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Abstract— This paper proposes a novel algorithm for signal
classification problems. We consider a non-stationary random
signal, where samples can be classified into several different
classes, and samples in each class are identically independently
distributed with an unknown probability distribution. The prob-
lem to be solved is to estimate the probability distributions of
the classes and the correct membership of the samples to the
classes. We propose a signal classification method based on the
data compression principle that the accurate estimation inthe
classification problems induces the optimal signal models for data
compression. The method formulates the classification problem
as an optimization problem, where a so called “classification
gain” is maximized. In order to circumvent the difficulties in
integer optimization, we propose a continuous relaxation based
algorithm. It is proven in this paper that asymptotically vanishing
optimality loss is incurred by the continuous relaxation. We show
by simulation results that the proposed algorithm is effective,
robust and has low computational complexity. The proposed
algorithm can be applied to solve various multimedia signal
segmentation, analysis, and pattern recognition problems.

I. I NTRODUCTION

Nature multimedia signals are non-stationary in nature. For
example, the statistical property of a nature image can vary
significantly across edges; an audio signal may contains silent
segments and active segments; and the statistics of a video
signal can be totally different before and after a change-of-
scene.

Therefore, it is not a surprise that signal classification
problems arise naturedly in many scenarios of multimedia
signal processing. That is, the signal samples need to be
classified into different classes, where each class contains only
signals with homogeneous statistics. Such signal classification
problems have been extensively discussed under the name of
thresholding or segmentation(see for instance [9], [10]). The
applications range from multimedia signal enhancement to
multimedia content analysis and understanding.

In this paper, we propose an original signal classification
method based on data compression principles. The center idea
of our approach is that signal classifications can be considered
as operations of signal modeling. If a mismatched signal model
is used in data compression, then a performance loss in terms
of coding efficiency is incurred. Therefore, an accurate signal
classification result should maximize the coding efficiencyin
data compression.

Based on the above data compression principles, we pro-
pose an optimization formulation of the signal classification
problems. In the optimization formulation, the optimization

variables are the memberships of samples to different classes,
and the objective function is the coding efficiency. More
precisely, we optimize theclassification gain, which is a
measure of coding efficiency. In order to avoid the difficulties
in discrete optimizations, we further propose a continuous
relaxation and random rounding solution for the optimization
problems. It is proven in this paper that the optimality loss
due to relaxation vanishes when the total sample number is
large.

In the data compression literature, the adaptive coding ap-
proach based on classification has been previously discussed.
Early works on classifying DCT and wavelet coefficients into
classes and using individual quantizer for each class include
[2], [14], [12]. The term classification gain is coined by
Joshi, Jafarkhani, Kasner, Fischer, Farvardin, Marcelin,and
Bamberger [7]. Two signal classification algorithms, the max-
imum classification gain and equal mean-normalized standard
deviation classification, have been proposed in [7]. The signal
classification approaches for adaptive coding have also been
adopted in state-of-the-art subband coding schemes (see for
instance [15]).

The signal classification problem can also be considered as
an unsupervised pattern recognition problem. In the pattern
recognition literature, clustering algorithms for such prob-
lems have been previously discussed. The well-known al-
gorithms include the K-means algorithms, and Expectation-
Maximization (EM) algorithms [5], [11]. In the K-means
algorithms, the classification problem is formulated as an
optimization problem, where a sum of distances is minimized
by an iterative approach. The classification problem can also
be formulated as an estimation with incomplete data problem,
and solved by the EM algorithms [4]. In the EM algorithms,
the log likelihoods of the estimated distribution parameters are
iteratively lower bounded and maximized.

There are several advantages of the proposed algorithm
over the previous algorithms. First, the proposed algorithm
is “provably good”, i.e., the algorithm is amendable to rig-
orous theoretical analysis. Second, the proposed algorithm is
more tractable due to that difficult integer optimizations are
avoided. The proposed approach is also a more general and
flexible framework. For example, the proposed approach is
more flexible in choosing optimization solvers. The proposed
algorithm can achieve global optimal solutions if a global
optimization solver is used; while both K-means algorithms
and EM algorithms converge to local optimal solutions.

Our contribution:In summary, we propose a novel principle
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of signal classification based on data compression. We propose
the continuous relaxation solution for the optimization formu-
lation. We prove that the optimality loss due to continuous
relaxation vanishes asymptotically with respect to the sample
number.

Organization of the paper:The rest of this paper is orga-
nized as follows. We discuss the signal model in Section II.
A review of classification gain is provided in Section III. We
present the proposed classification algorithm in Section IV.
We present a theoretical discussion on the optimality loss due
to continuous relaxation in Section V. Numerical results are
presented in Section VI. We present the conclusion remark in
Section VII.

II. SIGNAL MODEL

J
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Source

Source

1

2

Signal

Fig. 1. The signal model

In this paper, we consider a random signal withN samples,
x1, x2, . . . , xN . We assume that the random signal is non-
stationary and is a mixture of samples fromJ memoryless
information sources. That is, there existJ memoryless infor-
mation sources. The corresponding probability distribution for
the i-th information source isPi. For each n,1 ≤ n ≤ N , the
random variablexn is distributed with one of the distributions
Pi and independent of all the other signal samples. A block
diagram of the signal model is shown in Fig. 1.

The considered signal classification problem is thus to
estimate the probability distribution of each informationsource
and the membership of each signal sample. We assume that
the probability distributions of all information sources are
unknown, i.e., we consider a blind signal classification sce-
nario. The case, where the probability distribution of each
information source is known, can be straightforwardly solved
by using the first principles of statistical detection and esti-
mation theory, and thus will not be discussed. In this paper,
we also assume that all information sources are Gaussian
distributed. The generalization of the proposed algorithmto
non-Gaussian cases (and also an information theoretic analysis
of the algorithm) will be discussed in a companion paper [8].

III. C LASSIFICATION GAIN

According to the rate-distortion theory [3], for a memoryless
Gaussian information source with varianceσ2, if an encoder
with rateR is used, then the smallest achievable mean-squared
error distortion is,

D(R) = σ22−2R. (1)

The functionD(R) is the distortion-rate function for Gaussian
information sources. For non-Gaussian information sources
with the same varianceσ2, the distortionD(R) is achievable
by using a source encoder designed for Gaussian sources [8].

For the non-stationary random signalx1, x2, . . . , xN , there
are two approaches to encode the signal. A naive approach
adopts an encoder designed for Gaussian sources to encode
all signal samples. The achievable distortion is

σ2
x2

−2R, (2)

where,σ2
x is the variance for the random signalx1, . . . , xN .

A better approach first classifies the signal samples intoJ
different classes, and then uses an individual encoder for each
class of samples. Denote the number of samples in thei-th
class byNi. Definepi as the fractionpi = Ni/N . Denote the
variance of samples in thei-th class byσ2

i . Under an arbitrary
rate allocation, the achievable expected distortion is,

J
∑

i=1

piσ
2
i 2

−2Ri , (3)

whereRi is the rate allocated to encode the samples in the
i-th class,

J
∑

i=1

piRi = R−H(p1, p2, . . . , pJ), (4)

andH(p1, p2, . . . , pJ) is the entropy function with base2. It
can be easily found by using the Lagrangian multiple method,
that the optimal rate allocation satisfies the following condition

Ri = max

{

1

2
log2

(

σ2
i

λ

)

, 0

}

. (5)

Assume that the rateR is sufficiently high, so thatRi > 0 for
all i, 1 ≤ i ≤ J . Then, the optimal achievable distortion is,

(

J
∏

i=1

(

σ2
i

)pi

)

2−2R+2H(p1,...,pJ ). (6)

As in the previous research, we define the classification gain
as the ratio of two achievable distortions,

G =
σ2
x

22H(p1,...,pJ )
∏J

i=1 (σ
2
i )

pi
. (7)

IV. CLASSIFICATION ALGORITHM

In this section, we present the proposed signal classification
algorithm. The algorithm is based on the principle that the
optimal classification induces the optimal signal model for
data compression (a rigorous treatment of this argument can
be found in [8]). We formulate the classification problem
as an integer optimization where the classification gain is
maximized.
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The integer optimization is as follows.

(Integer) min

(

J
∏

i=1

(

σ2
i

)pi

)

22H(p1,...,pJ ) (8)

Subject to:

µi =

∑N

n=1 anixn
∑N

n=1 ani
(9)

σ2
i =

(

1
∑N

n=1 ani

)

N
∑

n=1

ani (xn − µi)
2 (10)

pi =

∑N

n=1 ani
N

(11)

J
∑

i=1

ani = 1, for anyn, 1 ≤ n ≤ N (12)

ani ∈ {0, 1} (13)

In the integer optimization, the optimization variables are
variablesani, 1 ≤ n ≤ N , 1 ≤ i ≤ J . Each variableani is a
binary variable indicating the membership of thenth sample,
i.e.,

ani =

{

1, if the nth sample is classified to theith class
0, otherwise

(14)

Alternatively, we can also use a set of integersz1, z2, . . . , zN
to represent the membership of the signal samples. The integer
zn = i, if and only if thenth signal sample is classified to
the ith class. In the sequel, we will call such a set of integers
z1, . . . , zn a classification scheme.

Because integer programming is generally difficult to solve,
we propose a relaxation and random rounding approach. The
relaxed programming is as follows.

(Relaxation) min

(

J
∏

i=1

(

σ2
i

)pi

)

22H(p1,...,pJ ) (15)

Subject to:

µi =

∑N

n=1 anixn
∑N

n=1 ani
(16)

σ2
i =

(

1
∑N

n=1 ani

)

N
∑

n=1

ani (xn − µi)
2 (17)

pi =

∑N

n=1 ani
N

(18)

J
∑

i=1

ani = 1, for anyn, 1 ≤ n ≤ N (19)

0 ≤ ani ≤ 1 (20)

In the relaxed programming, the 0-1 constraints have been
relaxed to box constraints.

The proposed algorithm is summarized in Algorithm 1. In
the first step, the relaxed optimization is solved. Denote the
solution of the relaxed optimization bya∗ni. In the random
rounding step, we randomly setzn according to the values of
a∗ni. That is,P(zn = i) = a∗ni.

Algorithm 1 The blind signal classification algorithm
procedure BLIND CLASSIFICATION(x1, x2, . . . , xN , J)

solve the relaxed optimization problem
for n← 1, N do

randomly setzn = i with probability a∗ni
end for
Return classification schemez1, z2, . . . , zN

end procedure

V. PERFORMANCEANALYSIS

In this section, we present a performance analysis of the
proposed classification algorithm. We show that the optimality
loss due to relaxation and random rounding is negligible if
the total sample numberN is sufficiently large. Therefore,
our algorithm is near-optimal with reduced computational
complexity.

We need to use the inequality in Lemma 5.1 in our discus-
sion. The inequality is one variation of the Azuma inequality
proven by Janson [1][6].

Lemma 5.1: (Azuma Inequality)Let Z1, . . . , ZN be inde-
pendent random variables, withZk taking values in a setΛk.
Assume that a (measurable) functionf : Λ1×Λ2×· · ·×ΛN →
R satisfies the following Lipschitz condition (L).

• (L) If the vectorsz, z′ ∈
∏N

1 Λi differ only in the kth
coordinate, then|f(z)− f(z′)| < ck, k = 1, . . . , N .

Then, the random variableX = f(Z1, . . . , ZN) satisfies, for
any t ≥ 0,

P(X ≥ EX + t) ≤ exp

(

−2t2
∑N

1 c2k

)

, (21)

P(X ≤ EX − t) ≤ exp

(

−2t2
∑N

1 c2k

)

. (22)

As in the previous sections, we usea∗ni to denote the
solution for the relaxation programming. We usep∗i , (σ∗

i )
2, µ∗

i

to denote the corresponding occurrence probability, variance
and mean. That is,

µ∗

i =

∑N

n=1 a
∗

nixn
∑N

n=1 a
∗

ni

, (23)

(σ∗

i )
2 =

(

1
∑N

n=1 a
∗

ni

)

N
∑

n=1

a∗ni (xn − µ∗

i )
2
, (24)

p∗i =

∑N

n=1 a
∗

ni

N
. (25)

We usez1, . . . , zN to denote the classification scheme obtained
from Algorithm 1. In the following, we abuse the notation and
useani to denote the randomly rounded version of the variable
a∗ni, i.e.,

ani =

{

1, if zn = i
0, otherwise

(26)
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Similarly, we usepi, σ2
i , µi to denote the corresponding

occurrence probability, variance, and mean. That is,

µi =

∑N

n=1 anixn
∑N

n=1 ani
, (27)

σ2
i =

(

1
∑N

n=1 ani

)

N
∑

n=1

ani (xn − µi)
2 , (28)

pi =

∑N

n=1 ani
N

. (29)

Definition: Let ǫ1, ǫ2, ǫ3 be arbitrary positive real numbers.
We say that one classification scheme is(ǫ1, ǫ2, ǫ3)-typical if
the following conditions hold for all i,1 ≤ i ≤ J ,

∣

∣

∣

∣

∣

N
∑

n=1

ani −

N
∑

n=1

a∗ni

∣

∣

∣

∣

∣

≤ ǫ1N, (30)

∣

∣

∣

∣

∣

N
∑

n=1

anixn −

N
∑

n=1

a∗nixn

∣

∣

∣

∣

∣

≤ ǫ2N, (31)

∣

∣

∣

∣

∣

N
∑

n=1

ani (xn − µ∗

i )
2
−

N
∑

n=1

a∗ni (x− µ∗

i )
2

∣

∣

∣

∣

∣

≤ ǫ3N. (32)

Lemma 5.2:If ǫ1, ǫ2, ǫ3 all go to zero, then for(ǫ1, ǫ2, ǫ3)-
typical classification schemes,µi, pi, σ2

i go to µ∗

i , p∗i , (σ∗

i )
2

respectively.
Proof: It can be easily checked thatµi goes toµ∗

i , and
pi goes top∗i . For σ2

i , we notice that

N
∑

n=1

ani(xn − µi)
2 (33)

=
N
∑

n=1

ani(xn − µ∗

i + µ∗

i − µi)
2 (34)

=
N
∑

n=1

ani(xn − µ∗

i )
2 +

N
∑

n=1

ani(µ
∗

i − µi)
2 (35)

+ 2

N
∑

n=1

ani(xn − µ∗

i )(µ
∗

i − µi) (36)

=

N
∑

n=1

ani(xn − µ∗

i )
2 + piN(µ∗

i − µi)
2 (37)

+ 2(µ∗

i − µi)

N
∑

n=1

ani(xn − µ∗

i ) (38)

=

N
∑

n=1

ani(xn − µ∗

i )
2 − piN(µ∗

i − µi)
2 (39)

Therefore,

σ2
i =

∑N

n=1 ani(xn − µi)
2

∑N

n=1 ani
(40)

=

∑N

n=1 ani(xn − µ∗

i )
2

∑N

n=1 ani
− (µ∗

i − µi)
2 (41)

It follows thatσ2
i goes to(σ∗

i )
2.

Theorem 5.3:Let ǫ1, ǫ2, ǫ3 be arbitrary positive real num-
bers. LetV = maxn xn−minn xn. Then, the probability that
the classification scheme obtained from Algorithm 1 is not
(ǫ1, ǫ2, ǫ3)-typical is upper bounded as follows.

P (the classification scheme is not(ǫ1, ǫ2, ǫ3)-typical) (42)

≤ 2J exp
(

−2ǫ21N
)

+ 2J exp

(

−2ǫ22N

V 2

)

+ 2J exp

(

−2ǫ23N

V 4

)

(43)
Proof: By using the Azuma inequality, we can show that

P

(∣

∣

∣

∣

∣

N
∑

n=1

ani −

N
∑

n=1

a∗ni

∣

∣

∣

∣

∣

≥ ǫ1N

)

≤ 2 exp
(

−2ǫ21N
)

, (44)

P

(∣

∣

∣

∣

∣

N
∑

n=1

anixn −

N
∑

n=1

a∗nixn

∣

∣

∣

∣

∣

≥ ǫ2N

)

≤ 2 exp

(

−2ǫ22N

V 2

)

,

(45)

P

(∣

∣

∣

∣

∣

N
∑

n=1

ani (xn − µ∗

i )
2
−

N
∑

n=1

a∗ni (x− µ∗

i )
2

∣

∣

∣

∣

∣

≥ ǫ3N

)

(46)

≤ 2 exp

(

−2ǫ23N

V 4

)

. (47)

The theorem follows from a union bound.
Corollary 5.4: If the sample numberN is sufficiently large,

then the classification scheme obtained from Algorithm 1 is
(ǫ1, ǫ2, ǫ3)-typical with probability close to one.

Proof: The upper bound in Theorem 5.3 is close to zero
for sufficiently largeN .

Corollary 5.5: If the sample numberN is sufficiently large,
then there exists at least one(ǫ1, ǫ2, ǫ3)-typical classification
scheme.

Proof: We have presented an algorithm, which constructs
such a classification scheme with successful probability close
to one.

Remark 1:Theorem 5.3 and Corollary 5.5 imply that the
gap between the optimal classification gain achieved in the
relaxation optimization and the optimal classification gain
achieved in the integer optimization goes to zero asymptot-
ically. In other words, the continuous relaxation incurs an
asymptotically vanishing optimality loss.

VI. N UMERICAL RESULTS

In this section, we present numerical results for the proposed
blind classification algorithm. The IPOPT package is used to
solve the optimization programming [13].

In Fig. 2, we depict the result of the proposed algorithm for
a one dimensional mixed signal of two classes, with one class
having mean 128 and variance 16, and the other class having
mean 16 and variance 16. In Fig. 3, we depict the result of
the proposed algorithm for a one dimensional mixed signal
of two classes, with one class having mean 128 and variance
2500, and the other class having mean 128 and variance 25.
In Fig. 4, we depict the result of the proposed algorithm for a
one dimensional mixed signal of two classes, with one class
having mean 50 and variance 2500, and the other class having
mean 5 and variance 25. In each figure, the signal is shown in
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the upper part of the figure. The classification result is shown
in the lower part of the figure. The grey region of the bar
indicates the samples which are classified into one class, and
the white region of the bar indicates the samples which are
classified into the other class. In all the three cases, the signal
sample numberN = 256.

0 50 100 150 200 250 300
0

50

100

150

Fig. 2. Two classes. The first class has mean 128 and variance 16. The
second class has mean 16 and variance 16.

0 50 100 150 200 250 300
0

50

100

150

200

250

Fig. 3. Two classes. The first class has mean 128 and variance 2500. The
second class has mean 128 and variance 25.

In Fig. 5, we depict the result of the proposed algorithm for
a two dimensional mixed signal of two classes, with one class
having mean 200 and variance 400, and the other class having
mean 5 and variance 400. The signal is shown in the left part
of the figure. The classification result is shown in the right
part of the figure. The size of the image is32 by 32 pixels.

In summary, we find that the proposed classification algo-
rithm is effective and robust. The algorithm has low compu-
tational complexity.

VII. C ONCLUSION

This paper proposes a blind classification algorithm for
non-stationary signals, which can be modeled as mixtures
of signals from several information sources. The proposed
algorithm is based on data compression principles and relaxed
continuous optimizations. We present theoretical discussions,

0 50 100 150 200 250 300
−100

0

100

200

Fig. 4. Two classes. The first class has mean 50 and variance 2500. The
second class has mean 5 and variance 25.

Fig. 5. A case of two dimensional signal. The signal is shown in the left
part. The classification result is shown in the right part.

which show that our algorithm is asymptotically optimal. Nu-
merical results show that the proposed algorithm is effective,
robust and has low computational complexity. The proposed
algorithm can be used to solve various multimedia signal
segmentation, analysis, and pattern recognition problems.
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