
An Eclipse Plugin for the Automated Reverse-Engineering of Software
Programs

Philippe Dugerdil, David Kony, Javier Belmonte
Department of Information Systems

HEG-Univ. of Applied Sciences,
7, route de Drize, CH-1227 Geneva, Switzerland

{philippe.dugerdil, david.kony, javier.belmonte}@hesge.ch

Abstract

 In the reverse engineering of a software program,

one of the key difficulties is actually to understand the
software. While the published techniques work top
down or bottom up, our approach works middle-out:
before trying to understand the low level code, we first
rebuild a hypothetical analysis model from the use-
cases of the system. This model then represents the
target of the understanding task. In fact we try to map
the code elements to the analysis objects. For this
approach to be useable in large industrial software
systems, it must be supported by a powerful tool. This
paper presents the Eclipse plugin we developed to
support our methodology, as well as a reverse
engineering scenario using this tool. We then discuss
the technology we used and the result we obtained.

Keywords – Reverse engineering, analysis tool,

software understanding, dynamic analysis, Eclipse.

1. Introduction

To extend the life of a legacy system, to manage its

complexity and decrease its maintenance cost, one
option is to reengineer it. Recently, we developed a
reverse-engineering process based on the Unified
Process which rests on the dynamic analysis of
program execution. The theoretical framework of our
technique has been presented elsewhere [7][8]. The
first experiments with this reverse engineering process
have been performed by hand. Although these were
encouraging, the size of real world industrial software
asks for the support of a powerful tool. The goal of this
paper is to present the tool we have developed as well
as the way it can automate the most difficult task of the
process: the mapping from low the level source code
elements to the analysis model elements. In the
following text, section 2 presents a short summary of

our methodology and section 3 justifies our approach
with respect to the software understanding effort.
Section 4 presents the engine that maps the source
code elements to the analysis model elements and
section 5 present the tool itself with its user interface.
Section 6 presents a reverse engineering scenario that
uses the tool and section 7 discusses the results
obtained so far and the future work. Section 8 presents
the related work.

2. Summary of our methodology

Generally, legacy systems documentation is at best

obsolete and at worse non-existent. Often, its
developers are not available anymore to provide
information of these systems. In such situations the
only people who still have a good perspective on the
system are its users. In fact they are usually well aware
of the business context and business relevance of the
programs. Therefore, our iterative and incremental
methodology, which is based on the Unified Process
[11], starts from the recovery of the system use-cases
from its actual users. Its main steps are [8]:
• Re-documentation of the system use-cases;
• Design of the analysis models associated to all the

use-cases;
• Re-documentation of the visible structure of the

code;
• Execution of the system according to the use-

cases and recording of the execution trace;
• Analysis of the execution trace and identification

of the classes involved in the trace;
• Mapping of the classes in the execution trace to

the objects of the analysis model.
• Re-documentation of the architecture of the

system by clustering the classes based on their
role in the use-case implementation.

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.73

284

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.73

284

In the absence of any documentation on the system to
reengineer, the Unified Process’ analysis model
associated to each use-case represents our best
hypothesis on the actual architecture of the system.
Figure 1 presents an example of an analysis model
with the stereotypical classes (analysis object) that
represent software roles for the classes. These roles
are: the boundaries (interface with the outside world,
i.e. screens), the entities (information containers) and
the control objects (coordinators of the use-case
execution) [11].

Figure 1. Use-case and analysis model

Besides, we must re-document the visible structure

of the code based on syntactic clues such as the
modules, packages and classes declarations, as well as
the directory structure in which the elements of the
code are stored. This let us identify the code element
that we must understand. Therefore, as the next step,
we must find the classes in the actual implementation
that play the roles of the objects in the analysis model.
Then, we run the system according to each use-case
and record the execution trace i.e. the functions and
procedures called during execution (Figure 2).

User 1

UseCase1

Figure 2. Use-case and the associated

execution trace

Next the functions and procedures called, recorded

in the trace, are linked to the classes or modules they
belong to. These represent the classes and modules that
actually implement the use-case. Then the source code
of these functions and procedures is analyzed to find
evidence of database access and screen display. The
classes and modules containing database access
functions will be mapped to entities and the ones
containing screen display functions to boundaries [8].
The remaining classes are mapped to control classes.
At this step, we know the role of the classes in the
implementation, but not the exact analysis objects they
can be mapped to. To perform this last step, we
analyze the sequence of involvement of the analysis
objects in the use-case and compare it to the sequence

of occurrences of the identified implementation classes
in the execution trace. In fact, when analyzing a use-
case, one must identify at each flow step the analysis
object involved [11]. Consequently, the sequence of
action steps in a use-case flow leads to a sequence of
analysis object involvements (Figure 3).

Figure 3. Use-case and involved objects

After having compared the sequence of analysis

object involvements to the sequence of implementation
classes occurrences, we can map the objects as showed
in Figure 4. Moreover, to help with the mapping, we
also compare the associations in the analysis model to
the ones between the implementation classes. The last
step in our method is to recreate the high-level
architecture of the software by clustering the
implementation classes according to the use-case they
implement and to the role they play.

Figure 4. Mapping implementation classes to

analysis object based on sequence

3. Software understanding justification

Software understanding theories have long been

reported in the literature [1][2][13][14][17][18].
Generally the authors distinguish between top down
(from the knowledge of the functional requirement
down to the code) and bottom up (from the code to the

285285

function it implements). However, few theories have
been proposed for model-based program understanding
that we could classify as middle-out. In our approach,
the maintenance engineer would first rebuild the
analysis model of the use-cases before trying to
understand the code. This model represents the target
of the understanding of the code, since the link
between the functional requirements (use-cases) and
the analysis model is straightforward. By so doing, we
move the a-priori functional understanding of the
system closer to the code (i.e. we “transfer” the
functional understanding from the use-case model to
the analysis model that is closer to the code).
Therefore, the gap to fill to understand the code is
smaller. This is exactly what our integrated
environment is able to do. In fact, the mapping of the
implementation classes to the analysis objects creates a
link between the use-cases and the implementation
classes. However, it is important to note that a single
implementation class can be involved in the
implementation of several analysis objects. Moreover,
a single analysis object can be implemented by several
classes. In short, the mapping between analysis object
and implementation classes is many to many. Often,
we can associate some of the methods of the
implementation classes to each analysis object they
implement. It is therefore important to know which
methods in the execution trace the mapping from one
analysis object to an implementation class rests on.
Finally it is also required for the environment to let us
freely navigate between all the models and information
source and to be able to highlight the corresponding
elements in all the models and information sources.

4. Automating the mapping

In fact, for any reasonable size industrial system,

the mapping between the analysis objects and the
implementation classes cannot be done by hand
because of the number of classes involved and the size
of the execution trace. Therefore, to automate this
mapping, we designed a production system where the
production rules implement the heuristics we
developed when applying our methodology by hand
[1]. However, since the mappings inferred by the
heuristics are probable but not certain, we had to
complement the production system with a Truth
Maintenance System TMS [6] to deal with the
incertitude of the inferred facts. In short, a TMS can be
seen as a graph whose nodes are the inferred facts and
whose edges are the inference dependencies between
the facts. When the certainty value of a given fact is
modified, this value is propagated to all the dependent

facts in the graph to maintain the global coherence of
the inferred facts.

Since the production rules must process the use-
case flow, the analysis model, the source code and the
execution trace, we need an integrated environment
where all these models are available and linked. This is
summarized in Figure 5. Because the mappings rest on
the analysis of the execution trace i.e. on the sequence
of method calls, we can trace for each successful
mapping the methods that lead to it. In summary, our
tool will record the links between:
• the use-case;
• the execution trace that is generated when

executing one scenario from the use case;
• the analysis model corresponding to the use-case;
• the implementation classes that correspond to the

object of the analysis model;
• the methods in the implementation classes that lead

to the mapping.

Figure 5. Inference engine to infer the

mapping

To support our methodology, we need an integrated
tool that is able to display all the models and
information sources as well as record and highlight the
links between all the corresponding elements.
Interestingly enough, one of the most advanced
software engineering tools on the market, RSA
(Rational Software Architect) available from the leader
in the implementation of the Unified Process: IBM® is
not able to represent the traceability links between
these models and information sources. For example the
objects of the analysis model cannot be formally linked
to the corresponding design model classes and the
classes of the latter cannot be formally linked to the
corresponding implementation classes. By formally we
mean that no mechanism maintains the bidirectional
traceability constraints between these model elements.
In fact, RSA adheres to the MDA (Model Driven
Architecture®) approach from the OMG®. Then, it is
able to generate a given model from another model

286286

(normally the PSM from the PIM) by executing some
transformation rule. But the generated models weakly
refer to each other: we may know that model 1 has
been generated from model 2 but the connection
between the elements of each model is not recorded.
However, this is exactly the kind of traceability we
need to “understand” the software.

5. Reverse analysis Eclipse plugin

Our tool, which is developed as a plugin to the

Eclipse platform, has five main components:
1. The extended file explorer;
2. The extended file editor
3. The analysis model editor;
4. The use-case editor;
5. The model mapper that includes the production

system and the TMS.
Figure 6 presents the integrated reverse engineering
environment in the Eclipse framework. Of the above 5
components, only 4 are visible in the picture: the
model mapper runs in the background and does not
have a specific view. On the top right, one sees the

analysis model editor. This tool is an open source
plugin that has been extended to include the analysis
model stereotypes and the ability to broadcast the
selected objects to the other views. We tried several
open source UML diagrams editor tool and we found

the most suitable to be Violet [19]. The use-case editor
is represented on the bottom. It has three subviews. On
the left one represents the analysis objects involved in
the use-case. These are all the objects present in the
analysis model on the top right. In the center we find
the use-case flow editor. On the right we show the
analysis objects associated to the selected action step
in the use-case flow. The objects represented on the
bottom right are the one associated to the 6th action
step in the use-case flow. The column “stat” gives the
number of analysis objects associated to each action
step. To our knowledge, this is the only tool that
leverages the UP analysis discipline by linking the
analysis objects to the action steps of the use-case.

6. Reverse engineering scenario

After having recovered the use-cases of the system,

we redocument its visible architecture. In the case of
Java programs, this can be done automatically through
the use of a software engineering environment such as
RSA. Then we instrument the source code of the
system to be able to generate the execution trace. The

instrumented code is compiled and run according to
scenarios corresponding to the use-cases. The
generated execution trace is then recorded. Once this
preliminary work is completed, we can start to analyze
the system with our tool. First we select the source

Figure 6. The reverse engineering environment under Eclipse

287287

files of the system to analyze, through the file menu of
the tool. Then, for each of the use-cases, we proceed as
follows:
1. We enter the flow of events of the use-case by

using the use-case editor of the tool.
2. We manually analyze the use-case and design its

analysis model in the analysis model editor.
3. We attach each of the analysis objects of the model

to the corresponding action step of the use-case
flow. This is done by picking one or more of the
available objects listed on the left in the use-case
editor.

4. When this is done we can launch the object
mapper. The latter then asks for the associated
execution trace file to be used as input.

5. After the mapping is completed, the result can be
displayed as annotations in the models and editors.

After having executed the mapper, if one selects one
analysis object in the list on the left of the use-case
editor (see figure 6) then:
1. The file explorer displays a little red dot to the

bottom right of some of the file icon. These are
the files containing the classes that are mapped to
the selected analysis object.

2. When we open one of these files, the editor
highlights the signatures of all the method that are
involved in the mapping.

These represent the implementation classes that play
the role corresponding to the selected analysis object.
Similarly, the analysis object can be selected in the
analysis model editor (top right), the resulting display
will be the same. For example, in Figure 6, we selected
the boundary “Personnes”. This object is then
identified in the analysis model editor (top right). In
the navigator, the file VQPR005_FRM.java got a red
dot. This means that this file contains a class that is
mapped to the selected boundary object. When we
open the file we can see highlighted all the methods
that lead to the mapping. In the file editor, based on
his knowledge of the implementation, the user can
change the selection of the method signatures to com-
plement the mapping done by the inference engine.
The modified mapping will then be recorded by the
system. For example, the user may know that some
additional methods are involved in the implementation
of a role of some class. This let the maintenance
engineer work iteratively with the system when
identifying the purpose of the implementation classes.

7. Conclusion and future work

In this paper we present the reverse-engineering

tool we developed as a plugin to the eclipse
environment. This plugin implements our approach

about legacy software understanding. The first step is
to identify the classes that implement a given use-case.
This is relatively easy since we can locate them in the
execution trace associated to the use-case. But this is
not enough since there might be dozens of classes
involved with many responsibilities. We need to know
the role of these classes in the implementation of the
use-case. Since we can design an analysis model for
each use-case, we have a way to represent the roles of
these classes. Therefore, if we can map the analysis
object to the implementation classes, we get the role of
the latter in the implementation. This is what our tool
is able to do. However, since the implementation of a
system can contain hundreds of classes and execution
traces thousands if not millions of events, in general
we cannot process this information by hand. Then we
developed a mapping engine that is based on AI
technologies. Our tool has been developed in Java as
an Eclipse plugin. The experiments we have done so
far on a medium size system (360 classes, 25’000
events in the trace) shows that the automatic matcher is
able to get better results than the manual mapping. In
fact its results are more precise than the ones we got by
hand. This is because the automatic mapper is more
systematic and processes all the information available
in depth. For example, in this experiment, we also
realized that we missed some mappings when
processing the information by hand. Besides, our
analyses with the tool also lead us to identify classes
that played mixed roles. For example some classes
played the role of a boundary and an entity object at
the same time. This is usually the symptom of a bad
design. Therefore, our tool could also be used to assess
the quality of a design. As a next step in our research,
we will extend our method and tool to let us compare
the roles of the classes among all the use-cases of a
software system. As a final remark, it is worth
mentioning that our tool cannot “explain” (i.e. assign
roles to) all the classes in the legacy system. In fact,
some of the classes that represent exceptional
situations or alternative execution paths cannot easily
be identified since they might not be involved in the
scenarios played by the users. Therefore, another step
in our research will be to complement the tool with
static analysis techniques to uncover the code that
could potentially be executed in exceptional cases.
Finally, we will also use domain ontologies to enhance
the dynamic search for domain entitites in the
programs.

8. Related work

Domain models have long been acknowledged as a

good way to improve reverse engineering and program

288288

understanding [14][15]. The authors usually propose a
tool to support their approaches. The pioneering work
can certainly be traced back to the famous RIGI
system of Muller et al [12] that lead to the recent
SHriMP & Creole systems [16]. Besides, DeBaud and
Rugaber [5] and DeBaud [4] used an executable
domain model in the form of an object oriented
framework as the target of the understanding task. This
framework represents the concept of the domain and
helps the search for the corresponding concept in the
programs. In the work of Gold [9], a knowledge base
of programming concepts is used to help with the
understanding problem. But these concepts are at a
much lower level than the analysis model that we use.
This approach is supported by the HB-CA tool.
Rugaber and Stirewalt used a formal specification
using an algebraic specification language to model
both the domain and the program being reverse-
engineered [14]. In the dynamic analysis approach to
software understanding, many tools have been
developed such as the work of Benett at al [3], Hamou-
Lahdj [10], Zeidman et al [21]. There, the authors do
not build higher conceptual models of the legacy
system. Rather, the main concern is to cope with the
quantity of information to display, to allow the
maintenance engineer “understand” the involvement of
the classes in the implementation of the system.

9. References
[1] Belmonte J., Dugerdil Ph. - Automating a domain
model aware reengineering methodology. Proc. Int.
Conf. on Software Engineering and Knowledge
Engineering, 2008.

[2] Biggerstaff T.J., Mitbander B.G., Webster D.E. -
Program Understanding and the Concept Assignment
Problem”, Communications of the ACM, 37(5), 1994.

[3] Bennett C., Myers D., Storey M.-A., German D. -
Working with ‘Monster’ Traces: Building a Scalable,
Usable Sequence Viewer.Proc. Workshop on Program
Comprehension through Dynamic Analysis, 2007.

[4] DeBaud J.-M. - Lessons from a Domain-Based
Renegineering Effort. Proc. IEEE Working Conf. on
Reverse Engineering, 1996.

[5] DeBaud J.-M., Rugaber S. - Software
Reengineering method using Domain Models. Proc.
IEEE Int. Conf. on Software Maintenance, 1995.

[6] Doyle J. - A Truth Maintenance System. Artificial
Intelligence 12, pp. 231-272, 1979.

[7] Dugerdil Ph. - A Reengineering Process based on
the Unified Process. Proc. IEEE Int. Conf. on Software
Maintenance, 2006.

[8] Dugerdil Ph. - Using RUP to Reverse Engineer a
Legacy System. The Rational Edge, September 2006.

[9] Gold N. - Hypothesis-Based Concept Assignment
to Support Software Maintenance. PhD Thesis, Univ.
of Durham, UK, 2000.

[10] Hamou-Lhadj A. - Towards a Multi-View Trace
Visualization Environment. Proc. of the 20th IEEE
Canadian Conf. on Electrical and Computer
Engineering, 2007.

[11] Jacobson I., Booch G., Rumbaugh J. - The
Unified Software Development Process. Addison-
Wesley Professional, 1999.

[12] Müller H.A., Orgun M.A., Tilley S., Uhl J.S. - A
Reverse Engineering Approach To Subsystem
Structure Identification. Software Maintenance:
Research and Practice 5(4), John Wiley & Sons. 1993

[13] O’Brien M. - Software Comprehension – A
Review & Research Direction. Technical Report UL-
CSIS-03-3, University of Limerick, Nov. 2003

[14] Rugaber S., Stirewalt K. - Model-Driven Reverse
Engineering. IEEE Software, July/August 2004.

[15] Sayyad-Shirabad J., Lethbridge T.C., Lyon S. -
A Little Knowledge Can Go a Long Way Toward
Program Understanding. Proc IEEE Workshop on
Program Comprehension, 1997.

[16] Storey, M.-A., C. Best, J. Michaud, D. Rayside,
M. Litoiu, M. Musen - "SHriMP views: an interactive
environment for information visualization and
navigation". Proc. of the IEEE Int. Conf. on Human
Factors in Computer Systems (CHI), 2002.

[17] Storey M.-A. - Theories, Methods and Tools in
Program Comprehension: Past, Present and Future.
Proc of the IEEE Int. Workshop on Program
Comprehension, 2005.

[18] Tilley S.R., Smith D.B., Paul S. - Towards a
framework for program understanding. Proc. IEEE Int.
Workshop on Program Comprehension, 1996.

[19] Horstmann C.S., de Pellegrin A. - Violet -
http://sourceforge.net/projects/violet/

[20] von Mayrhauser A. – Program comprehension
during software maintenance and evolution. IEEE
Computer 28(8), 1995.

[21] Zaidman A., Calders T., Demeyer S. Paredaens J.
- Applying Webmining Techniques to Execution
Traces to Support the Program Comprehension
Process. Proc. of the IEEE European Conf. on
Software Maintenance and Reengineering , 2005.

289289

