as by the issues listed in the previous para-
graph including ‘caution’. An agent may have background
knowledge concerning the expected integrity of a percept
as t → ∞. Information-based agents represent this back-
ground knowledge as a decay limit distribution. If the back-
ground knowledge is incomplete then one possibility for an
agent is to assume that the decay limit distribution has max-
imum entropy whilst being consistent with the data.

All messages are valueless unless their integrity can
be verified to some degree at a later time, perhaps for a cost.



To deal with this issue we employ an institution agent that
always reports promptly and honestly on the execution of
all commitments, forecasts, promises and obligations. This
provides a conveniently simple solution to the integrity ver-
ification issue. The institution agent also takes care of “who
owns what”. This enables the agents to negotiate and to
evaluate the execution of commitments by simple message
passing.

An agent’s percepts generally constitute a sparse data
set whose elements have differing integrity. An agent may
wish to induce tentative conclusions from this sparse and
uncertain data of changing integrity. Percepts are trans-
formed by inference rules into statements in probabilistic
logic as described above. Information-based agents may
employ entropy-based logic [6] to induce complete prob-
ability distributions from those statements. This logic is
consistent with the laws of probability, but the results de-
rived assume that the data is ‘all that there is to know’ —
Watt’s Assumption.

Information is strategic. It has value as information.
With the exception of highly cautious messages such as
“make me an offer” in simple bargaining, everything that an
agent says gives away information. This is a central issue
here — the exchange of information is a strategic compo-
nent of competitive interaction. Information-based agents
evaluate information received as the reduction in entropy
of the agent’s current world model. Information transmit-
ted is evaluated as the agent’s expectation of the reduction
of entropy in the recipient’s world model (by assuming that
the recipient’s reasoning apparatus mirrors its own).

An agent will form expectations of other agents’ be-
haviours by observing the difference between commit-
ments encapsulated in contracts, promises and statements
of intent, and their subsequent execution. These observa-
tions may take account of whether those differences, if any,
are ‘good’ or ‘bad’ for the agent.

An agent acts in response to some need or needs. A
need may be exogenous such as the agent’s ‘owner’ needs
a bottle of wine, or a message from another agent offer-
ing to trade may trigger a latent need to trade profitably.
A need may also be endogenous such as the agent deciding
that it owns more wine that it requires. An agent may be at-
tempting to satisfy a number of needs at any time, and may
have expectations of its future needs. A need may involve
acquiring some physical object, it may also be a need to
acquire information or to develop some on-going relation-
ship. Information-based agents have a planning system that
is invoked to aim to satisfy needs — the planning system
is flexible and explores a number of (possibly inter-related)
options at the same time, and devotes resources (if neces-
sary) to the most promising. One component of the world
model will necessarily be an estimate of the expectation
that some contract will subsequently satisfy a need in an
acceptable way — this will be in the form of a probabil-
ity distribution over some evaluation space that measures
‘the expectation of the acceptability of the execution of a
contract with respect to the satisfaction of that need’.

2.2 Agent Architecture

An agent observes events in its environment and represents
some of those observations in its world model as beliefs.
As time passes, an agent may not be prepared to accept
such beliefs as being “true”, and qualifies those represen-
tations with epistemic probabilities. Those qualified rep-
resentations of prior observations are the agent’s informa-
tion. Given this information, an agent may then choose to
adopt goals and strategies. Those strategies may be based
on game theory, for example. To enable the agent’s strate-
gies to make good use of its information, tools from infor-
mation theory are applied to summarise and process that
information. Such an agent is called information-based.
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Figure 1. Architecture of agent Π

called Π is
the subject of
this discussion.
Π engages in
multi-issue
negotiation
with a set of
other agents:
{Ω1, · · · ,Ωo}.
The founda-
tion for Π’s
operation is
the information
that is gener-
ated both by
and because of its negotiation exchanges. Any message
from one agent to another reveals information about the
sender. Π uses ideas from information theory to process
and summarise its information. If Π does know its utility
function and if it aims to optimise its utility then Π may
apply the principles of game theory to achieve its aim.
The information-based approach does not to reject utility
optimisation — the selection of a strategy is secondary to
the processing and summarising large amounts of uncertain
information. In addition to the information derived from
its opponents, Π has access to a set of information sources
{Θ1, · · · ,Θt} that may include the marketplace in which
trading takes place, and general information sources such
as news-feeds accessed via the Internet. Together, Π,
{Ω1, · · · ,Ωo} and {Θ1, · · · ,Θt} make up a multiagent
system.

Π has two languages: C and L. C is an illocutionary-
based language for communication. L is a first-order lan-
guage for internal representation — precisely it is a first-
order language with sentence probabilities optionally at-
tached to each sentence representing Π’s epistemic belief
in the truth of that sentence. Fig. 1 shows a high-level view
of how Π operates. Messages expressed in C from {Θi}
and {Ωi} are received, time-stamped, source-stamped and
placed in an in-box X . The messages in X are then trans-
lated using an import function I into sentences expressed
in L that have integrity decay functions (usually of time)



attached to each sentence, they are stored in a repository
Yt. And that is all that happens until Π triggers a goal.

Π triggers a goal, g ∈ G, in two ways: first in re-
sponse to a message received from an opponent {Ωi} “I
offer you e100 in exchange for a pallet of paper”, and sec-
ond in response to some need, ν ∈ N , “we need to order
some more paper”. In either case, Π is motivated by a need
— either a need to strike a deal, or a general need to trade.
Π’s goals could be short-term such as obtaining some infor-
mation “what is the euro / dollar exchange rate?”, medium-
term such as striking a deal with one of its opponents, or,
rather longer-term such as building a (business) relation-
ship with one of its opponents. So Π has a trigger mecha-
nism T where: T : {X ∪ N} → G.

For each goal that Π commits to, it has a mechanism,
G, for selecting a strategy to achieve it where G : G×M→
S where S is the strategy library. A strategy s maps an in-
formation base into an action, s(Yt) = z ∈ Z . Given a
goal, g, and the current state of the social model mt, a strat-
egy: s = G(g,mt). Each strategy, s, consists of a plan,
bs and a world model (construction and revision) function,
Js, that constructs, and maintains the currency of, the strat-
egy’s world model W t

s that consists of a set of probability
distributions. A plan derives the agent’s next action, z, on
the basis of the agent’s world model for that strategy and
the current state of the social model: z = bs(W t

s ,mt), and
z = s(Yt). Js employs two forms of entropy-based infer-
ence:

Maximum entropy inference. J+
s , first constructs an in-

formation base It
s as a set of sentences expressed in

L derived from Yt, and then from It
s constructs the

world model, W t
s , as a set of complete probability dis-

tributions [using Eqn. 2 in Sec. 2.3 below].

Maximum relative entropy inference. Given a prior
world model, Wu

s , where u < t, minimum relative
entropy inference, J−

s , first constructs the incremental
information base I(u,t)

s of sentences derived from
those in Yt that were received between time u and
time t, and then from Wu

s and I(u,t)
s constructs a new

world model, W t
s [using Eqn. 3 in Sec. 2.3 below].

2.3 Π’s Reasoning

Once Π has selected a plan a ∈ A it uses maximum entropy
inference to derive the {Ds

i }n
i=1 [see Fig. 1] and minimum

relative entropy inference to update those distributions as
new data becomes available. Entropy, H, is a measure of
uncertainty [7] in a probability distribution for a discrete
random variable X: H(X) , −

∑
i p(xi) log p(xi) where

p(xi) = P(X = xi). Maximum entropy inference is used
to derive sentence probabilities for that which is not known
by constructing the “maximally noncommittal” [6] proba-
bility distribution, and is chosen for its ability to generate
complete distributions from sparse data.

Let G be the set of all positive ground literals that can
be constructed using Π’s language L. A possible world,

v, is a valuation function: G → {>,⊥}. V|Ks = {vi} is
the set of all possible worlds that are consistent with Π’s
knowledge base Ks that contains statements which Π be-
lieves are true. A random world for Ks, W |Ks = {pi}
is a probability distribution over V|Ks = {vi}, where pi

expresses Π’s degree of belief that each of the possible
worlds, vi, is the actual world. The derived sentence prob-
ability of any σ ∈ L, with respect to a random world W |Ks

is:

(∀σ ∈ L)P{W |Ks}(σ) ,
∑

n

{ pn : σ is> in vn } (1)

The agent’s belief set Bs
t = {Ωj}M

j=1 contains statements
to which Π attaches a given sentence probability B(.). A
random world W |Ks is consistent with Bs

t if: (∀Ω ∈
Bs

t )(B(Ω) = P{W |Ks}(Ω)). Let {pi} = {W |Ks,Bs
t } be

the “maximum entropy probability distribution over V|Ks

that is consistent with Bs
t ”. Given an agent withKs and Bs

t ,
maximum entropy inference states that the derived sentence
probability for any sentence, σ ∈ L, is:

(∀σ ∈ L)P{W |Ks,Bs
t}

(σ) ,
∑

n

{pn : σ is> in vn} (2)

From Eqn. 2, each belief imposes a linear constraint on the
{pi}. The maximum entropy distribution: arg maxp H(p),
p = (p1, . . . , pN ), subject to M + 1 linear constraints:

gj(p) =
N∑

i=1

cjipi − B(Ωj) = 0, j = 1, . . . ,M.

g0(p) =
N∑

i=1

pi − 1 = 0

where cji = 1 if Ωj is > in vi and 0 otherwise, and pi ≥
0, i = 1, . . . , N , is found by introducing Lagrange mul-
tipliers, and then obtaining a numerical solution using the
multivariate Newton-Raphson method. In the subsequent
subsections we’ll see how an agent updates the sentence
probabilities depending on the type of information used in
the update.

Given a prior probability distribution q = (qi)n
i=1 and

a set of constraints C, the principle of minimum relative
entropy chooses the posterior probability distribution p =
(pi)n

i=1 that has the least relative entropy2 with respect to
q:

{W |q, C} , arg min
p

n∑
i=1

pi log
pi

qi

and that satisfies the constraints. This may be found by
introducing Lagrange multipliers as above. Given a prior
distribution q over {vi} — the set of all possible worlds,
and a set of constraints C (that could have been derived
as above from a set of new beliefs) minimum relative en-
tropy inference states that the derived sentence probability

2Otherwise called cross entropy or the Kullback-Leibler distance be-
tween the two probability distributions.



for any sentence, σ ∈ L, is:

(∀σ ∈ L)P{W |q,C}(σ) ,
∑

n

{ pn : σ is> in vn } (3)

where {pi} = {W |q, C}. The principle of minimum rela-
tive entropy is a generalisation of the principle of maximum
entropy. If the prior distribution q is uniform, then the rela-
tive entropy of p with respect to q, p‖q, differs from−H(p)
only by a constant. So the principle of maximum entropy
is equivalent to the principle of minimum relative entropy
with a uniform prior distribution.

3 Managing dynamic information flows

The illocutions in the communication language C include
information, [info]. The information received from general
information sources will be expressed in terms defined by
Π’s ontology. We define an ontology signature as a tuple
S = (C,R,≤, σ) where C is a finite set of concept sym-
bols (including basic data types); R is a finite set of relation
symbols; ≤ is a reflexive, transitive and anti-symmetric re-
lation on C (a partial order); and, σ : R → C+ is the func-
tion assigning to each relation symbol its arity. Concepts
play the role of type, and the is-a hierarchy is the notion
of subtype. Thus, type inference mechanisms can be used
to type all symbols appearing in expressions. We assume
that Π makes at least part of that ontology public so that the
other agents {Ω1, . . . ,Ωo} may communicate [info] that Π
can understand. Ω’s reliability is an estimate of the extent
to which this [info] is correct.

The only restriction on incoming [info] is that it is ex-
pressed in terms of the ontology — this is very general.
However, the way in which [info] is used is completely spe-
cific — it will be represented as a set of linear constraints
on one or more probability distributions in the world model.
A chunk of [info] may not be directly related to one of Π’s
chosen distributions or may not be expressed naturally as
constraints, and so some inference machinery is required
to derive these constraints — this inference is performed
by model building functions, Js, that have been activated
by a plan s chosen by Π. JD

s ([info]) denotes the set of
constraints on distribution D derived by Js from [info].

3.1 Updating the world model with [info]

The procedure for updating the world model as [info] is
received follows. If at time u, Π receives a message
containing [info] it is time-stamped and source-stamped
[info](Ω,Π,u), and placed in a repository Yt. If Π has an ac-
tive plan, s, with model building function, Js, then Js is ap-
plied to [info](Ω,Π,u) to derive constraints on some, or none,
of Π’s distributions. The extent to which those constraints
are permitted to effect the distributions is determined by a
value for the reliability of Ω, Rt(Π,Ω, O([info])), where
O([info]) is the ontological context of [info].

An agent may have models of integrity decay for
some particular distributions, but general models of in-
tegrity decay for, say, a chunk of information taken at ran-
dom from the World Wide Web are generally unknown.
However the values to which decaying integrity should tend
in time are often known. For example, a prior value for the
truth of the proposition that a “22 year-old male will default
on credit card repayment” is well known to banks. If Π at-
taches such prior values to a distribution D they are called
the decay limit distribution for D, (dD

i )n
i=1. No matter how

integrity of [info] decays, in the absence of any other rele-
vant information it should decay to the decay limit distri-
bution. If a distribution with n values has no decay limit
distribution then integrity decays to the maximum entropy
value 1

n . In other words, the maximum entropy distribution
is the default decay limit distribution.

In the absence of new [info] the integrity of distri-
butions decays. If D = (qi)n

i=1 then we use a geometric
model of decay:

qt+1
i = (1− ρD)× dD

i + ρD × qt
i , for i = 1, . . . , n (4)

where ρD ∈ (0, 1) is the decay rate. This raises the ques-
tion of how to determine ρD. Just as an agent may know the
decay limit distribution it may also know something about
ρD. In the case of an information-overfed agent there is no
harm in conservatively setting ρD “a bit on the low side” as
the continually arriving [info] will sustain the estimate for
D.

We now describe how new [info] is imported to the
distributions. A single chunk of [info] may effect a number
of distributions. Suppose that a chunk of [info] is received
from Ω and that Π attaches the epistemic belief probabil-
ity Rt(Π,Ω, O([info])) to it. Each distribution models a
facet of the world. Given a distribution Dt = (qt

i)
n
i=1, qt

i is
the probability that the possible world ωi for D is the true
world for D. The effect that a chunk [info] has on distri-
bution D is to enforce the set of linear constraints on D,
JD

s ([info]). If the constraints JD
s ([info]) are taken by Π

as valid then Π could update D to the posterior distribution
(p[info]

i )n
i=1 that is the distribution with least relative entropy

with respect to (qt
i)

n
i=1 satisfying the constraint:∑

i

{p[info]
i : JD

s ([info]) are all > in ωi} = 1. (5)

But Rt(Π,Ω, O([info])) = r ∈ [0, 1] and Π should only
treat the JD

s ([info]) as valid if r = 1. In general r deter-
mines the extent to which the effect of [info] on D is closer
to (p[info]

i )n
i=1 or to the prior (qt

i)
n
i=1 distribution by:

pt
i = r × p

[info]
i + (1− r)× qt

i (6)

But, we should only permit a new chunk of [info] to influ-
ence D if doing so gives us new information. For example,
if 5 minutes ago a trusted agent advises Π that the interest
rate will go up by 1%, and 1 minute ago a very unreliable
agent advises Π that the interest rate may go up by 0.5%,



then the second unreliable chunk should not be permitted
to ‘overwrite’ the first. We capture this by only permitting
a new chunk of [info] to be imported if the resulting distri-
bution has more information relative to the decay limit dis-
tribution than the existing distribution has. Precisely, this is
measured using the Kullback-Leibler distance measure —
this is just one criterion for determining whether the [info]
should be used — and [info] is only used if:

n∑
i=1

pt
i log

pt
i

dD
i

>
n∑

i=1

qt
i log

qt
i

dD
i

(7)

In addition, we have described in Eqn. 4 how the integrity
of each distribution D will decay in time. Combining these
two into one result, distribution D is revised to:

qt+1
i =

{
(1− ρD)× dD

i + ρD × pt
i if [info] is usable

(1− ρD)× dD
i + ρD × qt

i otherwise

for i = 1, · · · , n, and decay rate ρD as before.

3.2 Information reliability

Sec. 3.1 relies on an estimate of Rt(Π,Ω, O([info])). This
estimate is constructed by measuring the ‘error’ in ob-
served information as the error in the effect that informa-
tion has on each of Π’s distributions. Suppose that a chunk
of [info] is received from agent Ω at time s and is verified
at some later time t. For example, a chunk of information
could be “the interest rate will rise by 0.5% next week”,
and suppose that the interest rate actually rises by 0.25% —
call that correct information [fact]. What does all this tell
agent Π about agent Ω’s reliability? Consider one of Π’s
distributions D that is {qs

i } at time s. Let (p[info]
i )n

i=1 be the
minimum relative entropy distribution given that [info] has
been received as calculated in Eqn. 5, and let (p[fact]

i )n
i=1

be that distribution if [fact] had been received instead. Sup-
pose that the reliability estimate for distribution D was Rs

D.
This section is concerned with what Rs

D should have been
in the light of knowing now, at time t, that [info] should
have been [fact], and how that knowledge effects our cur-
rent reliability estimate for D, Rt(Π,Ω, O([info])).

The idea of Eqn. 6, is that the current value of r
should be such that, on average, (ps

i )
n
i=1 will be seen to

be “close to” (p[fact]
i )n

i=1 when we eventually discover [fact]
— no matter whether or not [info] was used to update D,
as determined by the acceptability test in Eqn. 7 at time s.
That is, given [info], [fact] and the prior (qs

i )
n
i=1, calculate

(p[info]
i )n

i=1 and (p[fact]
i )n

i=1 using Eqn. 5. Then the observed
reliability for distribution D, R

([info]|[fact])
D , on the basis of

the verification of [info] with [fact] is the value of r that
minimises the Kullback-Leibler distance between (ps

i )
n
i=1

and (p[fact]
i )n

i=1:

arg min
r

n∑
i=1

(r·p[info]
i +(1−r)·qs

i ) log
r · p[info]

i + (1− r) · qs
i

p
[fact]
i

If E[info] is the set of distributions that [info] affect, then the
overall observed reliability on the basis of the verification
of [info] with [fact] is: R([info]|[fact]) = 1−(maxD∈E[info] |1−
R

([info]|[fact])
D |). Then for each ontological context oj , at time

t when, perhaps, a chunk of [info], with O([info]) = ok,
may have been verified with [fact]:

Rt+1(Π,Ω, oj) =(1− ρ)×Rt(Π,Ω, oj)

+ ρ×R([info]|[fact]) × Sem(oj , ok)

where Sem(·, ·) : O × O → [0, 1] measures the semantic
distance [8] between two sections of the ontology, and ρ
is the learning rate. Over time, Π notes the ontological
context of the various chunks of [info] received from Ω and
over the various ontological contexts calculates the relative
frequency, P t(oj), of these contexts, oj = O([info]). This
leads to a overall expectation of the reliability that agent Π
has for agent Ω: Rt(Π,Ω) =

∑
j P t(oj)×Rt(Π,Ω, oj).

4 Negotiation

For illustration Π’s communication language [9] is re-
stricted to the illocutions: Offer(·), Accept(·), Reject(·)
and Withdraw(·). The simple strategies that we will de-
scribe all use the same world model function, Js, that main-
tains the following two probability distributions as their
world model:

• Pt(ΠAcc(Π,Ω, ν, δ)) — the strength of belief that
Π has in the proposition that she should accept the
proposal δ = (a, b) from agent Ω in satisfaction of
need ν at time t, where a is Π’s commitment and b is
Ω’s commitment. Pt(ΠAcc(Π,Ω, ν, δ)) is estimated
from:

1. Pt(Satisfy(Π,Ω, ν, δ)) a subjective evaluation
(the strength of belief that Π has in the proposi-
tion that the expected outcome of accepting the
proposal will satisfy some of her needs).

2. Pt(Fair(δ)) an objective evaluation (the strength
of belief that Π has in the proposition that the
proposal is a “fair deal” in the open market.

3. Pt(ΠCanDo(a) an estimate of whether Π will
be able to meet her commitment a at contract
execution time.

These three arrays of probabilities are estimated by
importing relevant information, [info], as described in
Sec. 3.

• Pt(ΩAcc(β, α, δ)) — the strength of belief that Π has
in the proposition that Ω would accept the proposal δ
from agent Π at time t. Every time that Ω submits
a proposal she is revealing information about what
she is prepared to accept, and every time she rejects
a proposal she is revealing information about what
she is not prepared to accept. Eg: having received



the stamped illocution Offer(Ω,Π, δ)(Ω,Π,u), at time
t > u, Π may believe that Pt(ΩAcc(Ω,Π, δ)) = κ
this is used as a constraint on Pt+1(ΩAcc(·)) which is
calculated using Eqn. 3.

4.1 Negotiation Strategies

An agent’s strategy s is a function of the information Yt

that it has at time t. Four simple strategies make offers
only on the basis of Pt(ΠAcc(Π,Ω, ν, δ)), Π’s acceptabil-
ity threshold γ, and Pt(ΩAcc(Ω,Π, δ)). The greedy strat-
egy s+ chooses:

arg max
δ
{Pt(ΠAcc(Π,Ω, ν, δ)) | Pt(ΩAcc(Ω,Π, δ)) � 0}

it is appropriate when Π believes Ω is desperate to trade.
The expected-acceptability-to-Π-optimizing strategy

s∗ chooses:

arg max
δ
{Pt(ΩAcc(Ω,Π, δ))× Pt(ΠAcc(Π,Ω, ν, δ)) |

Pt(ΠAcc(Π,Ω, ν, δ)) ≥ γ}

when Π is confident and not desperate to trade. The strat-
egy s− chooses:

arg max
δ
{Pt(ΩAcc(Ω,Π, δ)) | Pt(ΠAcc(Π,Ω, ν, δ)) ≥ γ}

it optimises the likelihood of trade — when Π is keen to
trade without compromising its own standards of accept-
ability.

An approach to issue-tradeoffs is described in [10].
The bargaining strategy described there attempts to make
an acceptable offer by “walking round” the iso-curve of Π’s
previous offer δ′ (that has, say, an acceptability of γδ′ ≥
γ) towards Ω’s subsequent counter offer. In terms of the
machinery described here, an analogue is to use the strategy
s−:

arg max
δ
{Pt(ΩAcc(Ω,Π, δ))|Pt(ΠAcc(Π,Ω, ν, δ)) ≥ γδ′}

with γ = γδ′ . This is reasonable for an agent that is at-
tempting to be accommodating without compromising its
own interests. The complexity of the strategy in [10] is
linear with the number of issues. The strategy described
here does not have that property, but it benefits from us-
ing Pt(ΩAcc(Ω,Π, δ)) that contains foot prints of the prior
offer sequence — estimated by repeated use of Eqn. 3 —
in that distribution more recent data gives estimates with
greater certainty.

5 Conclusions

The key to automating trading is to build intelligent agents
that are ‘informed’, that can proactively acquire informa-
tion to reduce uncertainty, that can estimate the integrity
of real-time information flows, and can use uncertain in-
formation as a foundation for strategic decision-making

[3]. An ‘information-based’ agent architecture has been de-
scribed, that is founded on ideas from information theory,
and has been developed specifically for this purpose. This
work is in collaboration with “Institut d’Investigacio en In-
tel.ligencia Artificial”, Spanish Scientific Research Coun-
cil, UAB, Barcelona, Spain.
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