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Abstract— This paper proposes a novel algorithm for signal variables are the memberships of samples to differentedass
classification problems. We consider a non-stationary randm and the objective function is the coding efficiency. More
signal, where samples can be classified into several differe precisely, we optimize thelassification gaip which is a

classes, and samples in each class are identically indepemdy . . . - .
distributed with an unknown probability distribution. The prob- measure of coding efficiency. In order to avoid the difficdti

lem to be solved is to estimate the probability distributiors of N discrete optimizations, we further propose a continuous
the classes and the correct membership of the samples to therelaxation and random rounding solution for the optimizati

classes. We propose a signal classification method based ¢t problems. It is proven in this paper that the optimality loss

data compression principle that the accurate estimation inthe 4,6 tg relaxation vanishes when the total sample number is
classification problems induces the optimal signal model®f data large

compression. The method formulates the classification prdem . . . .
as an optimization problem, where a so called “classificatio In the data compression literature, the adaptive coding ap-
gain” is maximized. In order to circumvent the difficulties in  proach based on classification has been previously distusse

integer optimization, we propose a continuous relaxation bsed Early works on classifying DCT and wavelet coefficients into
algorithm. It is proven in this paper that asymptotically vanishing classes and using individual quantizer for each class dreclu

optimality loss is incurred by the continuous relaxation. W& show e .. .
by simulation results that the proposed algorithm is effede, [2], [14], [12]. The termclassification gainis coined by

robust and has low computational complexity. The proposed Joshi, Jafarkhani, Kasner, Fischer, Farvardin, Marcelimd
algorithm can be applied to solve various multimedia signal Bamberger [7]. Two signal classification algorithms, thexma
segmentation, analysis, and pattern recognition problems imum classification gain and equal mean-normalized stahdar
deviation classification, have been proposed in [7]. Thaaig
classification approaches for adaptive coding have alsa bee
adopted in state-of-the-art subband coding schemes (see fo
Nature multimedia signals are non-stationary in nature. Fimstance [15]).
example, the statistical property of a nature image can varyThe signal classification problem can also be considered as
significantly across edges; an audio signal may contaieatsilan unsupervised pattern recognition problem. In the patter
segments and active segments; and the statistics of a videcognition literature, clustering algorithms for sucholpr
signal can be totally different before and after a change-déms have been previously discussed. The well-known al-
scene. gorithms include the K-means algorithms, and Expectation-
Therefore, it is not a surprise that signal classificatiomaximization (EM) algorithms [5], [11]. In the K-means
problems arise naturedly in many scenarios of multimed#gorithms, the classification problem is formulated as an
signal processing. That is, the signal samples need to dystimization problem, where a sum of distances is minimized
classified into different classes, where each class cantaily by an iterative approach. The classification problem caa als
signals with homogeneous statistics. Such signal claa8dit be formulated as an estimation with incomplete data proplem
problems have been extensively discussed under the namerd solved by the EM algorithms [4]. In the EM algorithms,
thresholding or segmentatioifsee for instance [9], [10]). The the log likelihoods of the estimated distribution parametae
applications range from multimedia signal enhancement iteratively lower bounded and maximized.
multimedia content analysis and understanding. There are several advantages of the proposed algorithm
In this paper, we propose an original signal classificatiasver the previous algorithms. First, the proposed algorith
method based on data compression principles. The center ige “provably good”, i.e., the algorithm is amendable to rig-
of our approach is that signal classifications can be corsideorous theoretical analysis. Second, the proposed algoiigh
as operations of signal modeling. If a mismatched signalehodnore tractable due to that difficult integer optimizations a
is used in data compression, then a performance loss in termeided. The proposed approach is also a more general and
of coding efficiency is incurred. Therefore, an accurateaig flexible framework. For example, the proposed approach is
classification result should maximize the coding efficiemcy more flexible in choosing optimization solvers. The progbse
data compression. algorithm can achieve global optimal solutions if a global
Based on the above data compression principles, we poptimization solver is used; while both K-means algorithms
pose an optimization formulation of the signal classifimati and EM algorithms converge to local optimal solutions.
problems. In the optimization formulation, the optimipati ~ Our contribution:In summary, we propose a novel principle

I. INTRODUCTION
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of signal classification based on data compression. We gepdhe functionD(R) is the distortion-rate function for Gaussian
the continuous relaxation solution for the optimizatiomfio- information sources. For non-Gaussian information sairce
lation. We prove that the optimality loss due to continuousith the same variance?, the distortionD(R) is achievable
relaxation vanishes asymptotically with respect to themam by using a source encoder designed for Gaussian sources [8].
number. For the non-stationary random signal, z, . .., xn, there
Organization of the paperThe rest of this paper is orga-are two approaches to encode the signal. A naive approach
nized as follows. We discuss the signal model in Sedfibn Wdopts an encoder designed for Gaussian sources to encode
A review of classification gain is provided in Sectionl Ill. Weg|| signal samples. The achievable distortion is
present the proposed classification algorithm in Sedfidn IV

We present a theoretical discussion on the optimality lass d 022 2R 2)
to continuous relaxation in Sectign V. Numerical results ar

presented in Sectidn VI. We present the conclusion remark\,mhere,o-g is the variance for the random signay, ...,z .
Section VII. A better approach first classifies the signal samples ihto

different classes, and then uses an individual encoderafcii e
class of samples. Denote the number of samples ini-the

Sourcel class byN;. Definep, as the fractiorp;, = N;/N. Denote the

O variance of samples in theth class byo?. Under an arbitrary

rate allocation, the achievable expected distortion is,

Source2 K
O : J
Signal op.
; szafz 2R17 (3)
=1

where R; is the rate allocated to encode the samples in the
i-th class,

Il. SIGNAL MODEL

Sourcel

O

J
Fig. 1. The signal model ZPiRi =R—H(p1,p2,..-.p1), 4)
i=1

In this paper, we consider a random signal withsamples, and H (py, ps, .., p) is the entropy function with bas It

x1,%9,...,xn. We assume that the random signal is non- : . . .
. . . can be easily found by using the Lagrangian multiple method,
stationary and is a mixture of samples fralmemoryless

information sources. That is, there exismemoryless infor- that the optimal rate allocation satisfies the followingdition

mation sources. The corresponding probability distrioufor 1 52
the i-th information source id”%;. For each n]l <n < N, the R; = max{§ log, (71) ,0}
random variabler,, is distributed with one of the distributions

P; and independent of all the other signal samples. A bloGime that the rat& is sufficiently high, so thaR; > 0 for

diagram of the signal model is shown in Fig. 1. all i, 1 < i < J. Then, the optimal achievable distortion is,
The considered signal classification problem is thus to

estimate the probability distribution of each informatsmurce (

()

and the membership of each signal sample. We assume that
the probability distributions of all information sourcesea
unknown, i.e., we consider a blind signal classification- sce
nario. The case, where the probability distribution of eachs in the previous research, we define the classification gain
information source is known, can be straightforwardly sdiv as the ratio of two achievable distortions,

J
11 (a?)’”> prafeRn ), )

i=1

by using the first principles of statistical detection and-es 5
mation theory, and thus will not be discussed. In this paper, = Iz 5 -, @)
we also assume that all information sources are Gaussian 22H (P2 T, (02)

distributed. The generalization of the proposed algoritiom
non-Gaussian cases (and also an information theoretigsisal

of the algorithm) will be discussed in a companion paper [8]. IV. CLASSIFICATION ALGORITHM

[1l. CLASSIFICATION GAIN In this section, we present the proposed signal classiicati

According to the rate-distortion theory [3], for a memosgde 2lgorithm. The algorithm is based on the principle that the
Gaussian information source with variane® if an encoder OPtimal classification induces the optimal signal model for

with rate R is used, then the smallest achievable mean-squaft&j@ compression (a rigorous treatment of this argument can
error distortion is be found in [8]). We formulate the classification problem

9 _oR as an integer optimization where the classification gain is
D(R) = o"277%. (1) maximized.



The integer optimization is as follows.

J
(Integer) min <H (Ul_z)pi> 92H(p1,...,p.1) ®)
=1
Subject to:
N
_1 AniTy
Zn:l Anj
1 N
e s i (20 — i)’ (10)
<Zg—1 ani) ;::1
N
_1 Qn;
pi = 72”;\71 (11)
J
Zam-:l, foranyn,1 <n <N (12)
=1
ani € {0, 1} (13)

In the integer optimization, the optimization variables ar

variablesa,;, 1 <n < N, 1 <14 < J. Each variable:,; is a
binary variable indicating the membership of thin sample,
ie.,

ani:{

Alternatively, we can also use a set of integeyrszs, . ..

1, if the nth sample is classified to thgh class
0, otherwise
(14)

y ZN

to represent the membership of the signal samples. Thesinteg
zn = i, if and only if thenth signal sample is classified toThen, the random variabl& = f(Z,.

Algorithm 1 The blind signal classification algorithm

procedure BLIND CLASSIFICATION(x1, T2, ..., 2N, J)

solve the relaxed optimization problem

for n < 1, N do

randomly setz,, = ¢ with probability

end for

Return classification schemey, 29, . ..
end procedure

y ZN

V. PERFORMANCEANALYSIS

In this section, we present a performance analysis of the
proposed classification algorithm. We show that the opiignal
loss due to relaxation and random rounding is negligible if
the total sample numbeN is sufficiently large. Therefore,
our algorithm is near-optimal with reduced computational
complexity.

We need to use the inequality in Lemimal5.1 in our discus-
sion. The inequality is one variation of the Azuma ineqyalit
proven by Janson [1][6].

Lemma 5.1: (Azuma Inequalitpet 7, ..., Zx be inde-
pendent random variables, wity, taking values in a sety.
Assume that a (measurable) functipn Ay x Ao x---x Ay —

R satisfies the following Lipschitz condition (L).

e (L) If the vectorsz, 2’ € ]'[f] A; differ only in the kth
coordinate, thenf(z) — f(z")| <ck, k=1,...,N.

.., Zn) satisfies, for

the ith class. In the sequel, we will call such a set of integeesy ¢t > 0,

z1,...,2zn aclassification scheme

Because integer programming is generally difficult to splve
we propose a relaxation and random rounding approach. The

relaxed programming is as follows.

J
(Relaxation) min (H @2)1&) 92H (p1,.-.p) (15)
i=1
Subject to:
N
—1 AniTn
Hi= Zznzvlia (16)
n=1 Yni
1 N
o = | = | D ani (@0 — )’ (17)
[ N ni n T
<Zn—l a"i> n=1
N
—1 Oni
pi = 7277\/} (18)
J
Zam-:l, foranyn,1 <n <N (19)
=1
0<an <1 (20)

In the relaxed programming, the 0-1 constraints have be®#/@ usez,..

relaxed to box constraints.

—2¢2
N 2
1 Ck

P(X >EX +1t) <exp < (21)

)

—2t2
N
As in the previous sections, we use, to denote the

solution for the relaxation programming. We yse (03)2, r

to denote the corresponding occurrence probability, naga

and mean. That is,

>
_ n=1 niln

N )
D=1 Qi

)

., zn to denote the classification scheme obtained
from Algorithm[d. In the following, we abuse the notation and

P(X <EX —t) <exp (22)

(23)

N
S an (wn—p)?, (24

n=1

(25)

The proposed algorithm is summarized in Algoritiin 1. I¥S€a,; to denote the randomly rounded version of the variable
the first step, the relaxed optimization is solved. Denoe ti;, i-€.,

solution of the relaxed optimization by ,. In the random
rounding step, we randomly sef according to the values of
a’;. That is,P(z, = i) = af,.

1, ifz,=1

0, otherwise (26)

ani—{



Similarly, we usep;, o2, u; to denote the corresponding Theorem 5.3:Let €1, €2, €3 be arbitrary positive real num-

occurrence probability, variance, and mean. That is, bers. LetV = max,, x,, — min,, z,,. Then, the probability that
N the classification scheme obtained from Algorithin 1 is not
2n=1 Gnin ical i bounded as foll
Wi = ZN77 (27) (€1, €2, €3)-typical is upper bounded as follows.
n=1 ni

PP (the classification scheme is n@t, eo, €3)-typical) (42)

N
1
2 __ s : 2
0; = <ZN _)Zam( :uz) ) (28) SQJeXp( 2€%N)+2J6Xp< i/QN)+2JeX ( 263N)

n=1 QAnji n=1 V4
ZN,I Qi ) A A (43)
pi = "‘T (29) Proof: By using the Azuma inequality, we can show that

Definition: Let €1, €2, €5 be arbitrary positive real numbers. N N
We say that one classification scheméd s, e, e3)-typical if Z ni = Z ni
the following conditions hold for all il <i < .J, n=1 n=1

> €1N> < 2exp( 261]\7) (44)

N N N _92N
_Za;‘n < &N, (30) P(Zamxn—ZaZixn ZezN) §2exp< V; )7
n=1 n=1 n=1
(45)
N
- Z ayTy| < €N, (31) N N
n=1 P < Z ani ( Z (x — /Ll > 63N> (46)
n=1 n=1
N N —262N
Z anz Tn /LZ Z .I' - :uz < 631\/v- (32) < 2 exp < V?L ) ' (47)
n=1 n=1
The theorem follows from a union bound. [ |

Lemma 5.2:If €1, €2, €3 all go to zero, then fofeq, €2, €3)-
typical classification schemeg;, p;, o7 go to u}, p;, (a;‘)z
respectively.

Proof: It can be easily checked that goes tou}, and
pi goes top;. Foro?, we notice that

Corollary 5.4: If the sample numbeN is sufficiently large,
then the classification scheme obtained from Algorifim 1 is
(1, €2, €3)-typical with probability close to one.

Proof: The upper bound in Theordm 5.3 is close to zero

for sufficiently largeN. [ ]
N Corollary 5.5: If the sample numbeNW is sufficiently large,
Z ani(Tn — 1) (33) then there exists at least ofi&, e, e3)-typical classification
n=1 scheme.
B N . . ) Proof: We have presented an algorithm, which constructs
= Z ni(Tn = pt; + p1; = pi) (34)  such a classification scheme with successful probabiligel
";1 to one. |
Remark 1: Theorem[ 5.8 and Corollafy 3.5 imply that the
- Z — )+ Zam - )’ (35) gap between the optimal classification gain achieved in the
=t N relaxation optimization and the optimal classification ngai
_ achieved in the integer optimization goes to zero asymptot-
+2;am( — ) = ) (36) ically. In other words, the continuous relaxation incurs an
N asymptotically vanishing optimality loss.
= > ani(wn — u})* + piN (uf — p)? (37)
ne1 VI. NUMERICAL RESULTS
In this section, we present numerical results for the pregos
— i Z ani(Tn — 1) (38) blind classification algorithm. The IPOPT package is used to
N solve the optimization programming [13].
2 . 9 In Fig.[2, we depict the result of the proposed algorithm for
=D anilwn = ) = il (] = 1) (39) 4 one dimensional mixed signal of two classes, with one class
n=t having mean 128 and variance 16, and the other class having
Therefore, mean 16 and variance 16. In Fg. 3, we depict the result of
, ZN:1 ani(Tn — pi)? the proposed algorithm for a one dimensional mixed signal
0, = T —x (40)  of two classes, with one class having mean 128 and variance
N 2 n=1 Gni 2500, and the other class having mean 128 and variance 25.
e Gni(@n — pf)? () (41) In Fig.[4, we depict the result of the proposed algorithm for a
Zﬁf:l ani Hi = Hi one dimensional mixed signal of two classes, with one class

) ) having mean 50 and variance 2500, and the other class having
It follows that o7 goes to(o})". ®  mean 5 and variance 25. In each figure, the signal is shown in



the upper part of the figure. The classification result is show 200
in the lower part of the figure. The grey region of the bar
indicates the samples which are classified into one clask, an 1007

the white region of the bar indicates the samples which are
classified into the other class. In all the three cases, tiveabi

sample numbelN = 256.

150

100+

50

Fig. 2. Two classes. The first class has mean 128 and variabic@ hke

second class has mean 16 and variance 16.

250

200
150,
100

50

Fig. 3. Two classes. The first class has mean 128 and variés@@ Zhe

second class has mean 128 and variance 25.

In Fig.[H, we depict the result of the proposed algorithm for

-100

Fig. 4. Two classes. The first class has mean 50 and variar@@ IHe
second class has mean 5 and variance 25.

Fig. 5. A case of two dimensional signal. The signal is showrhie left
part. The classification result is shown in the right part.

which show that our algorithm is asymptotically optimal.-Nu
merical results show that the proposed algorithm is effecti
robust and has low computational complexity. The proposed
algorithm can be used to solve various multimedia signal
segmentation, analysis, and pattern recognition problems
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