
Designing Computer Games to Teach Algorithms

Sahar S. Shabanah
George Mason University

sshaban1@gmu.edu

Dr. Jim X. Chen
George Mason University

jchen@gmu.edu

Dr. Harry Wechsler
George Mason University

wechsler@cs.gmu.edu

Dr. Daniel Carr
George Mason University

dcarr@gmu.edu

Dr. Edward Wegman
George Mason University

ewegman@gmu.edu

Abstract

Data structures and algorithms are important foun-
dation topics in computer science education. However,
they are often complex and hard to understand. There-
fore, we introduce a new learning strategy that benefits
from computer games’ popularity and engagement to
help students understand algorithms better by designing
computer games that visualize algorithms. To teach an
algorithm, an educational computer game, namely an
algorithm game, must have a game-play that simulates
the behavior of the visualized algorithm and graphics
depict the features of its data structure.

Key Words: algorithm learning, algorithm
visualization, computer science education, educational
games, game design.

1. Introduction

Despite being major components in computer sci-
ence, algorithms are hard to comprehend because they
usually either model complicated concepts, or refer to
abstract mathematical notions, or describe complex dy-
namic changes in data structures to solve relatively dif-
ficult problems. Therefore, teaching algorithms is a
challenging task that faces computer science instruc-
tors and teaching aids other than chalkboard and view-
graph are always needed to help students learn and un-
derstand algorithms better [1]. The human ability to re-
alize graphic representations faster than textual repre-
sentations led to the idea of using graphical artifacts to
describe the behavior of algorithms to learners, which
has been identified as Algorithm Visualization. Particu-
larly, Algorithm Visualization Systems are systems that
use graphics, sounds, and animations to communicate

how algorithms work [2]. Since the production of the
movie Sorting Out Sorting [3] in 1981, a great number
of algorithm visualization systems have been built with
the promise of improving algorithm learning. However,
many researchers who conducted experiments to deter-
mine the efficiency of current algorithm visualization
systems in teaching algorithms, reported unpromising
results [4]. Some researchers found that there is no sig-
nificant difference, in educational outcomes, between
students who use visualizations and those who do not
[5]. Moreover, in a recent effort to build a wiki for
existing algorithm visualization systems, Shaffer et al.
searched and analyzed hundreds of visualization sys-
tems and found that "most existing algorithm visualiza-
tion systems are of low quality and the content cover-
age is skewed heavily toward easier topics [6]." Thus,
researchers remain positive about visualizations in gen-
eral as Shaffer et al. states "while many good algo-
rithm visualization systems are available, the need for
more and higher quality visualization systems contin-
ues. There are many topics for which no satisfactory
visualization systems are available. Yet, there seems to
be less activity in terms of creating new visualization
systems now than at any time within the past ten years
[6]." The focus on graphics and sound instead of teach-
ing aspects in the design of many algorithm visualiza-
tion systems is responsible for their unsatisfied pledge
as helpful educational tools [7]. Despite being the most
effective factor in the success of any algorithm visual-
ization system [8], several algorithm visualization sys-
tems lack features that encourage students’ engagement
with the displayed visualization. Computer Games are
systems that involve interaction with a user interface to
generate visual feedback on a computer, or a video de-
vice and utilize fun, play, and competition [9]. In this
paper, we address some required issues in creating tools

2010 Seventh International Conference on Information Technology

978-0-7695-3984-3/10 $26.00 © 2010 IEEE

DOI 10.1109/ITNG.2010.78

1119

for teaching algorithms by:

• Comparing several algorithm visualization sys-
tems according to their level of engagement and
presenting an alternative form of active engage-
ment that produced by computer games (sec. 2).

• Reviewing the history of computer games usage in
education (sec. 2).

• Introducing Algorithm Game Visualization, a
novel method for visualizing algorithms using
computer games to overcome the shortness in cur-
rent algorithm visualization systems (sec. 3).

• Developing a game development tool to build al-
gorithm games (sec. 4).

• Implementing several prototypes for algorithm
games using the game development tool we have
built (sec. 5).

Given that active engagement with algorithm visualiza-
tion systems is far more important to learners than the
graphics that they see, and computer games maximally
engage their players, we conclude that algorithm games
can help students learn algorithms better (sec. 6).

2. Related work

Alternative form of active engagement
Naps et al. define six different forms of learner en-
gagement with a visualization technology [10]. The
first form of engagement is "no viewing" meaning no
visualization technology is used at all, while the re-
maining five are the active forms of engagement: view-
ing, responding, changing, constructing, and present-
ing. Viewing is the basic form of active engagement
that has been supported by all algorithm visualization
systems. Students watch the displayed visualizations
passively and only engage with them using some ba-
sic viewing controls such as play and rewind. Exem-
plars of systems that only support viewing are SOS [3],
BALSA [11], and Algorithm Explorer [12]. To support
the other active forms of engagement, algorithm visual-
ization systems have provided additional features to stu-
dents. For example, to support responding, some sys-
tems ask students questions related to the presented vi-
sualization such as JHAVE [13]. Other systems support
changing by allowing students to change the visualiza-
tion data or some other features such as GeoWin [14].
The systems that support constructing encourage stu-
dents to build and construct their own visualizations for
the algorithms under study such as ANIMAL [15] and
ALVIS [16]. Finally, systems that support presenting

provide tools that help students to present visualizations
to an audience for feedback and discussion such as Al-
gorithm Studio [17]. Similarly, computer games support
viewing, responding, changing, constructing, and pre-
senting too. Most computer games come in two modes:
demonstration (demo) and playing. In demo mode,
players view how the game is played passively, while
in the playing mode they respond to the game events.
Also, several computer games provide options for their
players to change some features of their components
such as their color, sound, and graphics. While other
games allow their players to construct new components
in the game environment and present, those to other
players such as the World of Craft game [18]. More-
over, computer games fully interact with their players
and encourage them to think, talk, and act. Therefore,
we introduce "playing" as a new form of active engage-
ment that maximally engages students through repeti-
tion, challenging, and enjoyment in addition to com-
bining all five forms of active engagement presented by
Active Engagement Taxonomy.

Computer games in education
In 1960, the University of Illinois built an educa-
tional computer system named Plato that uses computer
games [19]. Afterward, many research centers started to
develop educational computer games, but Oregon Trail
(1971) was the first known educational game [20]. The
success of research-based educational games, when pre-
sented commercially, led to the production of commer-
cial educational games. Usually, educational games are
known as Edutainment games for embedding education
with entertainment, exemplars of such titles are Snooper
Troops and The Incredible Machine [21]. For a while,
edutainment titles dominated the educational computer
games market; however, they started to lose their good
reputation, because of using similar game play in many
titles and having low-budgets [21]. Despite the frustra-
tion with edutainment games in the past, they reemerged
recently as Serious Games, which have been developed
for serious purposes other than entertainment such as
training, advertising, simulation, and education. Many
factors have contributed into the appearance of serious
games such as the failure of edutainment games, the ad-
vancements in the computer games technology and the
increased number of people playing games. In 2002,
the "Serious Games Initiative" was launched to support
the development of serious games that address policy
and social issues. Moreover, many research projects fo-
cused on serious games such as the Games to Teach
Project [22] and Immune Attack [23]. However, de-
spite the use of educational computer games in teach-
ing many subjects, still there is a need for more games

1120

to teach several other subjects such as algorithms.

3. Algorithm game visualization

In general, computer games have many features
that encouraged us to consider them to teach and visu-
alize algorithms. Computer games have been broadly
played all over the world by adolescents and young
adults; in particular, the number of hours the standard
college students spend on reading is half the time that
they spend on playing computer games [24]. There-
fore, the best method for teaching today students is us-
ing computer games. Moreover, the use of computer
games converts an unpleasant and tedious operation of
algorithm learning into an enjoyable and interesting ex-
perience. In addition, computer games fully interact
with players and attract them to think and respond to
different events. Since there is an increasing correla-
tion between algorithm learning and the level of stu-
dents’ engagement [8], the use of computer games in
algorithm learning will improve it and fulfill the lack
of engagement in current algorithm visualization sys-
tems. Playing a computer game is an intrinsically moti-
vating activity in which players engage for no reward
other than the interest and enjoyment that accompa-
nies it. The research shows that Intrinsic Motivation
(A.1) improves learning [25], thus, the use of computer
games will motivate students to learn and understand al-
gorithms better. Furthermore, computer games players
actively construct knowledge about the game topic and
story through active interaction with the game. Also,
the wining/losing of computer games eliminate the need
for grades and tests, and assessment becomes part of
the learning process so that students judging their own
progress. Therefore, the use of computer games to
teach algorithms is an application of the Constructivism
Learning Theory (A.2), which provides better algorithm
learning.

3.1. Algorithm game properties

We have called a computer game that teaches and
visualizes an algorithm, an Algorithm Game. Each al-
gorithm game has six common properties and features.
First, the algorithm game can be created either by de-
signing a totally new game or by modifying the game-
play of an existing game to simulate the algorithm steps.
For example, we created the Binary Search Game by
modifying the known (Pong) game to simulate the bi-
nary search algorithm as shown in section (5.1). Sec-
ond, the algorithm game must be simple and not com-
plicated, so students do not lose concentration and dis-
tracted, but it must be challenging or the student will be

bored. Third, the algorithm game can be of any genre,
but it must visualize the algorithm and its data structure,
for example, we modify the Pong game to visualize the
binary search algorithm by presenting the array data
structure as a set of sequential boxes with values and
the game play algorithm steps. Fourth, to support intrin-
sic motivation, the algorithm game should challenge the
player by setting clear goals with appropriate difficulty
levels and giving clear and encouraging feedback. Also,
the information in the game should be complex and un-
known to increase the player curiosity. Moreover, the
game must give the most control to the player by pro-
viding many options to customize it and increase the
player imagination. Lastly, the game should increase
competition, collaboration and the recognition of peers.
Fifth, the algorithm game graphics items must depict
the features of the data structure that associated with
the algorithm. For example, if the data structure is an
array, we can use a group of boxes since the boxes has
content we can use to store the array numbers and can
be arranged sequentially as the array, for the tree data
structure we can use an actual tree with leaves that rep-
resent the numbers. Sixth, the game-play of the algo-
rithm game must simulate the behavior of the algorithm
that game is visualizing.

3.2. Algorithm game architecture

The architecture (fig1) of each algorithm game con-
sists of five basic modules; however, more modules can
be added depending on the game and the algorithm it
visualizes.

1. Game screens module: a game screen is a
collection of visual and audio components that
describe the state of the game at any one time during
the game life cycle. Exemplars of game screens are
Main Menu Screen (displays available options on game
start up), Title Screen (what the player sees when she
first starts the game), Game Play Screen (displays the
game common properties such as scores and number of
levels), and Game Level Screen (displays one level of
the game). Each algorithm game must have at least the
following basic game screens: Title, Main Menu, Play
Game, Won, Lost, and Pause.

2. Game graphics items module: game graphics are
everything that contributes to the visual appearance of
the game such as fonts, (2D) Sprites, and (3D) Models.
Game Graphics Items are the individual visual objects,
which build the game world. They are either
non-animated (background and foreground) or
animated objects. Characters are the graphics items
that animate on the screen and are either controllable

1121

Figure 1. Algorithm Game Architecture

(Player Characters PC) or non-controllable
(Non-Player Characters NPC) by the player. The
algorithm game graphics items are either 2D Sprites or
3D Models that have attributes such as size, position,
and name in addition to behaviors like render, move,
and update. Exemplars of algorithm game graphic
items are Nodes, which are used to visualize the nodes
of the algorithm data structure; Playing Tools, which
are used to play the game (ball, paddle, shooter, etc.)
and Buttons, which are used in the screens general
design.

3. Game content module: game assets are the element
files that make the game world such as texture, font,
model, and sound files. The game content module
handles the loading, saving and building operations
related to the game assets. In addition, it handles the
game script files that contain the game custom script
codes and the data storage files such as XML files.

4. Input module: the game input is the players’ tactile
contact with the game, which they used to respond to
the game events and enter their choices. An excellent
game offer the player a large number of meaningful
options in addition to the choice of several input
devices such as keyboard, joystick, game-pad or
mouse. The input module handles the game input from
the mouse, keyboard, and game-pad and the designer
of the game must implement the required feedback for
each player input event.

5. Game play module: the game loop continually
updates the state of the game, based on user input,
in-game conditions and any other applicable condition,
and renders it, which involves drawing to the screen,
playing appropriate audio, rumbling a controller, and
providing any other form of output to the user. This
module is responsible for implementing the game loop
and playing rule according to the visualized algorithm.

4. Algorithm Game Implementation

The computer games development is a time-
consuming and tedious process that requires experi-
ence in computer graphics and game design [10], which
may discourage instructors from developing algorithm
games to teach their students. However, after the re-
lease of Microsoft XNA Game Studio [26], which has
been designed for simplifying game creation for stu-
dents and hobbyists, the process has become relatively
easier. Therefore, we have built a game development
tool, namely Algorithm Game Designer, and a game en-
gine, called SAVGEngine (Serious Algorithm Visualiza-
tion Game Engine), specifically, for implementing algo-
rithm games as XNA games with as little code as possi-
ble.

Algorithm game designer. The Algorithm Game De-
signer has been implemented as a Visual Studio
Isolated-Shell using Microsoft .Net Framework and C#.
It has been built, specifically, to automate the develop-
ment of an algorithm game by providing two types of
editors: a Code Editor that supports the creation, de-
bugging, compiling, and execution of a new algorithm
game project and a Script Editor that provides an envi-
ronment to write game-specific script codes. It also has
a set of five graphics editors: Game Assets, Properties,
Screens, class, and Graphics Items Editors that support
the creation of several algorithm game components us-
ing a flexible, user-friendly graphical user interface. In
addition, it provides an Algorithm Game Template to be
used as a blueprint to create a new algorithm game and
provides it with all needed basic classes and operations.

SAVGEngine. SAVGEngine is geared toward a two
and three-dimensional environment. Specifically, SAV-
GEngine has no specific game logic coded directly in
it; it only provides a common set of base functional-
ity that can be reused for any algorithm game. Over-
all, the engine is responsible for various major mod-
ules that encapsulate all functionality for creating an
algorithm game such as graphics, sound, input, game
screens, physics, storage, and script managers. Also, it
includes BaseGame and PlayGame classes that provide
the new algorithm game with game timing and render-
ing loops in addition to the implementation of all basic
game-play rules of the game. Moreover, SAVGEngine
provides ready to use algorithm game components that
can be altered and plugged-in into the new game such
as data structures, algorithms, graphics items, game
screens, and game assets.

Algorithm game creation. To create a new algorithm
game using the Algorithm Game Designer, the devel-

1122

oper needs to create a new algorithm game project using
the included Algorithm Game Template. Then, the de-
veloper must set up the game properties, assets, graph-
ics items, classes and screens using the Properties, As-
sets, Graphics Items, classes, and Screens Game Ed-
itors respectively. After that, the developer needs to
implement the required methods in the BaseGame and
PlayGame classes of the algorithm game, and adds any
needed code using the Script Editor. Finally, the devel-
oper can use the Code Editor to compile, debug, and
execute the created algorithm game.

5. Algorithm game prototypes

This section describes three algorithm game pro-
totypes: binary search algorithm, singly-linked list and
binary search tree. Each algorithm game prototype is
described using ten design elements.

Algorithm game design elements:

1. Game idea: describes the game main goal and
topic. Each algorithm game idea is visualizing an
algorithm steps and its data structure.

2. Game start: describes the game start up screen
components.

3. Game level: describes how the difficulty increases,
how a level ends. Each completed level must
achieve a learning sub-goal.

4. Game milestone events: points of the game at
which the player rewarded or penalized.

5. Game end: explains what happens when the player
loses, or wins or gets a high score.

6. Game input: the player’s contact with the game.
The default input devices are keyboard, mouse,
and Xbox game-pad.

7. Game graphics: the algorithm game graphics must
depict the characteristics of its data structure. For
example, a block can be used to visualize one ele-
ment of a data structure, while a set of blocks used
to visualize an array.

8. Game sounds: musical sounds that play at game
goal events or sound effects that play at other game
events.

9. Game screens: a collection of visual and audio
components that describe the state of the game at
any one time during the game life cycle. The basic
game screens of every algorithm game are Title,
Main Menu, Play, Won, and Lost screens.

Figure 2. Binary Search- Play Screen

10. Game play: explains how the game is played and
simulates the functionality of the algorithm.

5.1. Binary search game prototype

The binary search algorithm finds an index of a
(target) value in a sequential list of sorted elements (ar-
ray) by selecting the middle element (median) of (array)
and compares it with the (target). Then, if (median) >
(target), the index of (median)-1 becomes the new upper
bound of (array); else if (median) < (target), the index
of (median) + 1 becomes the new lower bound; else if
(median) = (target), returns the index of (median). The
algorithm pursues this strategy iteratively for the new
list; it reduces the search span by a factor of two each
time, and soon finds the target value or else determines
that it is not in the list.

Binary search game design elements:

1. Game idea: hitting an array of blocks with a ball
using a paddle.

2. Game starts: displaying one game level that in-
cludes a random number of blocks with hidden val-
ues (array), a ball, a paddle, the Level Number, the
Player Lives, the Search Number (target value) and
the Player Score.

3. Game levels: several, at each new level the num-
ber of blocks is increased to make the game more
challenging.

4. Game ends: when the player either loses all his
lives or completes all game levels successfully.

5. Game milestone events: start of new level and a
lost live.

6. Game input: default devices.

1123

7. Game graphics items: a set of blocks where each
block has a value that represents one element of
the array, a ball, and a paddle.

8. Game sounds: HitBall, LostLive, Won and Lost.

9. Game screens: basic screens such as play (fig 2),
menu, etc.

10. Game play: the player starts playing by hitting one
of the displayed blocks (array) with the ball us-
ing a paddle. If the player hits a block in the mid-
dle (median), the player scores one point; then, if
(Search Number > median), the player continues
playing on the blocks on the right of (median); else
If (Search Number < median), the player contin-
ues playing on the blocks on the left of (median);
else if (Search Number = median), the level ends.
Else if the block is not in the middle, the player
loses one live; then, if (Player Lives=0), the player
loses the game; else the player repeats the same
level. When a level ends, if it is the last level
and (Player Lives > 0), the player wins the game;
else the (Level Number) is increased and the player
starts new level.

5.2. Singly-linked list game prototype

A singly-linked list is a data structure, in which ev-
ery element (node) contains some data and a (next) link
to the next element. The list has two links (head), which
point to the first node and (tail), which points to the last
node. The singly-linked list has three basic operations:
traversal, insert, and remove node.

1. Traversal: beginning from the head, 1. check, if the
end of the list has not been reached yet; 2. visit current
node; 3. current node becomes previous and next node
becomes current. Go to step 1.

2. Insert: there are four cases for adding a node to a
list. First, when the list is empty, set both head and tail
links to point to the new node. Second, when adding
before first node, update the new node link to point to
first node; then, update the head link to point to the
new node. Third, when adding after last node, update
both the link of last node and the tail link to point to
the new node. Fourth, when adding a node between
two nodes, update the previous node link to point to the
new node; then, update the new node link to point to
the next node.

3. Remove: there are four cases for removing a node
from a linked list. First, when the list has only one
node, sets both head and tail links to NULL. Second,

when removing first node, update the head link to point
to the node next to the first. Third, when removing last
node, update the tail link to point to the node before the
last. Then, set the link of the new tail to NULL. Fourth,
when removing a node between two nodes, update the
previous node link, to point to the next node, relative to
the removed node.

Singly-linked list game design elements:

1. Game idea: building a chain of connected nodes,
according to the linked list insert and remove algo-
rithms.

2. Game starts: displaying one game level that in-
cludes a node, the Level Number, the Player Lives
and the Player Score.

3. Game levels: several, at each new level the num-
ber of the nodes in the required chain is increased
to make the game more challenging and the new
nodes will appear faster than before.

4. Game ends: when the player either loses all his
lives or completes all game levels successfully.

5. Game milestone events: start of new level.

6. Game input: default devices.

7. Game graphics items: nodes with handler to be
connected to each other.

8. Game sounds: FallingNode, ConnectingNode,
Won and Lost.

9. Game screens: basic screens.

10. Game play: depending on their color, the player
must build a chain of nodes as fast as she can,
where nodes with the same color must be adjacent.
During the game, a node with a different color is
presented to the player continuously, so the player
must add and delete nodes until reached to the re-
quired combination. All nodes are connected with
each other using a chain, if a node added or deleted
improperly, it will fall, and the Player Lives de-
creases by one, otherwise, when the node added
correctly the Player Score increased by one.

5.3. Binary search tree game prototype

The Binary Search Tree (BST) is a data structure, in
which each node has at most two children. Each node in
the BST contains a value, which is lesser than the values
of its right sub-tree and greater than the values of its left
sub-tree. The binary search tree has three operations:
search, add, and remove value.

1124

1. Search: starting from the root, check, whether value
in current node and searched value are equal. If so,
value is found. Otherwise, if searched value is less than
the node’s value; then, if current node has no left child,
searched value does not exist in the BST; otherwise,
handle the left child with the same algorithm. If a new
value is greater than the node’s value; then, if current
node has no right child, searched value does not exist
in the BST; otherwise, handle the right child with the
same algorithm.

2. Add: apply the search algorithm to find a place to
put a new element; insert the new element to this place.

3. Remove: apply the search algorithm to find the
parent of the node that has the value to be deleted.
Then, if the node to be removed has no children, set
corresponding link of the parent to NULL and disposes
the node. Else if the node to be removed has one child,
the node is cut from the tree and link single child (with
its sub-tree) directly to the parent of the removed node.
Else if the node to be removed has two children, find a
minimum value in the right sub-tree, replace the value
of the node to be removed with found minimum. Now,
right sub-tree contains a duplicate! So apply remove to
the right sub-tree to remove the duplicate.

Binary search tree game design elements:

1. Game idea: building the binary search tree, given
values one after another, as fast as possible.

2. Game starts: displaying one game level that in-
cludes the root of the tree and a given value, the
Level Number and the Player Score.

3. Game levels: several, at each new level the num-
ber tree nodes is increased to make the game more
challenging.

4. Game ends: either when the Player Score becomes
less than zero or when the player completes all
game levels successfully.

5. Game milestone events: start of new level.

6. Game input: default devices.

7. Game graphics items: nodes of the tree, each node
has a value.

8. Game sounds: AddNode, RemoveNode, Won and
Lost.

9. Game screens: basic screens.

10. Game play: the player must build a binary search
tree as fast as he can, by inserting new nodes into
their correct places in the tree. If the player adds
a node in its correct place, the Player Score in-
creased by one. Otherwise, the Player Score de-
creased by one and he must remove the node, then
reinsert it in its correct place.

6. Conclusion

Algorithm games benefit from the players’ desire
to win, love to compete and entertaining resulted from
playing to motivate students learning algorithms. Com-
pared to prior algorithm visualization systems, algo-
rithm games provide richer visualizations that take bet-
ter advantage of modern graphics and audio technol-
ogy. These visualizations are designed to improve stu-
dents’ learning experience by creating a more engaging
and immersive environment. By using algorithm games
to visualize algorithms, we have introduced "playing"
as a new form of algorithm visualization engagement
that maximally engages students and combines all five
forms of active engagement. Moreover, we facili-
tate the students’ assessment using the algorithm game
winning-losing criteria without the need for external
questions. Finally, we have designed the Algorithm
Game Designer to easily create algorithm games with
minimal training and effort. However, more improve-
ments are needed. For example, SAVGEngine reposi-
tory needs to be updated with more components such as
implementations of known data structures, algorithms,
graphics items, game screens, and game assets. In addi-
tion, SAVGEngine needs more modules to handle more
game operations.

A. Learning theories

A.1 Motivation theory: is concerned with the factors
that stimulate or inhibit the desire to engage in a behav-
ior. Malone and Lepper distinguish between two types
of motivation: Extrinsic that is supported by factors ex-
ternal to the activity and Intrinsic that arises directly
from doing the activity. [25].

A.2 Constructivism theory: states that human beings
actively construct knowledge for themselves through
their active interaction with the environment, individual
previous experiences and prerequisite knowledge that
will enable them to construct meaning for new infor-
mation. Moreover, different people may learn different
things from the same information.

1125

References

[1] R. Baecker, “Sorting out sorting: A case study of soft-
ware visualization for teaching computer science,” in
Software Visualization: Programming as a Multimedia
Experience. The MIT Press, 1998, pp. 369–381.

[2] P. D. Eades and K. Zhang, Eds., Software Visualization.
World Scientific, 1996, vol. 7.

[3] R. Baecker and D. Sherman, “Sorting out sorting,” 30
minute colour sound film, Dynamic Graphics Project,
University of Toronto, 1981, excerpted and reprinted in
SIGGRAPH Video Review 7,1983.

[4] M. D. Byrne, R. Catrambone, and J. T. Stasko, “Do algo-
rithm animations aid learning?” Tech. Rep. GIT-GVU-
96-18, 1996.

[5] C. Hundhausen, S. Douglas, and J. Stasko, “A meta-
study of algorithm visualization effectiveness,” Visual
Languages and Computing, vol. 13, no. 3, pp. 259–290,
2002.

[6] C. A. Shaffer, M. Cooper, and S. H. Edwards, “Algo-
rithm visualization: a report on the state of the field,” in
SIGCSE ’07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, Covington.
ACM Press, 2007, pp. 150–154.

[7] L. Stern, H. Sondergaard, and L. Naish, “A strategy
for managing content complexity in algorithm anima-
tion,” in ITiCSE ’99: Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation and
technology in computer science education, Cracow.
ACM Press, 1999, pp. 127–130.

[8] G. Rossling and T. L. Naps, “A test-bed for pedagogi-
cal requirements in algorithm visualizations,” in ITiCSE
’02: Proceedings of the 7th annual conference on In-
novation and technology in computer science education,
Aarhus. ACM Press, 2002, pp. 96–100.

[9] M. Wolf, The Medium of the Video Game, "1st" ed.
University of Texas Press, 2002.

[10] T. L. Naps, G. Rossling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J. A. Velazquez-Iturbide,
“Exploring the role of visualization and engagement
in computer science education,” in ITiCSE-WGR ’02:
Working group reports from ITiCSE on Innovation and
technology in computer science education, Aarhus.
ACM Press, 2002, pp. 131–152.

[11] M. H. Brown and R. Sedgewick, “A system for algo-
rithm animation,” in SIGGRAPH ’84: Proceedings of
the 11th annual conference on Computer graphics and
interactive techniques. ACM Press, 1984, pp. 177–186.

[12] E. Carson, I. Parberry, and B. Jensen, “Algorithm ex-
plorer: visualizing algorithms in a 3d multimedia en-
vironment,” in SIGCSE ’07: Proceedings of the 38th
SIGCSE technical symposium on Computer science ed-
ucation,Covington. ACM Press, 2007, pp. 155–159.

[13] T. L. Naps, “Jhave: Supporting algorithm visualization,”
IEEE Computer Graphics and Applications, vol. 25,
no. 5, pp. 49–55, 2005.

[14] M. Bäsken and S. Näher, “Geowin - a generic tool for in-

teractive visualization of geometric algorithms,” in Re-
vised Lectures on Software Visualization, International
Seminar. Springer-Verlag, 2002, pp. 88–100.

[15] G. Rossling and B. Freisleben, “Animal: A system for
supporting multiple roles in algorithm animation,” Vi-
sual Languages and Computing, vol. 13, no. 3, pp. 341–
354, 2002.

[16] C. Hundhausen, J. Wingstrom, and R. Vatrapu, “The
evolving user-centered design of the algorithm visual-
ization storyboarder,” in VLHCC ’04: Proceedings of
the 2004 IEEE Symposium on Visual Languages - Hu-
man Centric Computing. IEEE Computer Society,
2004, pp. 62–64.

[17] C. Hundhausen, “The "algorithms studio" project: using
sketch-based visualization technology to construct and
discuss visual representations of algorithms,” in HCC
’02: Proceedings of the IEEE 2002 Symposia on Hu-
man Centric Computing Languages and Environments,
Arlington. IEEE Computer Society, 2002, pp. 99–100.

[18] “World of warcraft,” World of Warcraft Commu-
nity Site– Website, accessed 10/15/2009. [Online].
Available: www.worldofwarcraft.com

[19] D. Bitzer, P. Braunfeld, and W. Lichtenberger, “Plato:
An automatic teaching device,” Master’s thesis, Univer-
sity of Illinois, Coordinated Science Laboratory, 1961.

[20] J. H. Dysentery, “The greatest games of all time,”
Game Spot–Website, 1997, accessed 10/26/2007. [On-
line]. Available: http://www.gamespot.com/gamespot/
features/all/greatestgames/p-34.html

[21] S. Egenfeldt Nielsen, “Beyond edutainment exploring
the educational potential of computer games,” Ph.D.
dissertation, IT-University of Copenhagen as, February
2005, accessed 11/12/2007. [Online]. Available: http:
//www.itu.dk/people/sen/egenfeldt.pdf

[22] H. Jenkins, “The games to teach project,” Com-
parative Media Studies-MIT –Website, 2001, ac-
cessed 03/10/2008. [Online]. Available: http:
//www.educationarcade.org/gtt/proto.html

[23] H. Kelly, K. Howell, E. Glinert, L. Holding, C. Swain,
A. Burrowbridge, and M. Roper, “How to build serious
games,” New York, NY, USA, pp. 44–49, 2007.

[24] J. M. Randel, B. A. Morris, C. D. Wetzel, and B. V.
Whitehill, “The effectiveness of games for educational
purposes: a review of recent research,” Simul. Gaming,
vol. 23, no. 3, pp. 261–276, 1992.

[25] T. W. Malone, “What makes things fun to learn? heuris-
tics for designing instructional computer games,” in
SIGSMALL ’80: Proceedings of the 3rd ACM SIGS-
MALL symposium and the first SIGPC symposium on
Small systems, Palo Alto. ACM Press, 1980, pp. 162–
169.

[26] “XNA Developer Center,” MSDN, accessed
09/27/2009,. [Online]. Available: http://msdn.microsoft.
com/en-us/xna/default.aspx

1126

